
Workgroup: Network Working Group

Internet-Draft:

draft-hallambaker-threshold-sigs

Published: 13 January 2021

Intended Status: Informational

Expires: 17 July 2021

Authors: P. M. Hallam-Baker

ThresholdSecrets.com

Threshold Signatures in Elliptic Curves

Abstract

A Threshold signature scheme is described. The signatures created

are computationally indistinguishable from those produced using the

Ed25519 and Ed448 curves as specified in RFC8032 except in that they

are non-deterministic. Threshold signatures are a form of digital

signature whose creation requires two or more parties to interact

but does not disclose the number or identities of the parties

involved.

https://mailarchive.ietf.org/arch/browse/cfrg/Discussion of this

draft should take place on the CFRG mailing list (cfrg@irtf.org),

which is archived at .

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 July 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

¶

¶

¶

¶

¶

¶

¶

http://whatever
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document.

Table of Contents

1. Introduction

1.1. Applications

1.1.1. HSM Binding

1.1.2. Code Signing

1.1.3. Signing by Redundant Services

2. Definitions

2.1. Requirements Language

2.2. Defined Terms

2.3. Related Specifications

2.4. Implementation Status

3. Principles

3.1. Direct shared threshold signature

3.2. Shamir shared threshold signature

3.3. Stateless computation of final share

3.3.1. Side channel resistance

3.4. Security Analysis

3.4.1. Calculation of r values

3.4.2. Replay Attack

3.4.3. Malicious Contribution Attack

3.4.4. Rogue Key Attack

4. Ed2519 Signature

5. Ed448 Signature

6. Test Vectors

6.1. Direct Threshold Signature Ed25519

6.2. Direct Threshold Signature Ed448

6.3. Shamir Threshold Signature Ed25519

6.4. Shamir Threshold Signature Ed448

7. Security Considerations

7.1. Rogue Key attack

7.2. Disclosure or reuse of the value r

7.3. Resource exhaustion attack

7.4. Signature Uniqueness

8. IANA Considerations

9. Acknowledgements

10. Normative References

11. Informative References

1. Introduction

Threshold encryption and key generation provide compelling

advantages over single private key approaches because splitting the

private key permits the use of that key to be divided between two or

more roles.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Multi-signatures

Multi-party key release

Threshold signatures

Aggregate Signatures

All existing digital signatures allow the signer role to be divided

between multiple parties by attaching multiple signatures to the

signed document. This approach, known as multi-signatures, is

distinguished from a threshold signature scheme in that the identity

and roles of the individual signers is exposed. In a threshold

signature scheme, the creation of a single signature requires the

participation of multiple signers and the signature itself does not

reveal the means by which it was constructed.

Rather than considering multi-signatures or threshold signatures to

be inherently superior, it is more useful to regard both as two

points on a continuum of choices:

Multiple digital signatures on the same document.

Multi-signatures are simple to create and provide the verifier

with more information but require the acceptance criteria to be

specified independently of the signature itself. This requires

that the application logic or PKI provide some means of

describing the criteria to be applied.

A single signature created using a single

private key stored in an encrypted form whose use requires

participation of multiple key decryption shares.

A single signature created using multiple

signature key shares. Signature creation may be subject to

complex criteria such as requiring an (n,t) quorum of signers but

these criteria are fixed at the time the signature is created

A single signature created using multiple

signature key shares such that validation of the aggregate

signature serves to validate the participation of each of the

individual signers.

This document builds on the approach described in [draft-

hallambaker-threshold] to define a scheme that creates threshold

signatures that are computationally indistinguishable from those

produced according to the algorithm specified in [RFC8032]. The

scheme does not support the creation of aggregate signatures.

The approach used is based on that developed in FROST [Komlo]. This

document describes the signature scheme itself. The techniques used

to generate keys are described separately in [draft-hallambaker-

threshold].

As in the base document, we first describe signature generation for

the case that n = t using 'direct' coefficients, that is the secret

scalar is the sum of the secret shares. We then show how the scheme

is modified using Shamir secret sharing [Shamir79] and Lagrange

coefficients for the case that n > t.

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.1. Applications

Threshold signatures have application in any situation where it is

desired to have finer grain control of signing operations without

this control structure being visible to external applications. It is

of particular interest in situations where legacy applications do

not support multi-signatures.

1.1.1. HSM Binding

Hardware Security Modules (HSMs) prevent accidental disclosures of

signature keys by binding private keys to a hardware device from

which it cannot be extracted without substantial effort. This

provides effective mitigation of the chief causes of key disclosure

but requires the signer to rely on the trustworthiness of a device

that represents a black box they have no means of auditing.

Threshold signatures allow the signer to take advantage of the key

binding control provided by an HSM without trusting it. The HSM only

contributes one of the key shares used to create the signature. The

other is provided by the application code (or possibly an additional

HSM).

1.1.2. Code Signing

Code signing is an important security control used to enable rapid

detection of malware by demonstrating the source of authorized code

distributions but places a critical reliance on the security of the

signer's private key. Inadvertent disclosure of code signing keys is

commonplace as they are typically stored in a form that allows them

to be used in automatic build processes. Popular source code

repositories are regularly scanned by attackers seeking to discover

private signature keys and passwords embedded in scripts.

Threshold signatures allow the code signing operation to be divided

between a developer key and an HSM held locally or by a signature

service. The threshold shares required to create the signature can

be mapped onto the process roles and personnel responsible for

authorizing code release. This last concern might be of particular

advantage in open source projects where the concentration of control

embodied in a single code signing key has proved to be difficult to

reconcile with community principles.

1.1.3. Signing by Redundant Services

Redundancy is as desirable for trusted services as for any other

service. But in the case that multiple hosts are tasked with

compiling a data set and signing the result, there is a risk of

different hosts obtaining a different view of the data set due to

¶

¶

¶

¶

¶

timing or other concerns. This presents the risk of the hosts

signing inconsistent views of the data set.

Use of threshold signatures allows the criteria for agreeing on the

data set to be signed to be mapped directly onto the requirement for

creating a signature. So if there are three hosts and two must agree

to create a signature, three signature shares are created and with a

threshold of two.

2. Definitions

This section presents the related specifications and standard, the

terms that are used as terms of art within the documents and the

terms used as requirements language.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2.2. Defined Terms

See [draft-hallambaker-threshold].

2.3. Related Specifications

This document extends the approach described in [draft-hallambaker-

threshold] to support threshold signatures. The deterministic

mechanism described in specification [draft-hallambaker-mesh-udf] is

used to generate the private keys used in the test vectors.

2.4. Implementation Status

The implementation status of the reference code base is described in

the companion document [draft-hallambaker-mesh-developer].

3. Principles

The threshold signatures created according to the algorithms

described in this document are compatible with but not identical to

the signatures created according to the scheme described in

[RFC8032]. In particular:

The signature verification algorithm is unchanged.

The unanimous threshold scheme produces values of R and S that

are deterministic but different from the values that would be

obtained by using the aggregate private key to sign the same

document.

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

*

¶

Where

S.B

The deterministic quorate threshold scheme produces values of R

and S that are deterministic for a given set of signers but will

change for a different set of signers or if the aggregate private

key was used to sign the same document.

?The non-deterministic quorate threshold scheme produces values

of R and S that will be different each time the document is

signed.

Recall that a digital signature as specified by [RFC8032] consists

of a pair of values S, R calculated as follows:

R = r.B

S = r + k.s mod L

B is the base point of the elliptic curve.

r is an unique, unpredictable integer value such that 0 r L

k is the result of applying a message digest function determined

by the curve (Ed25519, Ed448) to a set of parameters known to the

verifier which include the values R, A and PH(M).

A is the public key of the signer, A = s.B

PH(M) is the prehash function of the message value.

s is the secret scalar value

L is the order of the elliptic curve group.

To verify the signature, the verifier checks that:

S.B = R + k.A

This equality must hold for a valid signature since:

= (r + k.s).B

= r.B +k.(s.B)

= R + k.A

The value r plays a critical role in the signature scheme as it

serves to prevent disclosure of the secret scalar. If the value r is

known, s can be calculated as s = (S-r).k mod L. It is therefore

essential that the value r be unguessable.

*

¶

*

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

-1

¶

Furthermore, if the same value of r is used to sign two different

documents, this results two signatures with the same value R and

different values of k and S. Thus

S = r + k .s mod L

S = r + k .s mod L

s = (S - S)(k - k) mod L

The method of constructing r MUST ensure that it is unique and

unguessable.

3.1. Direct shared threshold signature

A threshold signature R, S is constructed by summing a set of

signature contributions from two or more signers. For the case that

the composite private key is the sum of the key shares (n = t), each

signer i provides a contribution as follows:

A = s .B

R = r .B

S = r + k.s mod L

Where s and r are the secret scalar and unguessable value for the

individual signer.

The contributions of signers {1, 2, ... n} are then combined as

follows:

R = R + R + ... + R

S = S + S + ... + S

A = s.B

Where s = (s + s + ... + s) mod L

The threshold signature is verified in the same manner as before:

S.B = R + k.A

Substituting for S.B we get:

= (S + S + ... + S).B

= S .B + S .B + ... + S .B

= (r + k.s).B + (r + k.s).B + ... + (r + k.s).B

¶

1 1 ¶

2 2 ¶

1 2 1 2
-1 ¶

¶

¶

i i ¶

i i ¶

i i i ¶

i i

¶

¶

1 2 n¶

1 2 n¶

¶

1 2 n ¶

¶

¶

¶

1 2 n ¶

1 2 n ¶

1 1 2 2 n n ¶

= (r .B + k.s .B) + (r .B + k.s .B) + ... + (r .B + k.s .B)

= (R1 + k.A1) + (R1 + k.A1) + ... + (Rn + k.An)

Substituting for R + k.A we get:

= R + R + ... + R + k.(A + A + ... + A)

= R + R + ... + R + k.A + k.A + ... + k.A

= (R + k.A) + (R + k.A) + ... + (R + k.A)

As expected, the operation of threshold signature makes use of the

same approach as threshold key generation and threshold decryption

as described in [draft-hallambaker-threshold]. As with threshold

decryption it is not necessary for each key share holder to have a

public key corresponding to their key share. All that is required is

that the sum of the secret scalar values used in calculation of the

signature modulo the group order be the value of the aggregate

secret scalar corresponding to the aggregate secret key.

While verification of [RFC8032] signatures is unchanged, the use of

threshold signatures requires a different approach to signing. In

particular, the fact that the value k is bound to the value R means

that the participants in the threshold signature scheme must agree

on the value R before the value k can be calculated. Since k is

required to calculate the signature contributions S can be

calculated, it is thus necessary to calculate the values R and S in

separate phases. The process of using a threshold signature to sign

a document thus has the following stages orchestrated by a dealer as

follows:

The dealer determines the values F, C and PH(M) as specified in

[RFC8032] and transmits them to the signers {1, 2, ... n}.

Each signer generates a random value r such that 1 r L,

calculates the value R = r .B and returns R to the dealer .

The dealer calculates the value R = R + R + ... + R and

transmits R and A to the signers {1, 2, ... n}.

Each signer uses the suppled data to determine the value k and

hence S = r + k.s mod L and transmits it to the dealer .

The dealer calculates the value S = S + S + ... + S and

verifies that the resulting signature R, S verifies according

to the mechanism specified in [RFC8032]. If the signature is

correct, the dealer publishes it. Otherwise, the dealer MAY

identify the signer(s) that provided incorrect contributions by

verifying the values R and S for each.

1 1 2 2 n n ¶

¶

¶

1 2 n 1 2 n ¶

1 2 n 1 2 n¶

1 1 1 1 n n ¶

¶

i

i i

¶

0.

¶

1. i i

i i ¶

2. 1 2 n

¶

3.

i i i ¶

4. 1 2 n

i i ¶

Where

For clarity, the dealer role is presented here as being implemented

by a single party.

3.2. Shamir shared threshold signature

To construct a threshold signature using shares created using Shamir

Secret Sharing, each private key value s is multiplied by the

Lagrange coefficient l corresponding to the set of shares used to

construct the signature:

A = s l .B

R = r .B

S = ri + klisi mod L

It is convenient to combine the derivation of S for the additive and

Shamir shared threshold signatures by introducing a key multiplier

coefficient c :

S = ri + kcisi mod L

c = 1 for the additive shared threshold signature

c = l for the Shamir shared threshold signature

3.3. Stateless computation of final share

One of the chief drawbacks to the algorithm described above is that

it requires signers to perform two steps with state carried over

from the first to the second to avoid reuse of the value r . This

raises particular concern for implementations such as signature

services or HSMs where maintaining state imposes a significant cost.

Fortunately, it is possible to modify the algorithm so that the

final signer does not need to maintain state between steps:

All the signers except the final signer F generate their value

r and submit the corresponding value R to the dealer

Dealer calculates the value R - R and sends it to the final

signer together with the all the other parameters required to

calculate k and the final signer's key multiplier coefficient

c .

The final signer generates its value r

The final signer calculates the value R from which the values R

and k can now be determined.

¶

i

i

¶

i i i ¶

i i ¶

i ¶

i

i ¶

i ¶

i ¶

i i ¶

i

¶

¶

0.

i i ¶

1. F

F ¶

2. F¶

3. F

¶

The final signer calculates its key share contribution S = rF +

kcFsF mod L.

The final signer returns the values S and R to the dealer.

The dealer reports the value R to the other signers and

continues the signature process as before.

While this approach to stateless computation of the signature

contributions is limited to the final share, this is sufficient to

cover the overwhelming majority of real-world applications where n =

t = 2.

Note that the final signer MAY calculate its value r

deterministically provided that the parameters R - R and c are used

in its determination. Other signers MUST NOT use a deterministic

means of generating their value r since the information known to

them at the time this parameter is generated is not sufficient to

fix the value of R.

3.3.1. Side channel resistance

The use of Kocher side channel resistance as described in [draft-

hallambaker-threshold] entails randomly splitting the private key

into two shares and performing the private key operation separately

on each share to avoid repeated operations using the same private

key value at the cost of performing each operation twice.

This additional overhead MAY be eliminated when threshold approaches

are used by applying blinding factors whose sum is zero to each of

the threshold shares.

For example, if generation of the threshold signature is divided

between an application program A and an HSM B using the final share

approach to avoid maintaining state in the HSM, we might generate a

blinding factor thus:

A generates a random nonce n and sends it to B with the other

parameters required to generate the signature.

B generates a random nonce n

B calculates the blinding factor x by calculating H(n nB)

where H is a strong cryptographic digest function and

converting the result to an integer in the range 1 x L.

B calculates the signature parameters as before except that the

threshold signature contribution is now S = rB + k(cBsB + x)

mod L.

4. F

¶

5. F ¶

6.

¶

¶

F

F F

i

¶

¶

¶

¶

0. A

¶

1. B¶

2. A,

¶

3.

B

¶

B returns the nonce n to A with the other parameters.

A calculates the blinding factor x using the same approach as B

A calculates the signature parameters as before except that the

threshold signature contribution is now S = rA + k(cAsA - x)

mod L.

This approach MAY be extended to the case that t > 2 by substituting

a Key Derivation Function (e.g. [RFC5860]) for the digest function.

3.4. Security Analysis

We consider a successful breach of the threshold signature scheme to

be any attack that allows the attacker to create a valid signature

for any message without the participation of the required threshold

of signers.

Potential breaches include:

Disclosure of the signature key or signature key share.

Modification of signature data relating to message M to allow

creation of a signature for message M'.

Ability of one of the signers to choose the value of the

aggregate public key.

Access control attacks inducing a signer to create a signature

contribution that was not properly authenticated or authorized.

We regard attacks on the access control channel to be out of scope

for the threshold signature algorithm, though they are certainly a

concern for any system in which a threshold signature algorithm is

employed.

We do not consider the ability of a signer to cause creation of an

invalid signature to represent a breach.

3.4.1. Calculation of r values

The method of constructing the values r MUST ensure that each is

unique and unguessable both to external parties, the signers and the

dealer. The deterministic method specified in [RFC8032] cannot be

applied to generation of the values r as it allows the dealer to

cause signers to reveal their key shares by requesting multiple

signature contributions for the same message but with different

values of k. In particular, requesting signature contributions for

the same message:

4. B ¶

5. ¶

6.

A

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

i

i

¶

With different Lagrange coefficients.

With a false value of R

To avoid these attacks, the value r is generated using a secure

random number generator. This approach requires the signer to ensure

that values are never reused requiring that the signing API maintain

state between the first and second rounds of the algorithm.

While there are many approaches to deterministic generation of r

that appear to be sound, closer inspection has demonstrated these to

be vulnerable to rogue key and rogue contribution attacks.

3.4.2. Replay Attack

The most serious concern in the implementation of any Schnorr type

signature scheme is the need to ensure that the value r is never

revealed to any other party and is never used to create signatures

for two different values of k.s .

Ensuring this does not occur imposes significant design constraints

as creating a correct signature contribution requires that the

signer use the same value of r to construct its value or R and S .

For example, a HSM device may be required to perform multiple

signature operations simultaneously. Since the storage capabilities

of an HSM device are typically constrained, it is tempting to

attempt to avoid the need to track the value of r within the device

itself using an appropriately authenticated and encrypted opaque

state token. Such mechanisms provide the HSM with the value of r but

do not and cannot provide protection against a replay attack in

which the same state token is presented with a request to sign

different values of k.

3.4.3. Malicious Contribution Attack

In a malicious contribution attack, one or more parties present a

signature contribution that does not meet the criteria R = r .B and

S = r + ks .

Such an attack is not considered to be a breach as it merely causes

the signature process to fail.

3.4.4. Rogue Key Attack

A threshold signature scheme that allows the participants to 'bring

their own key' may be vulnerable to a rogue key attack in which a

signer is able to select the value of the aggregate public signature

key by selecting a malicious public signature key value.

¶

¶

i

¶

i

¶

i

i ¶

i i i ¶

i

i

¶

i i

i i i ¶

¶

¶

The scheme described in this document is a threshold signature

scheme and does not support this feature. Consequently, this attack

is not relevant. It is described here for illustrative purposes

only.

This particular attack only applies when the individual signers

create their own signature shares. It is not a concern when the

signature shares are created by splitting a master signature private

key.

Consider the case where the aggregate public key signature is

calculated from the sum of public signature key share values

presented by the signers:

A = A + A + ... + A

If the public key values are presented in turn, the last signer

presenting their key share can force the selection of any value of A

that they choose by selecting A = A - (A + A + ... + A)

The attacker can thus gain control of the aggregate signature key by

choosing A = s .B where s is a secret scalar known only to the

attacker. But does so at the cost of not knowing the value s and so

the signer cannot participate in the signature protocol.

This attack allows the attacker and the attacker alone to create

signatures which are validated under the aggregate signature key.

The attack is a consequence of the mistaken assumption that a

signature created under the signature key A + A + ... + A provides

evidence of the individual participation of the corresponding key

holders without separate validation of the aggregate key.

Enabling the use of threshold signature techniques by ad-hoc groups

of signers using their existing signature keys as signature key

shares presents serious technical challenges that are outside the

scope of this specification.

4. Ed2519 Signature

The means by which threshold shares are created is described in

[draft-hallambaker-threshold].

The dealer selects the signers who are to construct the signature.

Each signer then computes the value R :

Randomly generate an integer r such that 1 r L.

¶

¶

¶

1 2 n¶

n m 1 2 n-1 ¶

m m m

n

¶

¶

1 2 n

¶

¶

¶

i ¶

0. i i ¶

Compute the point R = r B. For efficiency, do this by first

reducing r modulo L, the group order of B. Let the string R be

the encoding of this point.

Transmit the value R to the dealer

At some later point, the dealer MAY complete the signature by

returning the values F, C, A and R as specified in [RFC8032]

together with the key multiplier coefficient c . The signers MAY

then complete their signature contributions:

Compute SHA512(dom2(F, C) || R || A || PH(M)), and interpret

the 64-octet digest as a little-endian integer k.

Compute S = (r + kc s) mod L. For efficiency, again reduce k

modulo L first.

Return the values R , S to the dealer .

The dealer then completes the signature by:

Computing the composite value S = S + S + ... + S

Verifying that the signature R, S is valid.

Publishing the signature.

5. Ed448 Signature

The means by which threshold shares are created is described in

[draft-hallambaker-threshold].

The dealer selects the signers who are to construct the signature.

Each signer then computes the value R :

Randomly generate an integer r such that 1 r L.

Compute the point R = r B. For efficiency, do this by first

reducing r modulo L, the group order of B. Let the string R be

the encoding of this point.

Transmit the value R to the dealer

At some later point, the dealer MAY complete the signature by

returning the values F, C, A and R as specified in [RFC8032]

together with the key multiplier coefficient c . The signers MAY

then complete the signature contributions:

Compute SHAKE256(dom4(F, C) || R || A || PH(M), 114), and

interpret the 114-octet digest as a little-endian integer k.

1. i i

i i

¶

2. i ¶

3.

i

¶

4.

¶

5. i i i i

¶

6. i i ¶

¶

0. 1 2 n¶

1. ¶

2. ¶

¶

i ¶

0. i i ¶

1. i i

i i

¶

i ¶

0.

i

¶

1.

¶

Compute S = (r + kc s) mod L. For efficiency, again reduce k

modulo L first.

Return the values R , S to the dealer.

The dealer then completes the signature by:

Computing the composite value S = S + S + ... + S

Verifying that the signature R, S is valid.

Publishing the signature.

6. Test Vectors

6.1. Direct Threshold Signature Ed25519

The signers are Alice and Bob's Threshold Signature Service 'Bob'.

Each creates a key pair:

2. i i i i

¶

3. i i ¶

¶

0. 1 2 n¶

1. ¶

2. ¶

¶

ED25519Alice's Key (ED25519)

 UDF: ZAAA-GTSI-GXED-255X-XALI-CEXS-XKEY

 Scalar: 312191303806394376947696888962276115420485359001

 34467943432016761653342335248

 Encoded Private

 10 AE C0 C2 16 65 9B 4F 7C 9D DE 82 3E 49 7F D4

 9B 14 BB F8 2D 9F 0C 11 24 D7 15 E3 43 79 57 20

 X: -13697699435406080999251131063344049965140553452

 752305353714819106646919347160064793506327635954342719144289

 2305566686088586980395284289746495530409889930

 Y: 278793875610616080844162800185864399625503938157

 569374174700414845758479331294424147393776831767266487579098

 7675375777043504113387553916769515911310193558

 Encoded Public

 45 16 53 7C 26 50 CF DA F1 A4 DF 4C 45 DC 3D 95

 4E B6 8E EB A6 5A 27 D6 CD 5B 43 C5 F4 06 53 ED

ED25519Bob's Key (ED25519)

 UDF: ZAAA-GTSI-G2ED-255X-XBOB-XSXK-EY

 Scalar: 567212843891509414800308620158891720685508995620

 72140666211075925337851277632

 Encoded Private

 E5 CD 34 01 FD 8C 0E 27 81 4B 11 DD 12 68 50 A1

 4B 5A D5 E1 E1 41 D7 68 5F 51 ED B4 3A 84 58 5C

 X: -13809282472298084436735987888897423507149580966

 952791761446670884044433963975178482398144657564565223270588

 5322459642470946347570575475534141406285323257

 Y: 263684226342871984706317411760423095947068088366

 393546798602378437432707482089806653755881399592963068751759

 9645362525866308283171284327931970404321458677

 Encoded Public

 F1 5F C0 78 F8 32 49 2C D9 64 CC 2B CF 90 5C 4F

 23 EA BB F8 38 99 C5 FE F3 AA 67 BE AB EC D2 5E

The composite Signature Key A = A + A

¶

a b¶

Aggregate Key = Alice + Bob ()

 UDF: TBS

 Scalar: 109634784180323260712231215560085272031403914964

 7717337619681427565742601012

 Encoded Private

 34 33 AB 10 9A 09 A9 61 65 8B 3A EC 58 21 FB 2D

 0D 45 74 49 45 BA E2 CF A8 98 C2 94 C9 82 6C 02

 X: -83837675294300852842901121613445594296352372347

 711317409367737761568353629718805151940195325485285476438422

 923698718220652243749390297055882388709313280

 Y: 160553422944358144751060009820735322036903773802

 361117046457476895165059738086663330972263850675453249990301

 0398473811263196653225446124160025082144761534

 Encoded Public

 48 1A 27 66 06 AF 4E 3C 20 A4 02 CD 8A 13 46 99

 02 B7 75 F8 AC D4 7E 89 68 FB 68 EB D8 EF 4A C7

To sign the text "This is a test", Alice first generates her value r

and multiplies it by the base point to obtain the value R :

Alice:

 r_a: 505210734621497595393270784745614175113191664157

 4177425600105798482114377785

R_a =

 DF A3 D5 CC 9F 94 63 67 BB 3E C3 F7 88 4A 0D 52

 00 20 A2 90 13 27 4E 47 03 19 DA EC BF 74 CB 14

Alice passes her value R to Bob along with the other parameters

required to calculate i. Bob then calculates his value R and

multiplies it by the base point to obtain the value R :

Bob:

 r_b: 677880217486034074720202546367410174561950677574

 5309900070354323071886227867

R_b =

 DD C8 79 2A BB D8 72 D5 9D F5 13 22 C2 F1 58 62

 47 DC 19 39 C5 CE 02 FB 24 0B FA 64 D1 55 BC 3E

Bob can now calculate the composite value R = R + R and thus the

value k.

¶

a ¶

¶

A

A

b ¶

¶

a b

¶

R =

 5A D0 1C 17 95 ED 9B 99 B8 CD CE 7B EE 47 6E A5

 0E A6 CF 51 DE DA 89 CB B5 F4 4C E2 D5 0D 58 FA

 k: 625005044347993004605907480401547053627770740065

 2040602450571600703428702758

Bob calculates his signature scalar contribution and returns the

value to Alice:

Bob:

 S_b: 136373130884201209719904273113512997386754201427

 8737070757184293024413450866

Alice can now calculate her signature scalar contribution and thus

the signature scalar S.

Alice:

 S_a: 694422500722053719583170959521207108671468233956

 3089821393557557357031271837

 S: 107095073873028707905756576330420681972510799446

 1919286148790912095990471714

Alice checks to see that the signature verifies:

S.B = R + kA =

 X: 499652471325922372829034886924764341503336793855

 86215130071277671241180454624

 Y: 465061436809499600324596437786395684290405421559

 11499262135862928788499885458

6.2. Direct Threshold Signature Ed448

The signers are Alice and Bob's Threshold Signature Service 'Bob'.

Each creates a key pair:

¶

¶

¶

¶

¶

¶

¶

¶

ED448Alice's Key (ED448)

 UDF: ZAAA-ITSI-GXED-44XA-LICE-XSXK-EY

 Scalar: 672286477331130983513039743350616227864346753924

 962787860729757222511999618443513569403793186398096717924945

 854846544396984088344823264

 Encoded Private

 6F 85 B1 91 9A 37 06 A6 B2 15 79 AD 5B 69 16 6A

 5A CD C8 17 D4 14 1F 68 DA 97 C5 B4 44 79 CE EA

 3C 17 7B E1 29 44 70 DF 41 C8 98 38 1E 7C 9B 3B

 03 63 6F 85 E8 39 31 91

 X: 526046019655043632868470952286947529492283092344

 122476077151423645243648974512182548405702873560533846673262

 767064019365470830861106049

 Y: 145374550785380850812934424757986866673485237047

 938554544492694946608060986459495807055455048208713991919477

 720250115717234689256856152

 Encoded Public

 59 55 F4 7A 66 08 91 35 F8 15 63 F4 90 91 7F 38

 12 E3 49 22 51 F8 BC 4A 41 C9 44 59 5A 64 9B 40

 0B C5 7E 53 48 0F 32 12 90 32 69 38 47 28 94 BB

 99 D1 16 6F 2D D5 3D 4F 80

ED448Bob's Key (ED448)

 UDF: ZAAA-ITSI-G2ED-44XB-OBXS-XKEY

 Scalar: 455052626698262385397736547727159423941520792904

 908612603542850909167215987713902322619933929404455741806848

 064294945283113799683261212

 Encoded Private

 CA 15 22 BD F4 0F 9E 0A EC A7 61 79 BE 9E E3 38

 BF 93 D3 5B B3 E6 FC F0 A7 5B 7C F0 E7 B5 89 F6

 2E F6 D1 0E 72 49 4D DF 34 5E 2F 7C 9E 42 1D 85

 AB AB 30 BD 68 C6 3E 35

 X: 752024108200272710832187535557164455078689734595

 171189993383259892607253027500878543439908750525763880661232

 171322059854852522782265

 Y: 619329873102159676791326142073166790594683111409

 729383584199833441028484525583699421181422168190856074786324

 020492214873796495570056511

 Encoded Public

 76 2B FC F8 AC 96 79 DE 1C 72 07 65 DD 49 5B 28

 C7 04 CB A8 A5 96 3D D9 9E 23 FA 05 83 15 33 95

 85 82 F8 CF A3 7A 2F 24 F8 EB D6 AE 20 0A 25 D0

 44 1A F9 C0 86 D7 87 B7 00

The composite Signature Key A = A + A

¶

a b¶

Aggregate Key = Alice + Bob ()

 UDF: TBS

 Scalar: 370810175859830330867905792457688502754055057988

 943100420373093608031918369199015948491953656482966798700316

 64591515851455352870185802

 Encoded Private

 4A AB 7A BB 2D 95 72 75 B1 3A 1D 22 24 17 76 2D

 A1 D5 55 94 67 35 8C E7 A1 A0 ED 0C E7 88 FF 9F

 6E 2F 70 80 89 F5 01 2A C0 AD 4C 4E 7B 90 68 6C

 F4 53 BA 32 9B 70 0F 0D

 X: 583249553407699999284154112964835446252412293188

 857058051552519639906663406776316984154017062023869075790536

 30514579317017660114474427

 Y: 518040437562811181169413740718290938351269168888

 257124107164689245721852001077758864406412789756149699111633

 051823234569886260996269341

 Encoded Public

 34 70 8D 08 DE 63 0B A6 49 2A 33 D8 B7 15 A9 84

 A4 87 F6 B6 C7 4B 1C AE 5A 1F 7C 4B 12 70 FB CF

 5A A9 3C 20 31 BA 9A 53 A0 FE 2A 43 24 97 06 F8

 DA 40 0D 88 E3 D9 DE 2E 00

To sign the text "This is a test", Alice first generates her value r

and multiplies it by the base point to obtain the value R :

Alice:

 r_a: 154801816267240464546834446515456406651845314401

 002977264905693500446669857879911189090126903643060098695902

 159902668465952043665201729

R_a =

 BF 60 68 8C 92 23 91 A7 92 65 D7 A9 3A 11 B6 25

 91 CC 72 0D 83 F7 80 06 4C 7F 7B FA F5 60 CF FC

 43 DA 5E 9F 71 09 6C 51 6E 28 E7 8D 50 2D 7A 4A

 1F 00 17 FF 18 F5 65 F0 00

Alice passes her value R to Bob along with the other parameters

required to calculate i. Bob then calculates his value R and

multiplies it by the base point to obtain the value R :

¶

a ¶

¶

A

A

b ¶

Bob:

 r_b: 151741242222551333693536358753113477279079323953

 405968709541531009609312639878485678278493044984250865569658

 971735381320787025215934551

R_b =

 E2 20 7A 34 5E E2 BE B0 EE DC 3D 7E 98 AB 00 5B

 7E B5 4A 6D 9D 6B AE 00 C3 61 3C 0E BF 85 44 84

 2D C2 46 BD 6A EB CF 60 52 A6 22 7F 3E 6D 52 D7

 1B B5 A8 FB A2 6E D9 19 00

Bob can now calculate the composite value R = R + R and thus the

value k.

R =

 7D E7 D1 AC 39 91 2D A1 64 82 A2 12 11 FD 48 2A

 E4 C1 69 4F F1 DB 8C F4 B0 41 44 DB 81 9A 99 93

 28 80 BD FC 4E 30 9A 0D 24 7C 2E 97 36 EB DA E9

 78 83 08 B9 A5 1A 9F AF 80

 k: 152478129684675943479409248843466240733035903267

 926235089418642613018543821412858874657453613785631671228639

 879208851203344161958472626

Bob calculates his signature scalar contribution and returns the

value to Alice:

Bob:

 S_b: 483080257179106760967096112599711672595306939349

 964976636926846127260138522913206826943834871540343367464674

 04823679970210640505379249

Alice can now calculate her signature scalar contribution and thus

the signature scalar S.

Alice:

 S_a: 929765386089729500539533802678644970120766195521

 592545136047824546064521300569760854876125225246919399958779

 43127262307963446226438525

 S: 141284564326883626150662991527835664271607313487

 155752177297467067332465982348296768181996009678726276742345

 347950942278174086731817774

Alice checks to see that the signature verifies:

¶

a b

¶

¶

¶

¶

¶

¶

¶

S.B = R + kA =

 X: 438553256512884225923994157378894696848243269381

 58786710000478625591080896686

 Y: 100086885282402628787474925500974806696629978712

 71442659795857672094353438094

6.3. Shamir Threshold Signature Ed25519

The administrator creates the composite key pair

ED25519Aggregate Key (ED25519)

 UDF: ZAAA-GTSI-GQED-255X-XAGG-REGA-TEXK-EY

 Scalar: 367238470592488326468789252109412889361910680229

 03089760692844779165588879504

 Encoded Private

 FE 48 94 1F EB 3D 28 E1 61 81 E2 1E E1 CF F2 1E

 1E 70 91 30 DF 98 9F 1C 34 EB BB 74 C5 C8 07 EB

 X: 143576564277195758046684172284175869008525477709

 640743490221115123376609940386394888392330104965579307772627

 313244177612005636942740116142030215202393600

 Y: 844838272625277895849027219595751726665225134917

 547580682441821283235675507225396641352769322822815561632929

 543097074319051436285787045255908364074589900

 Encoded Public

 DF E8 0A 2B E9 6C 53 C0 AB 9B BC BC 39 95 9A 61

 9C 33 2E 22 24 A7 F7 F2 21 06 AC 6D 01 5D 0B E2

Three key shares are required for Alice, Bob and Carol with a

threshold of two. The parameters of the Shamir Secret Sharing

polynomial are:

a0 = 367238470592488326468789252109412889361910680229030897606928

 44779165588879504

a1 = 699266283035359788689002485914571600271382111380710376847895

 2287632180176739

The key share values for the participants are

¶

¶

¶

¶

¶

¶

xa = 1

ya = 294476425608857249929830691829039493762190980430747893160091

 437085043550309

xb = 2

yb = 501336786301929228466689879317612556188957348579440556370927

 86431769476059

xc = 3

yc = 704279650898379080973669384707747725833271684866504782411604

 5074063949652798

Alice and Carol are selected to sign the message "This is another

test"

The Lagrange coefficients are:

la = 361850278866613110698659328152149712042855817968995380300097

 5469142727125496

lc = 361850278866613110698659328152149712042855817968995380300097

 5469142727125494

Alice and Carol select their values ra, rc

ra = 456116926701492705315133938623040527696276882295617965847376

 7682545245216294

Ra =

 D4 45 96 7B EC 72 EF EB CE 64 45 4B F1 04 BE 89

 82 76 38 A9 C7 CD 49 D5 AC 89 89 15 A1 2C F9 ED

rc = 482074679100753533345731495679776832764315286485235535312553

 5253541881347149

Rc =

 84 2F BA 3B E3 BB 6B FD 1E A7 4A 9A F7 69 CB F2

 42 E0 40 37 72 CB 44 76 91 F3 78 4C 38 6A 55 70

The composite value R = R + R

R =

 86 D3 74 FB 11 A5 B0 02 0E C8 D8 47 81 F6 D3 0B

 2F 98 1A 78 A4 B6 29 8E CF 8F 1F BA C6 DF 9C CE

¶

¶

¶

¶

¶

¶

a c¶

¶

The value k is

k = 108571726585613745870710472121182543905966072176325240119429

 6512368686397102

The values R and k (or the document to be signed) and the Lagrange

coefficients are passed to Alice and Carol who use them to calculate

their secret scalar values:

sa = 406021742707941698188133931926505636107184465033607564274111

 2624770292450958

sc = 371560732284036680910483963950425561169075793504738369394392

 8401253479424590

The signature contributions can now be calulated:

Sa = 392895418968963203512266836046291402317818369828942689298477

 2946200577969243

Sc = 253752237332419145649601433321208219235347953185395225369356

 1893073151349028

The dealer calculates the composite value S = S + S

S = 646647656301382349161868269367499621553166323014337914667833

 4839273729318271

The dealer checks to see that the signature verifies:

S.B = R + kA =

 X: 226427714657102020025604838380148290637031902023

 61838906492538114789522304796

 X: 106130935431547011586457110809164124211743921447

 29537260912052744073378658652

6.4. Shamir Threshold Signature Ed448

The administrator creates the composite key pair

¶

¶

¶

¶

¶

¶

a b¶

¶

¶

¶

¶

ED448Aggregate Key (ED448)

 UDF: ZAAA-ITSI-GQED-44XA-GGRE-GATE-XKEY

 Scalar: 723088510822916843359337925516642493307623385482

 113107480846498794254549074097051759295396782499503452909258

 978468506553055366989547456

 Encoded Private

 59 DC 8A 5F 5E AF 8C FA 96 19 F8 EE 78 13 00 12

 33 0E 12 80 2D 25 E6 EF E8 E2 56 B5 83 6A 0C CF

 DC 11 96 A5 A5 D1 39 AA 34 25 0B 52 ED 9F 38 92

 5D 9F 7B BC B9 BC 86 45

 X: 600163199260212879671026282440221570752543874569

 276531213297382365938924845597497264583528185273760383031589

 25167107013312482098672476

 Y: 568007995844826855892481230051783440873263817862

 016100095069663100696528804467952219402043387612562057320585

 561865068046226655443122582

 Encoded Public

 ED C3 90 99 38 0B 8F CD 60 29 24 04 6C DE 52 33

 A2 07 3E 56 8D 27 B5 B9 21 60 CF E9 E7 9D D6 4A

 11 47 20 E6 9D FE 75 C7 04 14 70 18 B4 52 10 83

 D0 EC 98 BD F5 E6 E3 D5 80

Three key shares are required for Alice, Bob and Carol with a

threshold of two. The parameters of the Shamir Secret Sharing

polynomial are:

a0 = 723088510822916843359337925516642493307623385482113107480846

 49879425454907409705175929539678249950345290925897846850

 6553055366989547456

a1 = 165663618071837435927824367225611232537435726800694979220111

 02522386453540608200774410212968582148967992226507570036

 4540659700713156444

The key share values for the participants are

¶

¶

¶

¶

xa = 1

ya = 161913404599147388737838484854249191491417751595490026419467

 32483753506863402071663861450530155148927959034921780222

 1874620044264104784

xb = 2

yb = 145867341597083102028331900107859290440443138224355490569205

 80026625360007856313866652087969568060299620232058441092

 4110505989117611449

xc = 3

yc = 129821278595018815318825315361469389389468524853220954718944

 27569497213152310556069442725408980971671281429195101962

 6346391933971118114

Alice and Carol are selected to sign the message "This is another

test"

The Lagrange coefficients are:

la = 908548405369508613186654759860005667942051700859147575351862

 74897573001980769792858097877645846187981655146854545831

 152386877929824891

lc = 908548405369508613186654759860005667942051700859147575351862

 74897573001980769792858097877645846187981655146854545831

 152386877929824889

Alice and Carol select their values ra, rc

ra = 103517366944050550717591081348710241163469949228538856371118

 47833970060549248948499739275675447160833072419041041347

 1187333803802632789

Ra =

 86 8B B6 BF E1 FA 18 BB 5A D6 79 D2 6F 60 E9 7A

 B9 76 58 AA 96 3B 5E FD 83 E7 79 09 53 A2 AE 7B

 89 C6 30 72 31 13 C3 97 9D 0C 75 BB F2 DC 87 72

 46 CD F8 BF 6F 08 27 FF 00

rc = 129544664690317775866810455605532383977152960638027121327286

 30462413505947371161103544570926395906833875655978561651

 9513959988103594270

Rc =

 D6 0E 7A 4B C1 D1 A4 A4 09 A9 4E 2C 0C 11 E8 31

 E3 F7 0D C0 AD 7E 90 6D 53 63 6B D0 D0 5D 5F BD

 44 34 4F B9 1D 5C 05 7B A8 52 5D 39 00 8B 47 30

 46 15 B7 39 00 35 A6 8D 00

¶

¶

¶

¶

¶

The composite value R = R + R

R =

 84 76 AE 71 96 E4 5B 2C 32 7A CE 8C 62 4E C5 C7

 56 90 58 7B 46 C1 99 87 95 72 E0 39 14 59 50 3A

 53 63 60 8A 2B 14 DD C2 99 AF 57 5D 7F 28 6C DC

 73 4E 72 6A 0A 67 B9 F0 80

The value k is

k = 846715492312861675786877637427593731664460324443667916137724

 03306404008461876775118415847980023413626823976377915241

 076018146143898434

The values R and k (or the document to be signed) and the Lagrange

coefficients are passed to Alice and Carol who use them to calculate

their secret scalar values:

sa = 611604258248193604694267753093726536487162872214055245588284

 37461156598989491489241726002660634857956075230117611670

 507156310536507397

sc = 116799041776392314977918294291266438893676077745219037710900

 41194765993819998680536898212824678751760690314773358184

 9131577788874090722

The signature contributions can now be calulated:

Sa = 674398491172392582315391447961842592916627666141711533732986

 40302585673169645319736684479821824290746431281389532198

 884328704969312923

Sc = 323501021094800816208302172187722789450985391108790119316146

 83012739259001534721728765613699056985895227578447593375

 275645256932691561

The dealer calculates the composite value S = S + S

S = 997899512267193398523693620149565382367613057250501653049133

 23315324932171180041465450093520881276641658859837125574

 159973961902004484

¶

a c¶

¶

¶

¶

¶

¶

¶

¶

a b¶

The dealer checks to see that the signature verifies:

S.B = R + kA =

 X: 310176585478125150718252258963045651393161473743

 3144189417665237106104024598

 X: 546975372341826393522134872750971962955374107574

 98782836263975525610781195547

7. Security Considerations

All the security considerations of [RFC7748], [RFC8032] and [draft-

hallambaker-threshold] apply and are hereby incorporated by

reference.

7.1. Rogue Key attack

The rogue key attack described in [draft-hallambaker-threshold] is

of particular concern to generation of threshold signatures.

If A and B are public keys, the intrinsic degree of trust in the

composite keypair A + B is that of the lesser of A and B.

7.2. Disclosure or reuse of the value r

As in any Schnorr signature scheme, compromise of the value r

results in compromise of the private key. The base signature

specification [RFC8032] describes a deterministic construction of r

that ensures confidentiality and uniqueness for a given value of k.

As described above, this approach is not applicable to the

generation of values of r to compute threshold signature

contributions. Accordingly the requirements of [RFC4086] regarding

requirements for randomness MUST be observed.

Implementations MUST NOT use a deterministic generation of the value

r for any threshold contribution except for calculating the final

contribution when all the other parameters required to calculate k

are known.

7.3. Resource exhaustion attack

Implementation of the general two stage signing algorithm requires

that signers track generation and use of the values r to avoid reuse

for different values of R . Implementations MUST ensure that

exhaustion of this resource by one party does not cause other

parties to be denied service.

¶

¶

¶

¶

¶

¶

¶

i

¶

i

¶

i

i

¶

[draft-hallambaker-mesh-udf]

[draft-hallambaker-threshold]

[RFC2119]

[RFC4086]

[RFC7748]

7.4. Signature Uniqueness

Signatures generated in strict conformance with [RFC8032] are

guaranteed to be unique such that signing the same document with the

same key will always result in the same signature value.

The signature modes described in this document are computationally

indistinguishable from those created in accordance with [RFC8032]

but are not unique.

Implementations MUST not use threshold signatures in applications

where signature values are used in place of cryptographic digests as

unique content identifiers.

8. IANA Considerations

This document requires no IANA actions.

9. Acknowledgements

[TBS]

10. Normative References

Hallam-Baker, P., "Mathematical Mesh 3.0 Part II: Uniform

Data Fingerprint.", Work in Progress, Internet-Draft,

draft-hallambaker-mesh-udf-11, 2 November 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-udf-11>.

Hallam-Baker, P., "Threshold Modes in Elliptic Curves",

Work in Progress, Internet-Draft, draft-hallambaker-

threshold-04, 2 November 2020, <https://tools.ietf.org/

html/draft-hallambaker-threshold-04>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Eastlake 3rd, D., Schiller, J., and S. Crocker,

"Randomness Requirements for Security", BCP 106, RFC

4086, DOI 10.17487/RFC4086, June 2005, <https://www.rfc-

editor.org/rfc/rfc4086>.

Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves

for Security", RFC 7748, DOI 10.17487/RFC7748, January

2016, <https://www.rfc-editor.org/rfc/rfc7748>.

¶

¶

¶

¶

¶

https://tools.ietf.org/html/draft-hallambaker-mesh-udf-11
https://tools.ietf.org/html/draft-hallambaker-mesh-udf-11
https://tools.ietf.org/html/draft-hallambaker-threshold-04
https://tools.ietf.org/html/draft-hallambaker-threshold-04
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc4086
https://www.rfc-editor.org/rfc/rfc7748

[RFC8032]

[draft-hallambaker-mesh-developer]

[Komlo]

[RFC5860]

[Shamir79]

Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital

Signature Algorithm (EdDSA)", RFC 8032, DOI 10.17487/

RFC8032, January 2017, <https://www.rfc-editor.org/rfc/

rfc8032>.

11. Informative References

Hallam-Baker, P., "Mathematical Mesh: Reference

Implementation", Work in Progress, Internet-Draft, draft-

hallambaker-mesh-developer-10, 27 July 2020, <https://

tools.ietf.org/html/draft-hallambaker-mesh-developer-10>.

Komlo, C. and I. Goldberg, "FROST: Flexible Round-

Optimized Schnorr Threshold Signatures", 2020.

Vigoureux, M., Ward, D., and M. Betts, "Requirements for

Operations, Administration, and Maintenance (OAM) in MPLS

Transport Networks", RFC 5860, DOI 10.17487/RFC5860, May

2010, <https://www.rfc-editor.org/rfc/rfc5860>.

Shamir, A., "How to share a secret.", 1979.

https://www.rfc-editor.org/rfc/rfc8032
https://www.rfc-editor.org/rfc/rfc8032
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-10
https://tools.ietf.org/html/draft-hallambaker-mesh-developer-10
https://www.rfc-editor.org/rfc/rfc5860

	Threshold Signatures in Elliptic Curves
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Applications
	1.1.1. HSM Binding
	1.1.2. Code Signing
	1.1.3. Signing by Redundant Services

	2. Definitions
	2.1. Requirements Language
	2.2. Defined Terms
	2.3. Related Specifications
	2.4. Implementation Status

	3. Principles
	3.1. Direct shared threshold signature
	3.2. Shamir shared threshold signature
	3.3. Stateless computation of final share
	3.3.1. Side channel resistance

	3.4. Security Analysis
	3.4.1. Calculation of r values
	3.4.2. Replay Attack
	3.4.3. Malicious Contribution Attack
	3.4.4. Rogue Key Attack

	4. Ed2519 Signature
	5. Ed448 Signature
	6. Test Vectors
	6.1. Direct Threshold Signature Ed25519
	6.2. Direct Threshold Signature Ed448
	6.3. Shamir Threshold Signature Ed25519
	6.4. Shamir Threshold Signature Ed448

	7. Security Considerations
	7.1. Rogue Key attack
	7.2. Disclosure or reuse of the value r
	7.3. Resource exhaustion attack
	7.4. Signature Uniqueness

	8. IANA Considerations
	9. Acknowledgements
	10. Normative References
	11. Informative References

