
Internet Engineering Task Force (IETF) Phillip Hallam-Baker
Internet-Draft Comodo Group Inc.
Intended Status: Standards Track May 19, 2014
Expires: November 20, 2014

Service Connection Service (SXS)
draft-hallambaker-wsconnect-08

Abstract

 Service Connection Service (SXS) is a JSON/REST Web Service that may
 be used to establish and maintain a 'connection binding' of a device
 to an account held with a Web Service Provider. Multiple connection
 bindings may be established under the same account to support
 multiple devices and/or multiple users of a single device. A
 connection binding permits a device to securely connect to one or
 more services offered by the Web Service Provider with support for
 protocol and protocol version agilty and fault tollerance.

 The protocol is presented as a HTTP/JSON Web Service and uses the
 HTTP session continuation mechanism for authentication of transaction
 messages and supports negotiation of a HTTP session continuation
 mechanism context for the established endpoint connections.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

 the Trust Legal Provisions and are provided without warranty as

Hallam-Baker November 20, 2014 [Page 1]

Internet-Draft Service Connection Service (SXS) May 2014

 described in the Simplified BSD License.

Hallam-Baker November 20, 2014 [Page 2]

Internet-Draft Service Connection Service (SXS) May 2014

Table of Contents

1. Definitions . 5
1.1. Requirements Language 5

2. Introduction and Purpose 5
2.1. Establishing a Web Service Provider Account 5
2.2. Establishing a Connection Binding 6

2.2.1. Anonymous. 7
2.2.2. PIN Code Establishement. 8

 2.2.3. Out of Band Completion. 8
 2.2.4. QR Code Preauthorization. 9

3. Example Uses . 9
3.1. PIN code establishment 9
3.2. Unbinding . 14
3.3. Out of Band Completion 15

3.3.1. Message: Message 17
3.3.2. Message: Response 17
3.3.3. Message: ConnectionRequest 17
3.3.4. Structure: Cryptographic 17
3.3.5. Structure: ImageLink 18
3.3.6. Structure: Connection 18

4. OBPConnection . 18
4.1. Bind . 19

4.1.1. Message: BindRequest 19
4.2. BindPIN . 19

4.2.1. Message: OpenPINRequest 19
4.2.2. Message: OpenPINResponse 20

4.3. Poll . 21
4.3.1. Message: PollRequest 21

4.4. Ticket . 21
4.4.1. Message: TicketRequest 21
4.4.2. Message: TicketResponse 21

4.5. Unbind . 22
4.5.1. Message: UnbindRequest 22
4.5.2. Message: UnbindResponse 22

5. Mutual Authentication . 22
5.1. PIN Authentication 22

5.1.1. Example: Latin PIN Code 25
5.1.2. Example: Cyrillic PIN Code 25

5.2. Out of Band Confirmation 26
6. Protocol Binding . 27

6.1. JSON encoding . 27
6.1.1. HTTP Session Layer 27
6.1.2. TLS transport 28

7. Service Identification and Discovery 28
8. UDP Binding (UYFM) . 29

8.1. Request . 29
8.2. Response . 30
8.3. Payload . 31

9. Acknowledgements . 32
10. Security Considerations 32

Hallam-Baker November 20, 2014 [Page 3]

Internet-Draft Service Connection Service (SXS) May 2014

10.1. Denial of Service 32
10.2. Breach of Trust . 32
10.3. Coercion . 32

11. IANA Considerations . 32
12. Stateless server . 32

12.1. Temporary ID . 33
12.2. Connection Binding ID 34

13. References . 35
13.1. Normative References 35

 Author's Address . 36

Hallam-Baker November 20, 2014 [Page 4]

Internet-Draft Service Connection Service (SXS) May 2014

1. Definitions

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Introduction and Purpose

 Service Connection Service (SXS) is a Web Service that may be used to
 establish and maintain a 'connection binding' of a device to an
 account held with a Web Service Provider (WSP).

 SXS is presented in JSON encoding [RFC4627] over a HTTP Session
 [RFC2616] using HTTP Session Continuation [I-D.hallambaker-
 httpsession] for message layer authentication and TLS transport for
 confidentiality and server authentication [RFC4627].

 A Connection Binding comprises a set of long term credentials used to
 authenticate interactions with the SXS service itself and a set of
 'Service Connections' to specific services offered by the Web Service
 Provider.

 Each service connection in turn comprises a collection of 'Instance
 Connections' which describe a specific instances of the Web Service.

 For example Alice is a consumer and example.com a provider of a range
 of Web Services including anti-malware protection and management of
 home automation devices. Alice has 42 devices of different types that
 each make use of one or more of the Web Services proviced by
 example.com. All the devices are enrolled in the same SXS account
 'alice@example.com' but each device has a unique connection binding
 and different devices make use of different Web Services.

 The centralized account provides Alice with a single point of control
 from which she can authorize the addition of new devices to the
 account or the removal of devices that are deactivated. This allows
 Alice to avoid the need to manage a device such as a network-enabled
 lightswitch through the lightswitch itself.

 To ensure continuity of service in case of network failure or
 administration work, example.com provides multiple instances of its
 Web Services hosted on different machines. Different users MAY be
 granted access to a different collection of service instances
 according to their needs and the service tier they are subscribed to.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4627

Hallam-Baker November 20, 2014 [Page 5]

Internet-Draft Service Connection Service (SXS) May 2014

2.1. Establishing a Web Service Provider Account

 The means by which the Web Service Provider Account is established is
 outside the scope of this document.

 In a typical case the user would establish an account with their
 chosen Web Service Provider through the normal process of using a Web
 Browser to access the Web Service Provider's site and entering such
 data as the Web Service Provider requires into a HTML form.

 Depending on the circumstances, the data provided by the applicant
 may require verification before the account is created.

 [Default accounts for appliances that are going to be implicitly
 authenticated by reference to the network they are on.]

2.2. Establishing a Connection Binding

 A connection binding represents a long term association between a
 device and an account at the Web Service Provider. The association
 includes the establishment of an authentication context between the
 device and the SXS service.

 An authentication context consists of: A Context Identifier. An
 authentication algorithm. A secret key.

 The context identifier is an opaque string assigned by the SXS
 service. Following the approach introduced in Kerberos, a SXS service
 MAY eliminate the need to store authentication context information by
 encoding the authentication algorithm and encrypted secret key in the
 context identifier.

 The authentication context can ensure that future communications are
 secured against impersonation if and only if the original process of
 establishing a connection binding was secured against communication.
 Mutual authentication is therefore an essential requirement.

 The means by which the connection binding is established depend on
 the affordances of the device in question. Establishing a connection
 binding to a device with a keyboard is easily accomplished through
 use of a one-time PIN code. But many embedded devices do not provide
 a keyboard or similar affordance.

 The following modes of session establishement are supported:

 * Anonymous.

 * PIN Code Establishement.

 * Out of Band Completion.

Hallam-Baker November 20, 2014 [Page 6]

Internet-Draft Service Connection Service (SXS) May 2014

 * QR Code Establishement.

2.2.1. Anonymous.

 Private-DNS [I-D.hallambaker-privatedns] provides a means of making
 DNS queries over a UYFM transport providing integrity and
 confidentiality protections.

 To establish a Private-DNS connection, a client first establishes a
 SXS connection binding to the service. A Private-DNS service MAY
 offer such services without requiring presentation or authentication
 of credentials. The BindRequest transaction is used as follows:

 POST /.well-known/sxs-connect/ HTTP/1.1
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Host: localhost:8080
 Content-Length: 226
 Expect: 100-continue

 {
 "BindRequest": {
 "Service": ["private-dns-resolver"],
 "Encryption": ["A128CBC",
 "A256CBC",
 "A128GCM",
 "A256GCM"],
 "Authentication": ["HS256",
 "HS384",
 "HS512",
 "HS256T128"]}}

 Since the service does not require authentication, the request is
 granted immediately and the necessary host connection parameters
 returned immediately:

Hallam-Baker November 20, 2014 [Page 7]

Internet-Draft Service Connection Service (SXS) May 2014

 HTTP/1.1 OK Success
 Content-Length: 578
 Date: Mon, 19 May 2014 17:17:44 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "TicketResponse": {
 "Status": 200,
 "StatusDescription": "Success",
 "Cryptographic": [],
 "Service": [{
 "Service": "private-dns-resolver",
 "Name": "localhost",
 "Port": 9090,
 "Priority": 100,
 "Weight": 100,
 "Transport": "UDP",
 "Cryptographic": {
 "Secret": "
 WAX8Zj_oNmf7zI7uBlupQA",
 "Encryption": "A128CBC",
 "Authentication": "HS256T128",
 "Ticket": "
 Samh8lKlrNRaNZ6wQLMDGfqiUpc8dIBnYRutTu5g4RifL4CgwjMiGmCbHc4ZUiMd
 -Yf_oUGRDnU05LwW0_8GyU_1X7dTyPPqNwvQyyZ_IoM"}}]}}

2.2.2. PIN Code Establishement.

 To establish a connection binding for a new mobile phone, Alice logs
 into her SXS account manager and requests a new PIN code. She then
 starts the application that makes use of a SXS account and selects
 'create new binding'. She is prompted for and enters her account name
 (alice@example.com) and PIN.

 The client connects to the SXS service and verifies that the TLS
 certificate presented is correct for example.com and has been issued
 in accordance with issue practices that ensure an appropriately high
 degree of trust (e.g. the CABForum Extended Validation requirements).

2.2.3. Out of Band Completion.

 To establish a connection binding for her new toaster oven, Alice
 plugs the appliance into her local network and enters her account
 name into the device. Since she has not obtained a PIN code in
 advance, she leaves the entry blank.

 To complete the process, Alice logs into her SXS account where she
 sees that a new device is available to add to the account. To help
 identify the correct device, there is a picture of the toaster oven,

 the model name and serial number.

Hallam-Baker November 20, 2014 [Page 8]

Internet-Draft Service Connection Service (SXS) May 2014

2.2.4. QR Code Preauthorization.

 Alice decides to remodel the kitchen completely and plans to install
 a dozen new network enabled LED light fixtures. Using an application
 on the mobile phone she enabled earlier, Alice scans a QR code
 attached to each fixture before the devices are installed. When the
 fixtures are installed and powered, the connection binding is
 preauthorized.

3. Example Uses

3.1. PIN code establishment

 Alice buys a new laptop computer which she wishes to use with the
 malware protection service provided by example.com. Alice has an
 existing account 'alice' with this Web Service Provider and obtains a
 pin code Q80370-1RA606-F04B from the Web Service Provider Web site.

 Alice enters the values alice@example.com and Q80370-1RA606-F04B into
 the Web Service client she wishes to use with the Web Service
 Provider on the new laptop.

 The client obtains the SXS service for example.com using DNS SRV
 discovery. The client establishes a TLS connection to the service and
 verifies that the certificate provided has a valid certificate path,
 has not been revoked and meets the validation criteria of the client.
 Since the purpose of this particular Web Service client is to provide
 security, the client requires that an Extended Validation certificate
 be presented.

 Having established a TLS connection to the SXS Service, the client
 sends the following HTTP request:

Hallam-Baker November 20, 2014 [Page 9]

Internet-Draft Service Connection Service (SXS) May 2014

 POST /.well-known/sxs-connect/ HTTP/1.1
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Host: localhost:8080
 Content-Length: 368
 Expect: 100-continue
 Connection: Keep-Alive

 {
 "OpenPINRequest": {
 "Encryption": ["A128CBC",
 "A256CBC",
 "A128GCM",
 "A256GCM"],
 "Authentication": ["HS256",
 "HS384",
 "HS512",
 "HS256T128"],
 "Account": "alice",
 "Service": ["sxs-confirm-user",
 "omni-query"],
 "Domain": "example.com",
 "HaveDisplay": false,
 "Challenge": "
 BOen_kEze3TJi7nW6zO73A"}}

 To prevent man in the middle attack, the client does not send the PIN
 code in the initial request. The PIN code is only sent after the
 service responds with a challenge nonce to be used to prevent replay
 attack.

 The service receives the request, determines that is meets its access
 control policy and selects a set of cryptographic parameters from the
 set proposed by the client. In this case the service prefers the use
 of AES128CBC for encryption and the HS256 Message Authentication Code
 for authentication.

 The service determines that a PIN code has been issued for the
 account and uses the value of that PIN to generate a response to the
 challenge presented by the client. A new challenge is generated to
 test the client knowledge of the PIN.

 [TBS: Is there a need for the service to be able to support multiple
 outstanding PIN codes for the same account? This could be supported
 by providing the last 2 significant characters of the PIN code to the
 service which could use it as an index. This would enable several
 hundred simultaneous outstanding requests which should be enough for

 most applications. Large volume applications would need to use a
 different scheme.]

Hallam-Baker November 20, 2014 [Page 10]

Internet-Draft Service Connection Service (SXS) May 2014

 The service sends the following response to the client:

 HTTP/1.1 281 Pin code required
 Content-Length: 511
 Date: Mon, 19 May 2014 17:17:43 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "OpenPINResponse": {
 "Status": 281,
 "StatusDescription": "Pin code required",
 "Challenge": "
 o9UKSBtH1MjO7SzYwtKIIw",
 "ChallengeResponse": "
 C35fTms7ps80RbS1hwSt7XgqRJlkttukb-frruN_hvw",
 "Cryptographic": {
 "Secret": "
 p8eVWYPS0YrOVr0dILrcTg",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket": "
 9EccpNHXKaU9wfmMsktFai9K_RC-4VGbiKgvAQWDaRzIjgw7SYa5NDxSpVUomkNv
 auCbw8wc_EdZ-Rsc6mwDXrkpl-9GevKpywNYkgReNgz4PgSJWnVh9h-lPhFBd_0h
 l8f1CuZ9FakXpeD5QCp8Eg"}}}

 To complete the transaction, the client sends a TicketRequest message
 to the service containing a response to the PIN challenge sent by the
 service (ChallengeResponse).

 The TicketRequest message is authenticated using HTTP Session
 authentication under the shared secret specified in the OpenResponse
 message:

Hallam-Baker November 20, 2014 [Page 11]

Internet-Draft Service Connection Service (SXS) May 2014

 POST /.well-known/sxs-connect/ HTTP/1.1
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Session: Value=oNHs-K49eAGTa6JFgAP0_fBiV3OPIHah4eqoMYGkIeo;
 Id=9EccpNHXKaU9wfmMsktFai9K_RC-4VGbiKgvAQWDaRzIjgw7SYa5NDxSpVUo
 mkNvauCbw8wc_EdZ-Rsc6mwDXrkpl-9GevKpywNYkgReNgz4PgSJWnVh9h-lPhF
 Bd_0hl8f1CuZ9FakXpeD5QCp8Eg
 Host: localhost:8080
 Content-Length: 153
 Expect: 100-continue

 {
 "TicketRequest": {
 "Service": ["sxs-confirm-user",
 "omni-query"],
 "ChallengeResponse": "
 2s-hdGucN7DBgYsSlbP3YCt9XfNAJxmeiaFgU8zxprk"}}

 The service checks the value of ChallengeResponse against the known
 PIN and if the result is correct establishes parameters for the
 Connection Binding for the device.

 In this case the server uses the Session Id parameter to encode
 permissions associated with the request as described in [Appendix
 TBS]. Accordingly the server must replace the Session Id whenever the
 associated permissions change. Accordingly, the server replaces the
 cryptographic parameters specified in the OpenResponse request for
 use in future SXS service requests. In this case the server returns
 three connections, each offering a different transport protocol
 option. Each connection specifies its own set of cryptographic
 parameters (or will when the code is written for that).

 The service also returns a service connection the malware protection
 service the client requested access to. This service connection
 specifies three different service instances. Each service instance
 has its own set of cryptographic parameters for use with HTTP session
 authentication. In this case the three different service instances
 offer different means of accessing the same service: as a JSON Web
 Service over HTTP, using a binary encoding over a UDP transport and
 tunnelling via DNS.

Hallam-Baker November 20, 2014 [Page 12]

Internet-Draft Service Connection Service (SXS) May 2014

 HTTP/1.1 OK Success
 Content-Length: 1762
 Date: Mon, 19 May 2014 17:17:43 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "TicketResponse": {
 "Status": 200,
 "StatusDescription": "Success",
 "Cryptographic": [{
 "Protocol": "sxs-connect",
 "Secret": "
 emwwtk9hgo--u6tE-mJ-uA",
 "Encryption": "A128CBC",
 "Authentication": "HS256",
 "Ticket": "
 On8L9OSNh1q4o2fMgSmahY3AYMwHY7cdt4jdp8bT9p1iAqgk18MXj3U_NdtrUxWG
 nDyPfh2px3ZqTkjzPiiunzjOl-ye3mAmKTxGzXOgOvg"}],
 "Service": [{
 "Service": "sxs-confirm-user",
 "Name": "localhost",
 "Port": 8080,
 "Priority": 100,
 "Weight": 100,
 "Transport": "HTTP",
 "Cryptographic": {
 "Secret": "
 2tFPA7RVgbcAv7WZC0hl0w",
 "Encryption": "A128CBC",
 "Authentication": "HS256T128",
 "Ticket": "
 o7znkpTHfrqcwsI1eHkPghCj7YsGUCp0KV2DcV1qXGlCt9wzmr2T6UcO_0YIAcEq
 VdTsqRsYBtVNGs9SJyTCnMvjIlU1xQ9ZzoUtqtJsT4A"}},
 {
 "Service": "omni-query",
 "Name": "localhost",
 "Port": 8080,
 "Priority": 100,
 "Weight": 100,
 "Transport": "HTTP",
 "Cryptographic": {
 "Secret": "
 GCBBcZPMs8Bz_c7Yb-F06Q",
 "Encryption": "A128CBC",
 "Authentication": "HS256T128",
 "Ticket": "
 ce2u2PZ3X1izYpCNUl3zrq-LBcRBiSdOfRSknOm33854OMnRKIZTWtbpiZIBvbmW
 A23FlzDxp60SB18FTgbmh5ejJKxz9xVYvnmCUm8KhY0"}},
 {

 "Service": "omni-query",
 "Name": "localhost",

Hallam-Baker November 20, 2014 [Page 13]

Internet-Draft Service Connection Service (SXS) May 2014
 "Port": 9090,
 "Priority": 100,
 "Weight": 100,
 "Transport": "UDP",
 "Cryptographic": {
 "Secret": "
 eBt0w7YrK7tdCLAALLO3pg",
 "Encryption": "A128CBC",
 "Authentication": "HS256T128",
 "Ticket": "
 TDVD0DeoWdlU-RIWB0I5BV8Xgp3L5TZD8uqQP6v9PJwdIG6DQufqLsKjhu1wtV2p
 jF8R37P9MJfhBWK-g4Yb4p7U3kBrUYgScOIxNbx31gQ"}}]}}

3.2. Unbinding

 After a year of use, Alice decides to replace the laptop with a new
 one. Before selling the old laptop on EBay, she tells the Web Service
 client to cancel the connection to the Web Service Provider.

 The client sends the following mesasage to the provider:

 POST /.well-known/sxs-connect/ HTTP/1.1
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Session: Value=RplcOyyQc_E4PcbNmL1vpt9xLOIdAXHNxqeBD_RHaJY;
 Id=9EccpNHXKaU9wfmMsktFai9K_RC-4VGbiKgvAQWDaRzIjgw7SYa5NDxSpVUo
 mkNvauCbw8wc_EdZ-Rsc6mwDXrkpl-9GevKpywNYkgReNgz4PgSJWnVh9h-lPhF
 Bd_0hl8f1CuZ9FakXpeD5QCp8Eg
 Host: localhost:8080
 Content-Length: 24
 Expect: 100-continue

 {
 "UnbindRequest": {}}

 The Session ID specifies the connection binding. Since the Unbind
 Request is only valid for that connection binding, there is no need
 to specify the connection binding further in the request.

 The server verifies that the request was authenticated and returns a
 successful response:

 HTTP/1.1 OK Success
 Content-Length: 79
 Date: Mon, 19 May 2014 17:17:43 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "UnbindResponse": {
 "Status": 200,

 "StatusDescription": "Success"}}

Hallam-Baker November 20, 2014 [Page 14]

Internet-Draft Service Connection Service (SXS) May 2014

3.3. Out of Band Completion

 Alice purchases an Internet enabled coffee pot. The installer
 configures the coffee pot in her kitchen but does not have access to
 Alice's SXS account or a PIN code to configure it.

 The installer configures the coffee pot to use the SXS account
 specified by Alice. The coffee pot does not have a pssscode to enter
 but does have a link to an image of the coffee pot.

 The client sends the following request:

 POST /.well-known/sxs-connect/ HTTP/1.1
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Host: localhost:8080
 Content-Length: 224
 Expect: 100-continue

 {
 "BindRequest": {
 "Service": ["coffee-pot-control"],
 "Encryption": ["A128CBC",
 "A256CBC",
 "A128GCM",
 "A256GCM"],
 "Authentication": ["HS256",
 "HS384",
 "HS512",
 "HS256T128"]}}

 Since the client does not have a PIN code, there is no need to return
 a challenge. Instead the service returns the status "OOB" to indicate
 that the transaction will be completed out of band.

 HTTP/1.1 282 Transaction Incomplete
 Content-Length: 162
 Date: Mon, 19 May 2014 17:17:43 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "TicketResponse": {
 "Status": 282,
 "StatusDescription": "Transaction Incomplete",
 "TransactionID": "
 psqoiqY_7mPWIZM3uqDm2g",
 "MinRetry": 10}}

 By default the coffee pot attempts to complete the SXS connection at
 ten second intervals for the first ten minutes, every thirty seconds

 for the next hour, every five minutes for the following 24 hours and

Hallam-Baker November 20, 2014 [Page 15]

Internet-Draft Service Connection Service (SXS) May 2014

 once an hour thereafter.

 The client sends the following request to check the status of the
 request:

 POST /.well-known/sxs-connect/ HTTP/1.1
 Content-Type: application/json;charset=UTF-8
 Cache-Control: no-store
 Host: localhost:8080
 Content-Length: 22
 Expect: 100-continue

 {
 "PollRequest": {}}

 The first service response tells the coffee pot not to ask again
 until five minutes have elapsed:

 HTTP/1.1 282 Transaction Incomplete
 Content-Length: 162
 Date: Mon, 19 May 2014 17:17:43 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "TicketResponse": {
 "Status": 282,
 "StatusDescription": "Transaction Incomplete",
 "TransactionID": "
 Gup4C1t8v7MKvUwsmT-ffA",
 "MinRetry": 10}}

 The installer calls Alice to tell her that the coffee pot is ready to
 connect. Alice authorizes the connection remotely via the Web Service
 Provider's Web site. Alice identifies the request to connect the
 coffee pot by means of the image provided. She can also use the same
 image to help determine which connection to cancel when the coffee
 pot is replaced.

 The next time the coffee pot requests a status update, the service
 responds with the connection binding parameters:

Hallam-Baker November 20, 2014 [Page 16]

Internet-Draft Service Connection Service (SXS) May 2014

 HTTP/1.1 282 Transaction Incomplete
 Content-Length: 162
 Date: Mon, 19 May 2014 17:17:44 GMT
 Server: Microsoft-HTTPAPI/2.0

 {
 "TicketResponse": {
 "Status": 282,
 "StatusDescription": "Transaction Incomplete",
 "TransactionID": "
 blwpd6lDr7_a9tDviLvmGA",
 "MinRetry": 10}}

3.3.1. Message: Message

3.3.2. Message: Response

 Status :
 Integer [0..1] Application layer server status code

 StatusDescription :
 String [0..1] Describes the status code (ignored by processors)

3.3.3. Message: ConnectionRequest

3.3.4. Structure: Cryptographic

 Parameters describing a cryptographic context.

 Protocol :
 Label [0..1] OBP tickets MAY be restricted to use with either
 the management protocol (Management) or the query protocol
 (Query). If so a service would typically specify a ticket with
 a long expiry time or no expiry for use with the management
 protocol and a separate ticket for use with the query protocol.

 Secret :
 Binary [1..1] Shared secret

 Encryption :
 Label [1..1] Encryption Algorithm selected

 Authentication :
 Label [1..1] Authentication Algorithm selected

 Ticket :
 Binary [1..1] Opaque ticket issued by the server that
 identifies the cryptographic parameters for encryption and
 authentication of the message payload.

Hallam-Baker November 20, 2014 [Page 17]

Internet-Draft Service Connection Service (SXS) May 2014

 Expires :
 DateTime [0..1] Date and time at which the context will expire

3.3.5. Structure: ImageLink

 Algorithm :
 Label [0..1] Image encoding algorithm (e.g. JPG, PNG)

 Image :
 Binary [0..1] Image data as specified by algorithm

3.3.6. Structure: Connection

 Contains information describing a network connection.

 Service :
 Label [0..1] The service identifier

 Name :
 Name [0..1] DNS Name. Since one of the functions of an OBP
 service is name resolution, a DNS name is only used to
 establish a connection if connection by means of the IP address
 fails.

 Port :
 Integer [0..1] TCP or UDP port number.

 Address :
 String [0..1] IPv4 (32 bit) or IPv6 (128 bit) service address

 Priority :
 Integer [0..1] Service priority. Services with lower priority
 numbers SHOULD be attempted before those with higher numbers.

 Weight :
 Integer [0..1] Weight to be used to select between services of
 equal priority.

 Transport :
 Label [0..1] OBP Transport binding to be used valid values are
 HTTP, DNS and UDP.

 Expires :
 DateTime [0..1] Date and time at which the specified connection
 context will expire.

 Cryptographic :
 Cryptographic [0..1] Cryptographic Parameters.

Hallam-Baker November 20, 2014 [Page 18]

Internet-Draft Service Connection Service (SXS) May 2014

4. OBPConnection

4.1. Bind

4.1.1. Message: BindRequest

 The following parameters MAY occur in either a StartRequest or
 TicketRequest:

 Service :
 Label [0..Many] The service identifier for the protocol for
 which a connection is being established.

 Encryption :
 Label [0..Many] Encryption Algorithm that the client accepts. A
 Client MAY offer multiple algorithms. If no algorithms are
 specified then support for the mandatory to implement algorithm
 is assumed. Otherwise mandatory to implement algorithms MUST be
 specified explicitly.

 Authentication :
 Label [0..Many] Authentication Algorithm that the client
 accepts. If no algorithms are specified then support for the
 mandatory to implement algorithm is assumed. Otherwise
 mandatory to implement algorithms MUST be specified explicitly.

4.2. BindPIN

 Binding a device with mutual authentication is a two step protocol
 that begins with the OpenPINRequest followed by the Ticket Request.

4.2.1. Message: OpenPINRequest

 The OpenRequest Message is used to begin a device binding
 transaction. Depending on the authentication requirements of the
 service the transaction may be completed in a single query or require
 a further Ticket Query to complete.

 If authentication is required, the mechanism to be used depends on
 the capabilities of the device, the requirements of the broker and
 the existing relationship between the user and the broker.

 If the device supports some means of data entry, authentication MAY
 be achieved by entering a passcode previously delivered out of band
 into the device.

 The OpenRequest specifies the properties of the service (Account,
 Domain) and Device (ID, URI, Name) that will remain constant
 throughout the period that the device binding is active and
 parameters to be used for the mutual authentication protocol.

Hallam-Baker November 20, 2014 [Page 19]

Internet-Draft Service Connection Service (SXS) May 2014

 Account :
 String [0..1] Account name of the user at the OBP service

 Service :
 Label [0..Many] The service identifier for the protocol for
 which a connection is being established.

 Domain :
 Name [0..1] Domain name of the OBP broker service

 HavePasscode :
 Boolean [0..1] Default =False If 'true', the user has entered a
 passcode value for use with passcode authentication.

 HaveDisplay :
 Boolean [0..1] Default =False Specifies if the device is
 capable of displaying information to the user or not.

 Challenge :
 Binary [0..1] Client challenge value to be used in
 authentication challenge mechanism as described in section
 [ChallengeResponse]

 DeviceID :
 URI [0..1] Device identifier unique for a particular instance
 of a device such as a MAC or EUI-64 address expressed as a URI

 DeviceURI :
 URI [0..1] Device identifier specifying the type of device,
 e.g. an xPhone.

 DeviceImage :
 ImageLink [0..1] An image identifying the physical appearance
 of the device.

 DeviceName :
 String [0..1] Descriptive name for the device that would
 distinguish it from other similar devices, e.g. 'Alice's
 xPhone".

4.2.2. Message: OpenPINResponse

 An Open request MAY be accepted immediately or be held pending
 completion of an inband or out-of-band authentication process.

 The OpenResponse returns a ticket and a set of cryptographic
 connection parameters in either case. If the

Hallam-Baker November 20, 2014 [Page 20]

Internet-Draft Service Connection Service (SXS) May 2014

 Challenge :
 Binary [0..1] Challenge value to be used by the client to
 respond to the server authentication challenge.

 ChallengeResponse :
 Binary [0..1] Server response to authentication challenge by
 the client as described in section

 Cryptographic :
 Cryptographic [0..1] Cryptographic Parameters.

 VerificationImage :
 ImageLink [0..Many] Link to an image to be used in an image
 verification mechanism.

4.3. Poll

4.3.1. Message: PollRequest

 The TicketRequest message is used to complete a binding request that
 returned an incomplete status (350 code)

 TransactionID :
 Binary [0..1] Opaque transaction identifier returned when
 transaction could not complete

4.4. Ticket

4.4.1. Message: TicketRequest

 The TicketRequest message is used to (1) complete a binding request
 begun with an PINRequest and (2) to refresh ticket or connection
 parameters as necessary.

 Service :
 Label [0..Many] The service identifier for the protocol for
 which a connection is being established.

 ChallengeResponse :
 Binary [0..1] The response to a serer authentication challenge
 as described in section

4.4.2. Message: TicketResponse

 The TicketResponse message returns cryptographic and/or connection
 context information to a client.

 Cryptographic :
 Cryptographic [0..Many] Cryptographic Parameters.

Hallam-Baker November 20, 2014 [Page 21]

Internet-Draft Service Connection Service (SXS) May 2014

 Service :
 Connection [0..Many] A Connection describing an OBP service
 point

 TransactionID :
 Binary [0..1] Opaque transaction identifier returned when
 transaction could not complete.

 MinRetry :
 Integer [0..1] Minimum time to elapse before a status polling
 request will be responded to.

4.5. Unbind

 Requests that a previous device association be deleted.

4.5.1. Message: UnbindRequest

 Since the ticket identifies the binding to be deleted, the only thing
 that the unbind message need specify is that the device wishes to
 cancel the binding.

4.5.2. Message: UnbindResponse

 Reports on the success of the unbinding operation.

 If the server reports success, the client SHOULD delete the ticket
 and all information relating to the binding.

 A service MAY continue to accept a ticket after an unbind request has
 been granted but MUST NOT accept such a ticket for a bind request.

5. Mutual Authentication

 A Connection Service MAY require that a connection request be
 authenticated. Two authentication mechanisms are defined.

 PIN Code
 The client and server demonstrate mutual knowledge of a PIN
 code previously exchanged out of band.

 Out of Band Confirmation
 The request for access is confirmed out of band.

 In addition, services MAY accept the use of any message or transport
 layer authentication scheme. For example HTTP Session Continuation or
 Transport Layer Security with client authentication.

Hallam-Baker November 20, 2014 [Page 22]

Internet-Draft Service Connection Service (SXS) May 2014

5.1. PIN Authentication

 PIN code authentication provides users with a simple and often
 familiar mechanism for authenticating the connection request. The
 means by which the user obtains the PIN code is outside the scope of
 this document. Possible methods for distributing the PIN code include
 obtaining the code from an account management Web site provided by
 the Web Service Provider, letter post, email and in person.

 Although the PIN value is never exposed on the wire in any form, the
 protcol considers the PIN value to be text encoded in UTF8 encoding.

 To encourage readability, the use of space (0x20) and hyphen (0x2D)
 characters to arrange PIN characters into groups of four to seven
 characters is encouraged. To avoid the risk of this practice
 introducing user error, space and hyphen characters are ignored when
 processing the PIN value.

 Support for the full UNICODE character set in PIN codes is intended
 to facilitate provision of PIN codes in the user's native language.
 Web Service Providers MAY make use of any UNICODE characters they
 choose but capricious choices are likely to cause users difficulty.
 For example a PIN code MAY contain the ZAPF Dingbats thick tick mark
 (U+2704) but users would almost certainly find it difficult to enter
 and may confuse it with the similar thin tick mark (U+2703).

 Servers that support PIN Authorization SHOULD offer the choice of a
 PIN that only uses numeric digits ('0', '1', '2', '3', '4', '5', '6',
 '7', '8', '9'). Clients that support PIN Authorization MUST allow
 entry of PINS that only contain numeric digits.

 The PIN Mechanism is a three step process:

The client sends an OpenRequest message to the Service containing a
challenge value CC.
The service returns an OpenResponse message containing to the client a
server challenge value SV and a server response value SR.
The client sends a TicketRequest message to the service containing a
client response value CR.

 Since no prior authentication key has been established the
 OpenRequest and OpenResponse messages are sent without message
 authentication.

 The Challenge values CC, and SC are cryptographic nonces. The nonces
 SHOULD be generated using an appropriate cryptographic random source.
 The nonces MUST be at least as long as 128 bits, MUST be at least the
 minimum key size of the authentication algorithm used and MUST NOT
 more than 640 bits in length (640 bits should be enough for anybody).

Hallam-Baker November 20, 2014 [Page 23]

Internet-Draft Service Connection Service (SXS) May 2014

 The server response and client response values are generated using an
 authentication algorithm selected by the server from the choices
 proposed by the client in the OpenRequest message.

 The algorithn chosen may be a MAC algorithm or an encrypt-with-
 authentication (EWA) algorithm. If an EWA is specified, the encrypted
 data is discarded and only the authentication value is used in its
 place.

 Let A(d,k) be the authentication value obtained by applying the
 authentication algorithm with key k to data d.

 To create the Server Response value, the UTF8 encoding of the PIN
 value 'P' is first pre-processed to remove space and hyphen
 characters, then converted into a symmetric key KPC by using the
 Client challenge value as the key truncating if necessary and then
 applied to the of the OpenRequest message:

 [
 KPC = A (PIN, CC)
 SR = A (Secret + OpenRequest, KPC)

 In the Web Service Binding, the Payload of the message is the HTTP
 Body as presented on the wire. The Secret and Server Challenge are
 presented in their binary format and the '+' operator stands for
 simple concatenation of the binary sequences.

 This protocol construction ensures that the party constructing SR:

 Knows the PIN code value (through the construction of KPC). Is
 responding to the Open Request Message (SR depends on OpenRequest).
 Has knowlege of the secret key which MUST be used to authenticate the
 following TicketRequest/TicketResponse interaction that will
 establish the actual connection. Does not provide an oracle the PIN
 value. That is, the protocol does not provide a service that reveals
 the (since the value SR includes the value SC which is a random nonce
 generated by the server and cannot be predicted by the client).

 To create the Client Response value, secret key is applied to the PIN
 value and server Challenge:

 CR = A (PIN + SC + OpenResponse, Secret)

 Note that the server can calculate the value of the Client Response
 token at the time that it generates the Server Challenge. This
 minimizes the amount of state that needs to be carried from one
 request to the next in the Ticket value when using the stateless
 server implementation described in section

Hallam-Baker November 20, 2014 [Page 24]

Internet-Draft Service Connection Service (SXS) May 2014

 This protocol construction ensures that the generator of CR

 Knows the PIN value. Is respoding to the OpenResponse generated by
 the server.

 Note that while disclosure of an oracle for the PIN value is a
 concern in the construction of CR, this is not the case in the
 construction of SR since the client has already demonstrated
 knowledge of the PIN value.

5.1.1. Example: Latin PIN Code

 The Connection Request example of section demonstrates the use of an
 alphanumeric PIN code using the Latin alphabet.

 The PIN code is [[Q80370-1RA606-F04B] and the authentication
 algorithm is [[HS256]. The value KPC is calculated thus:

 PIN: 51 38 30 33 37 30 2d 31 52 41 36 30 36 2d 46 30 34 42

 Client Challenge: 04 e7 a7 fe 41 33 7b 74 c9 8b b9 d6 eb 33 bb dc

 KPC: 10 c9 32 db 58 77 16 d6 cb 07 21 d9 36 b0 1c dd 25 9e af 75 ba
 28 24 96 38 67 ac 7c 7f dd 6f 38

 For the sake of example, we take the OpenRequest message payload to
 be {...}. The data over which the hash value is calulated is Secret +
 OpenRequest:

 Secret: a7 c7 95 59 83 d2 d1 8a ce 56 bd 1d 20 ba dc 4e

 Request Payload: 7b 2e 2e 2e 7d

 Server Response: fe fc 5b 76 4a d4 e2 e5 bc 17 02 3f a9 58 15 92 cd
 1e 7d ae c5 a1 c4 cb 71 d8 ea 94 33 cd ed f2

 The data for the client response is PIN + Server Challenge + Payload:

 PIN: 51 38 30 33 37 30 2d 31 52 41 36 30 36 2d 46 30 34 42

 Server Challenge: a3 d5 0a 48 1b 47 d4 c8 ce ed 2c d8 c2 d2 88 23

 Request Payload: 7b 2e 2e 2e 7d

 Applying the key Secret to the data produces the client response:

 Client Response: 0a 48 14 35 3a bd 5c fb 55 5f 05 24 0b 94 a0 a0 a0
 1c 00 07 d4 ea 6c 1f 2a 50 b2 25 a7 7c ef bd

Hallam-Baker November 20, 2014 [Page 25]

Internet-Draft Service Connection Service (SXS) May 2014

5.1.2. Example: Cyrillic PIN Code

 If the PIN code in the earlier example was 'parol1' (the Russian for
 'password1') in Cyrilic script the value KP would be calculated as
 follows

 PIN: d0 bf d0 b0 d1 80 d0 be d0 bb d1 8c 31

 KPC: 10 c9 32 db 58 77 16 d6 cb 07 21 d9 36 b0 1c dd 25 9e af 75 ba
 28 24 96 38 67 ac 7c 7f dd 6f 38

 The rest of the protocol would then continue as before.

5.2. Out of Band Confirmation

 The Out Of Band Confirmation mechanism is a three step process in
 which:

 * The client makes an OpenRequest message to the service and
 obtains an OpenResponse message.

 * The connection binding is authorized through an out of band
 process.

 * The client makes a TicketRequest to the service and obtains a
 TicketResponse message to complete the exchange.

 Since no prior authentication key has been established the
 OpenRequest and OpenResponse messages are sent without
 authentication.

 The principal concern in the Out Of Band Confirmation mechanism is
 ensuring that the party authorizing the request is able to identify
 which party originated the request they are attempting to identify.

 If a device has the ability to display an image it MAY set the
 HasDisplay=true in the OpenRequest message. If the broker recieves an
 OpenRequest with the HasDisplay value set to true, the OpenResponse
 MAY contain one or more VerificationImage entries specifying image
 data that is to be displayed to the user by both the client and the
 confirmation interface.

 Before confirming the request, the user SHOULD verify that the two
 images are the same and reject the request in the case that they are
 not.

 Many devices do not have a display capability, in particular an
 embedded device such as a network switch or a thermostat. In this
 case the device MAY be identified by means of the information
 provided in DeviceID, DeviceURI, DeviceImage and DeviceName.

Hallam-Baker November 20, 2014 [Page 26]

Internet-Draft Service Connection Service (SXS) May 2014

6. Protocol Binding

 A single protocol binding is defined:

 * JSON encoding is used to express SXS messages.

 * A HTTP session layer with HTTP session continuation is used for
 message authentication.

 * TLS transport is required for confidentiality and service
 authentication.

 Implementations MAY support use of alternative encodings, session
 layers or transports provided that the necessary confidentiality and
 authentication criteria described below are met. The means by which
 negotiation of the use of such encodings is achieved is outside the
 scop of this document.

6.1. JSON encoding

 Messages are expressed in JSON encoding [RFC4627].

 Protocol schema types are mapped to JSON encoding as follows:

 Integer
 Data of type Integer is encoded using the JSON number encoding.

 Name
 Data of type Name is encoded using the JSON string encoding.

 String
 Data of type String is encoded using the JSON string encoding.

 Binary
 Data of type Binary is converted to strings using the Base64url
 encoding specified in [!RFC4648] /> and encoded using the JSON
 string type.

 DateTime
 Data of type DateTime is converted to string using the UTC time
 conversion specified in [!RFC3339] /> with a UTC offset of
 00:00.

6.1.1. HTTP Session Layer

 Messages are presented over a HTTP session layer [RFC2616]. The use
 of HTTP as a session layer permits multiple Web Services on the same
 host to share the same DNS name, IP address and port number and
 enables use of HTTP Session Continuation [I-D.hallambaker-
 httpsession] for message authentication.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc2616

Hallam-Baker November 20, 2014 [Page 27]

Internet-Draft Service Connection Service (SXS) May 2014

 Use of HTTP Session Continuation mechanism allows message
 authentication data to be presented in the HTTP message header rather
 than the message content provides a clean separation of the message
 authentication data from the data being authenticated. The scope of
 the authentication data is simply the message content after transport
 encoding (e.g. chunked) has been removed.

 The use of HTTP session continuation is necessary to achieve mutual
 authentication even though TLS transport is required.

 Only the HTTP Session header is used. The negotiation of the Session
 parameters is performed within SXS.

 [TO-DO: Specify TLS binding options?]

 [TO-DO: Switch back from using JOSE algorithm names to HTTP Session
 algorithm names]

6.1.2. TLS transport

 TLS transport [RFC4627] is used

 Support for the PKIX logotype extension [RFC3709] is highly
 recommended

 Use of an enhanced assurance certificate (e.g. CABForum EV) is likely
 to be required in most applications and is strongly recommended if
 Lotypes are used.

7. Service Identification and Discovery

 The prefix '[PREFIX-TBD]' has been registered for use as a protocol
 identifier for SXS in the URI, SRV and Well Known Location
 registries.

 The URI form identifying a SXS account identifier is:

 PREFIX-TBD:<service>:<account>:< or PREFIX-
 TBD:<service>:<account>:<:subaccount>

 Where <service> is the DNS name of the Web Service Provider,
 <account> is the name of the account at the service provider and
 <subaccount> is an optional sub-account specifier.

 Use of the URI form is only needed in cases where the purpose of the
 identifier is not clear from the context, in a HTML anchor for
 example. A SXS client requesting entry of the service account
 identifier MUST support entry of the short form identifier:

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3709

Hallam-Baker November 20, 2014 [Page 28]

Internet-Draft Service Connection Service (SXS) May 2014

 <account>@<service> or <:subaccount>/<account>@<service>

 DNS Service (SRV) record discovery is the preferred method of host
 discovery as this provides for fault tollerance and load balancing.

 SXS clients SHOULD support use of DNS SRV records for host discovery
 and MUST support use of DNS A/AAAA records for host discovery.

 A compliant SXS service MUST be offered at the .well-known location
 /.well-known/PREFIX-TBD. Use of SXS protocol at other service
 locations is permissible for testing and protocol development
 purposes but such configurations are not compliant and clients are
 not required to support them. The URL for the SXS service is
 therefore:

 https://<service>/.well-known/PREFIX-TBD

8. UDP Binding (UYFM)

 The UDP Binding (UYFM) allows a transaction to be transmitted as a
 single UDP packet request followed by up to 16 UDP response packets.
 The message encapsulation is described using the format desribed in
 [RFC5246]. Note that in this notation the size of a length specifier
 is defined by the maximum number of octets permitted in the
 corresponding data field. For convenience these sizes are given as
 255 or 65335 to specify 1 and 2 byte length specifiers respectively.
 The actual length of the data fields that can be used in practice
 will depend on the maximum size of UDP packet that can be reliably
 transmitted.

 opaque TransactionID<16..255>
 opaque SecurityContextID<1..255>

8.1. Request

 If the UDP transport is in use, a request consists of exactly one
 packet.

https://datatracker.ietf.org/doc/html/rfc5246

Hallam-Baker November 20, 2014 [Page 29]

Internet-Draft Service Connection Service (SXS) May 2014

 A request has the following structure:

 struct {
 TransactionID transactionID;
 SecurityContextID securityContextID;
 opaque encryptedPayload<1..65535>
 opaque authenticationCode<1..255>
 } Request;

 Where:

 transactionID
 Is a unquie identifier for the transaction and an input to the
 function used to derrive the initialization vector (IV) for the
 encryption algorithm

 securityContextID
 Is the opaque security context identifier returned by the
 Service Connect Service.

 encryptedPayload
 Is the encrypted message payload.

8.2. Response

 A response MAY consist of 1 or up to 16 packets, each formatted as
 follows:

 struct {
 TransactionID transactionID;
 uint8 index;
 uint8 maxIndex;
 uint16 clearResponse;
 opaque encryptedPayloadSegment<0..65535>
 opaque authenticationCode<1..255>
 } Response;

 Where:

 transactionID
 Is a unquie identifier for the transaction and an input to the
 function used to derrive the initialization vector (IV) for the
 encryption algorithm

 index
 Is the index number of this response packet.

 maxIndex
 Is the index number of the last packet. The value of maxIndex
 MUST be the same for every packet. Receivers MUST reject

 packets

Hallam-Baker November 20, 2014 [Page 30]

Internet-Draft Service Connection Service (SXS) May 2014

 clearResponse
 Is a response code sent enclair. The value 0 indicates a
 successful response. Error codes TBS. It might be expedient to
 merge these with index and maxIndex to shave some bytes.

 encryptedPayloadSegment
 Is the encrypted message payload segment.

 To obtain the encryptedPayload of the response, the receiver:

 * Waits for all the response packets to arrive

 * Sorts the response packets by the value of index.

 * Extracts the value of encryptedPayloadSegment from each
 response

 * Concatenate the values of encryptedPayloadSegment to obtain the
 encryptedPayload value

 UDP packets MAY be sent out of order and the order in which they were
 received MAY not match the order in which they were sent. A receiver
 MUST accept response packets recieved in any order.

8.3. Payload

 The payload is a sequence of the following types of data:

 JSONData
 Payload data in JSON encoding

 JSONCData
 Payload data in JSON-C encoding as described in [!I-
 D.hallambaker-jsonbcd]

 DNSMessageEntry
 A DNS Message as specified in [RFC1035]

 PaddingEntry
 The Payload MAY contain padding.

 LastMAC
 MAC value from the previous message in the transaction.

 SecurityContextIDEntry
 A replacement security context identifier.

https://datatracker.ietf.org/doc/html/rfc1035

Hallam-Baker November 20, 2014 [Page 31]

Internet-Draft Service Connection Service (SXS) May 2014

 KeyEntry
 A secret key for use with the immediately preceeding
 SecurityContextID.

 Future use
 The Payload may contain additional options (To be defined)

 The payload data is encoded according to the following schema:

 enum {PaddingEntry (0), SecurityContextIDEntry (2),
 KeyEntry (3), LastMac (4), JSONData (16), JSONCData (17),
 DNSMessageEntry (18), (255)} PayloadEntryType;

 struct {
 PayloadEntryType entryType;
 opaque data<0..65535>
 } Response;

 The SecurityContextIDEntry and KeyEntry data types are used by the
 server to issue a new security context and key to the client.
 Changing the security context identifier prevents linkage of
 transactions across network configurations.

 One consequence of putting the LastMAC value inside the Payload data
 is that this provides an attacker with a sequence of known plaintext
 and ciphertext.

9. Acknowledgements

 Rob Stradling, Robin Alden...

10. Security Considerations

10.1. Denial of Service

10.2. Breach of Trust

10.3. Coercion

11. IANA Considerations

 [TBS list out all the code points that require an IANA registration]

12. Stateless server

 The protocol is designed to permit but not require the server to
 store connection binding state in the Session ID of the HTTP Session
 Continuation authentication mechanism.

Hallam-Baker November 20, 2014 [Page 32]

Internet-Draft Service Connection Service (SXS) May 2014

 The Session IDs are opaque as far as the client is concerned. The
 client receives the Session ID from the service and returns it with
 each request. The internal structure of the Session ID is therefore
 outside the scope of this specification but is provided here to
 assist implementers.

 In the PIN Authentication example, two SessionIDs are issued by the
 server:

 * A temporary ID in response to the initial client OpenRequest.

 * A connection binding ID when the client PIN confirmation is
 accepted and the connection binding is created.

 Both tickets have the same common wrapper structure:

 IV + Encrypt (Ticket + Mac (Ticket, Key) Key)

 Where:

 IV
 The Initialization vector for the encryption scheme

 Encrypt
 The Encryption algorithm (AES in CBC Mode)

 Ticket
 The ticket data

 MAC
 The Message Authentication algorithm (HMAC-SHA2-256)

12.1. Temporary ID

 The temporary ticket returned in the OpenRequest example above is
 represented in Base64URL encoding as follows:

 9EccpNHXKaU9wfmMsktFai9K_RC-4VGbiKgvAQWDaRzIjgw7SYa5NDxSpVUomkNv
 auCbw8wc_EdZ-Rsc6mwDXrkpl-9GevKpywNYkgReNgz4PgSJWnVh9h-lPhFBd_0h
 l8f1CuZ9FakXpeD5QCp8Eg

 The format of the ticket is 16

 IV: f4 47 1c a4 d1 d7 29 a5 3d c1 f9 8c b2 4b 45 6a

 Encrypted Data: 2f 4a fd 10 be e1 51 9b 88 a8 2f 01 05 83 69 1c c8 8e
 0c 3b 49 86 b9 34 3c 52 a5 55 28 9a 43 6f 6a e0 9b c3 cc 1c fc 47 59
 f9 1b 1c ea 6c 03 5e b9 29 97 ef 46 7a f2 a9 cb 03 58 92 04 5e 36 0c
 f8 3e 04 89 5a 75 61 f6 1f a5 3e 11 41 77 fd 21 97 c7 f5 0a e6 7d 15
 a9 17 a5 e0 f9 40 2a 7c 12

Hallam-Baker November 20, 2014 [Page 33]

Internet-Draft Service Connection Service (SXS) May 2014

 The encrypted data is decrypted under the master key of the server.
 In this example the server has a single fixed key that does not
 change over time. There should really be a key index prefixing it to
 identify the key number.

 The Master Key is: 55 e1 0a 1a 8e 68 8a bd 5a 15 d8 cb b2 63 38 ef 9d
 3d 78 bf 62 62 f9 eb 52 ed af ee a5 55 67 0d

 The decrypted data contains the algorithm identifiers, shared secret
 and message authentication code:

 Version Number: 00

 Key Identifier: 01

 Authentication Algorithm: 00

 Encryption Algorithm: 00

 Key Data: a7 c7 95 59 83 d2 d1 8a ce 56 bd 1d 20 ba dc 4e

 User Name Length: 11

 User Name: 61 6c 69 63 65 40 65 78 61 6d 70 6c 65 2e 63 6f 6d

 Client Challenge Length: 10

 Client Challenge: 04 e7 a7 fe 41 33 7b 74 c9 8b b9 d6 eb 33 bb dc

 Server Challenge Length: 10

 Server Challenge: a3 d5 0a 48 1b 47 d4 c8 ce ed 2c d8 c2 d2 88 23

 Message Authentication Code: aa e3 19 72 c3 bc 6c 1f 48 35 0f 47 5a
 3a 78 5e 34 b1 9e 92 32 42 10 a0 b2 d7 90 94 e6 8c 82 7e

12.2. Connection Binding ID

 The format of the Connection binding ticket is similar to that of the
 Temporary ticket except that it does not contain the Client or Server
 challenge nonces.

 IV: 3a 7f 0b f4 e4 8d 87 5a b8 a3 67 cc 81 29 9a 85

 Encrypted Data: 8d c0 60 cc 07 63 b7 1d b7 88 dd a7 c6 d3 f6 9d 62 02
 a8 24 d7 c3 17 8f 75 3f 35 db 6b 53 15 86 9c 3c 8f 7e 1d a9 c7 76 6a
 4e 48 f3 3e 28 ae 9f 38 ce 97 ec 9e de 60 26 29 3c 46 cd 73 a0 3a f8

Hallam-Baker November 20, 2014 [Page 34]

Internet-Draft Service Connection Service (SXS) May 2014

 The decrypted data is:

 Version Number: 00

 Key Identifier: 00

 Authentication Algorithm: 00

 Encryption Algorithm: 00

 Key Data: 7a 6c 30 b6 4f 61 82 8f be bb ab 44 fa 62 7e b8

 User Name Length: 0c

 User Name: 65 40 65 78 61 6d 70 6c 65 2e 63 40

 Message Authentication Code: 90 c2 4b 03 17 47 31 19 60 85 96 23 8f
 4b 9c 53 b6 1a b2 9a 75 01 3a 76 19 38 11 63 66 f3 b8 7b

13. References

13.1. Normative References

 [RFC3339] Klyne, G.,Newman, C., "Date and Time on the Internet:
 Timestamps", RFC 3339, July 2002.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC3709] Santesson, S.,Housley, R.,Freeman, T., "Internet X.509
 Public Key Infrastructure: Logotypes in X.509
 Certificates", RFC 3709, February 2004.

 [I-D.hallambaker-jsonbcd] Hallam-Baker, P, "Binary Encodings for
 JavaScript Object Notation: JSON-B, JSON-C, JSON-D",
 Internet-Draft draft-hallambaker-jsonbcd-01, 21 January
 2014.

 [RFC5246] Dierks, T.,Rescorla, E., "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R.,Gettys, J.,Mogul, J.,Frystyk, H.,Masinter,
 L.,Leach, P.,Berners-Lee, T., "Hypertext Transfer Protocol
 -- HTTP/1.1", RFC 2616, June 1999.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc3709
https://datatracker.ietf.org/doc/html/draft-hallambaker-jsonbcd-01
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616

Hallam-Baker November 20, 2014 [Page 35]

Internet-Draft Service Connection Service (SXS) May 2014

 [I-D.hallambaker-privatedns] Hallam-Baker, P, "Private-DNS",
 Internet-Draft draft-hallambaker-privatedns-00, 9 May
 2014.

 [I-D.hallambaker-httpsession] Hallam-Baker, P, "HTTP Session
 Management", Internet-Draft draft-hallambaker-httpsession-

02, 21 January 2014.

Author's Address

 Phillip Hallam-Baker
 Comodo Group Inc.

 philliph@comodo.com

https://datatracker.ietf.org/doc/html/draft-hallambaker-privatedns-00
https://datatracker.ietf.org/doc/html/draft-hallambaker-httpsession-02
https://datatracker.ietf.org/doc/html/draft-hallambaker-httpsession-02

Hallam-Baker November 20, 2014 [Page 36]

