
Network Working Group R. Hamilton
Internet-Draft J. Iyengar
Intended status: Informational I. Swett
Expires: January 9, 2017 A. Wilk
 Google
 July 8, 2016

QUIC: A UDP-Based Multiplexed and Secure Transport
draft-hamilton-quic-transport-protocol-00

Abstract

 QUIC (Quick UDP-based Internet Connection) is a multiplexed and
 secure transport protocol that runs on top of UDP. QUIC builds on
 past transport experience, and implements mechanisms that make it
 useful as a modern general-purpose transport protocol. Using UDP as
 the basis of QUIC is intended to address compatibility issues with
 legacy clients and middleboxes. QUIC authenticates all of its
 headers, preventing third parties from from changing them. QUIC
 encrypts most of its headers, thereby limiting protocol evolution to
 QUIC endpoints only. Therefore, middleboxes, in large part, are not
 required to be updated as new protocol versions are deployed. This
 document describes the core QUIC protocol, including the conceptual
 design, wire format, and mechanisms of the QUIC protocol for
 connection establishment, stream multiplexing, stream and connection-
 level flow control, and data reliability. Accompanying documents
 describe QUIC's loss recovery and congestion control, and the use of
 TLS1.3 for key negotiation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2017.

Hamilton, et al. Expires January 9, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC July 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Definitions 4
3. A QUIC Overview . 4
3.1. Low-Latency Version Negotiation 5
3.2. Low-Latency Connection Establishment 5
3.3. Stream Multiplexing 5

 3.4. Rich Signaling for Congestion Control and Loss Recovery . 5
3.5. Stream and Connection Flow Control 6
3.6. Authenticated and Encrypted Header and Payload 6
3.7. Resilience to NAT Rebinding 6

4. Connection Establishment 7
4.1. Version Negotiation 7
4.2. Combined Crypto and Transport Handshake 8
4.2.1. Transport Parameters and Options 8
4.2.2. Proof of Source Address Ownership 9
4.2.3. Crypto Handshake Protocol Features 9

5. Streams: QUIC's Data Structuring Abstraction 10
5.1. Life of a Stream . 11
5.1.1. idle . 13
5.1.2. reserved . 13
5.1.3. open . 13
5.1.4. half-closed (local) 14
5.1.5. half-closed (remote) 14
5.1.6. closed . 15

5.2. Stream Identifiers 15
5.3. Stream Concurrency 16
5.4. Sending and Receiving Data 16

6. Packetization and Reliability 17
7. Flow Control . 18
7.1. Important considerations 19
7.1.1. Mid-stream RST_STREAM 19

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hamilton, et al. Expires January 9, 2017 [Page 2]

Internet-Draft QUIC July 2016

7.1.2. Response to a RST_STREAM 20
7.1.3. Offset Increment 20
7.1.4. BLOCKED frames 20

8. Connection Termination 20
9. Packet Types and Formats 21
9.1. Public Packet Header 21
9.2. Special Packets . 25
9.2.1. Version Negotiation Packet 25
9.2.2. Public Reset Packet 25

9.3. Regular Packets . 26
10. Frame Types and Formats 26
10.1. Frames . 27
10.2. Frame Types . 27
10.3. STREAM Frame . 27
10.4. ACK Frame . 29
10.5. STOP_WAITING Frame 32
10.6. WINDOW_UPDATE Frame 33
10.7. BLOCKED Frame . 34
10.8. PADDING Frame . 34
10.9. RST_STREAM Frame . 34
10.10. PING frame . 35
10.11. CONNECTION_CLOSE frame 35
10.12. GOAWAY Frame . 36

11. Error Codes . 36
12. Security and Privacy Considerations 38
13. Contributors . 38
14. Acknowledgments . 38
15. References . 39
15.1. Normative References 39
15.2. Informative References 39
15.3. URIs . 39

 Authors' Addresses . 39

1. Introduction

 QUIC (Quick UDP-based Internet Connection) is a multiplexed and
 secure transport protocol that runs on top of UDP. QUIC builds on
 past transport experience, and implements mechanisms that make it
 useful as a modern general-purpose transport protocol. Using UDP as
 the basis of QUIC is intended to address compatibility issues with
 legacy clients and middleboxes. QUIC authenticates all of its
 headers, preventing third parties from from changing them. QUIC
 encrypts most of its headers, thereby limiting protocol evolution to
 QUIC endpoints only. Therefore, middleboxes, in large part, are not
 required to be updated as new protocol versions are deployed.

 This document describes the core QUIC protocol, including the
 conceptual design, wire format, and mechanisms of the QUIC protocol

Hamilton, et al. Expires January 9, 2017 [Page 3]

Internet-Draft QUIC July 2016

 for connection establishment, stream multiplexing, stream and
 connection-level flow control, and data reliability. Accompanying
 documents describe QUIC's loss recovery and congestion control
 [draft-iyengar-quic-loss-recovery], and the use of TLS1.3 for key
 negotiation [draft-thomson-quic-tls].

2. Conventions and Definitions

 Definitions of terms that are used in this document:

 o "Client": The endpoint initiating a QUIC connection.

 o "Server": The endpoint accepting incoming QUIC connections.

 o "Endpoint": The client or server end of a connection.

 o "Stream": A logical, bi-directional channel of ordered bytes
 within a QUIC connection.

 o "Connection": A conversation between two QUIC endpoints with a
 single encryption context that multiplexes streams within it.

 o "Connection ID": The identifier for a QUIC connection.

 o "QUIC Packet": A well-formed UDP payload that can be parsed by a
 QUIC receiver. QUIC packet size in this document refers to the
 UDP payload size.

3. A QUIC Overview

 We now briefly describe QUIC's key mechanisms and benefits. Key
 strengths of QUIC include:

 o Low-latency Version Negotiation

 o Low-latency connection establishment

 o Multiplexing without head-of-line blocking

 o Authenticated and encrypted header and payload

 o Rich signaling for congestion control and loss recovery

 o Stream and connection flow control

 o Resilience to NAT rebinding

https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls

Hamilton, et al. Expires January 9, 2017 [Page 4]

Internet-Draft QUIC July 2016

3.1. Low-Latency Version Negotiation

 (TODO: add text here)

3.2. Low-Latency Connection Establishment

 QUIC relies on a combined crypto and transport handshake for setting
 up a secure transport connection. QUIC connections are expected to
 commonly use 0-RTT handshakes, meaning that for most QUIC
 connections, data can be sent immediately following the client
 handshake packet, without waiting for a reply from the server. QUIC
 provides a dedicated stream (Stream ID 1) to be used for performing
 the crypto handshake and QUIC options negotiation. Theformat of the
 QUIC options and parameters used during negotiation are described in
 this document, but the handshake protocol that runs on Stream ID 1 is
 described in the accompanying crypto handshake draft [draft-thomson-

quic-tls].

3.3. Stream Multiplexing

 When application messages are transported over TCP, independent
 application messages can suffer from head-of-line blocking. When an
 application multiplexes many streams atop TCP's single-bytestream
 abstraction, a loss of a TCP segment results in blocking of all
 subsequent segments until a retransmission arrives, irrespective of
 the application streams that are encapsulated in subsequent segments.

 Because it is designed from the ground up for multiplexed operation,
 QUIC ensures that lost packets carrying data for an individual stream
 generally only impact that specific stream. Each stream frame can be
 immediately dispatched to that stream on arrival, so streams without
 loss can continue to be reassembled and make forward progress in the
 application.

3.4. Rich Signaling for Congestion Control and Loss Recovery

 QUIC's packet framing and acknowledgments carry rich information that
 help both congestion control and loss recovery in fundamental ways.
 Each QUIC packet, both original and retransmitted, carries a new
 packet number. This allows a QUIC sender to distinguish ACKs for
 retransmissions from ACKs for original transmissions, thus avoiding
 TCP's retransmission ambiguity problem. QUIC acknowledgments also
 explicitly encode the delay between the receipt of a packet and its
 acknowledgment being sent, and together with the monotonically-
 increasing packet numbers, this allows for precise roundtrip-time
 (RTT) calculation. QUIC's ACK frames support up to 256 ack blocks,
 so QUIC is more resilient to reordering than TCP with SACK support,
 as well as able to keep more bytes on the wire when there is

https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls

Hamilton, et al. Expires January 9, 2017 [Page 5]

Internet-Draft QUIC July 2016

 reordering or loss. A QUIC endpoint has an accurate picture of which
 packets the peer has received.

3.5. Stream and Connection Flow Control

 QUIC implements stream- and connection-level flow control, closely
 following HTTP/2's flow control mechanisms. At a high level, QUIC's
 stream-level flow control works as follows. A QUIC receiver
 advertises the absolute byte offset within each stream up to which
 the receiver is willing to receive data. As data is sent, received,
 and delivered on a particular stream, the receiver sends
 WINDOW_UPDATE frames that increase the advertised offset limit for
 that stream, allowing the peer to send more data on that stream.

 In addition to per-stream flow control, QUIC implements connection-
 level flow control to limit the aggregate buffer that a QUIC receiver
 is willing to allocate to all streams on a connection. Connection
 flow control works in the same way as stream flow control, but the
 bytes delivered and highest received offset are all aggregates across
 all streams.

3.6. Authenticated and Encrypted Header and Payload

 TCP headers appear in plaintext on the wire and are not
 authenticated, causing a plethora of injection and header
 manipulation issues for TCP, such as receive-window manipulation and
 sequence-number overwriting. While some of these are active attacks,
 others are mechanisms used by middleboxes to improve TCP performance.
 However, even "performance-enhancing" middleboxes limit the
 evolvability of the transport protocol, as has been observed in the
 design of MPTCP and in its subsequent deployability issues.

 QUIC packets are always authenticated and typically the payload is
 fully encrypted. The parts of the packet header which are not
 encrypted are still authenticated by the receiver, so as to thwart
 any packet injection or manipulation by third parties.

 Caveat: PUBLIC_RESET packets that reset a connection are currently
 not authenticated.

3.7. Resilience to NAT Rebinding

 QUIC connections are identified by a 64-bit Connection ID, randomly
 generated by the client. QUIC's consistent connection ID allows
 connections to survive changes to the client's IP and/or port, such
 as those caused by NAT rebindings. QUIC also provides automatic
 cryptographic verification of a rebound client, since the client

Hamilton, et al. Expires January 9, 2017 [Page 6]

Internet-Draft QUIC July 2016

 continues to use the same session key for encrypting and decrypting
 packets.

4. Connection Establishment

 QUIC's connection establishment intertwines version negotiation with
 the crypto and transport handshakes to reduce connection
 establishment latency. We first describe version negotiation, since
 the subsequent crypto and transport handshakes rely on successful
 version negotiation.

4.1. Version Negotiation

 Each of the initial packets sent from the client to the server must
 set the version flag, and must specify the version of the protocol
 being used. Every packet sent by the client must have the version
 flag on, until it receives a packet from the server with the version
 flag off. After the server receives a packet from the client with
 the version flag off, it MUST ignore any (possibly delayed) packets
 with the version flag on.

 When the server receives a packet with a Connection ID for a new
 connection, it MUST compare the client's version to the versions it
 supports.

 o If the client's version is acceptable to the server, the server
 MUST use this protocol version for the lifetime of the connection.
 All subsequent packets sent by the server MUST have the version
 flag off.

 o If the client's version is not acceptable to the server, the
 server MUST send a Version Negotiation Packet to the client. This
 packet will have the version flag set and will include the
 server's set of supported versions. In this case, a 1-RTT delay
 is incurred before the server can process client data.

 When the client receives a Version Negotiation Packet from the
 server, it will select an acceptable protocol version and resend all
 packets using this version. These packet must continue to have the
 version flag set and must include the new negotiated protocol
 version. Eventually, the client receives the first packet with the
 version flag off from the server indicating the end of version
 negotiation, and the client now sends all subsequent packets with the
 version flag off.

 In order to avoid downgrade attacks, the client and server must
 include their supported versions in their corresponding crypto
 handshake data. The client needs to verify that the server's version

Hamilton, et al. Expires January 9, 2017 [Page 7]

Internet-Draft QUIC July 2016

 list from the handshake matches the list of versions in the Version
 Negotiation Packet. The server needs to verify that the client's
 version from the handshake represents a version of the protocol that
 it does not actually support.

 During connection establishment, the handshake must negotiate various
 transport parameters. The currently defined transport parameters are
 described later in the document.

4.2. Combined Crypto and Transport Handshake

 QUIC relies on a combined crypto and transport handshake to minimize
 connection establishment latency. QUIC provides a dedicated stream
 (Stream ID 1) to be used for performing a combined connection and
 security handshake. The crypto handshake protocol encapsulates and
 delivers QUIC's transport handshake to the peer on the crypto stream;
 the first QUIC packet from the client to the server MUST carry
 handshake information as a Stream Frame on the crypto stream.

4.2.1. Transport Parameters and Options

 The transport component of the handshake is responsible for
 exchanging and/or negotiating the following parameters for a QUIC
 connection. Not all parameters are negotiated, some are parameters
 sent in just one direction. These parameters and options are encoded
 and handed off to the crypto handshake protocol to be transmitted to
 the peer.

4.2.1.1. Encoding

 (TODO: Describe format with example)

 QUIC encodes the transport parameters and options as tag-value pairs,
 all as 7-bit ASCII strings. QUIC parameter tags are listed below.

4.2.1.2. Required Transport Parameters

 o SFCW: Stream Flow Control Window. The stream level flow control
 byte offset advertised by the sender of this parameter.

 o CFCW: Connection Flow Control Window. The connection level flow
 control byte offset advertised by the sender of this parameter.

 o MSPC: Maximum number of incoming streams per connection.

Hamilton, et al. Expires January 9, 2017 [Page 8]

Internet-Draft QUIC July 2016

4.2.1.3. Optional Transport Parameters

 o TCID: Connection ID truncation. Indicates support for truncated
 Connection IDs. If sent by a peer, indicates the connection IDs
 sent to the peer should be truncated to 0 bytes. Useful for the
 common case when an ephemeral UDP port is used for a single QUIC
 connection.

 o COPT: Connection Options are a repeated tag field. The field
 contains any connection options being requested by the client or
 server. These are typically used for experimentation and will
 evolve over time. Example use cases include changing congestion
 control algorithms and parameters such as initial window. (TODO:
 List connection options.)

4.2.2. Proof of Source Address Ownership

 Transport protocols commonly use a roundtrip time to verify a
 client's address ownership for protection from malicious clients that
 spoof their source address. QUIC uses a cookie, called the Source
 Address Token (STK), to mostly eliminate this roundtrip of delay.
 This technique is similar to TCP Fast Open's use of a cookie to avoid
 a roundtrip of delay in TCP connection establishment.

 On a new connection, a QUIC server sends an STK, which is opaque to
 and stored by the client. On a subsequent connection, the client
 echoes it in the transport handshake as proof of IP ownership.

 A QUIC server also uses the STK to store server-designated connection
 IDs for Stateless Rejects, to verify that an incoming connection
 contains the correct connection ID.

 A QUIC server MAY additionally store other data in a the STK, such as
 measured bandwidth and measured minimum RTT to the client that may
 help the server better bootstrap a subsequent connection from the
 same client. A server MAY send an updated STK message mid-connection
 to update server state that is stored at the client in the STK.

 (TODO: Describe server and client actions on STK, encoding,
 recommendations for what to put in an STK. Describe SCUP messages.)

4.2.3. Crypto Handshake Protocol Features

 QUIC does not restrict itself to using a specific handshake protocol,
 so the details of a specific handshake protocol are out of this
 document's scope. If not explicitly specified in the application
 mapping, TLS is assumed to be the default crypto handshake protocol,
 as described in [draft-mthomson-quic-tls]. An application that maps

https://datatracker.ietf.org/doc/html/draft-mthomson-quic-tls

Hamilton, et al. Expires January 9, 2017 [Page 9]

Internet-Draft QUIC July 2016

 to QUIC MAY however specify an alternative crypto handshake protocol
 to be used.

 The following list of requirements and recommendations documents
 properties of the current prototype handshake which should be
 provided by any handshake protocol.

 o Transport Negotiation: The crypto handshake MUST provide a
 mechanism for the transport component to exchange transport
 parameters and Source Address Tokens.

 o Connection Establishment in 0-RTT: Since low-latency connection
 establishment is a critical feature of QUIC, the QUIC handshake
 protocol SHOULD attempt to achieve 0-RTT connection establishment
 latency for repeated connections between the same endpoints.

 o Source Address Spoofing Defense: Since QUIC handles source address
 verification, the crypto protocol SHOULD NOT impose a separate
 source address verification mechanism.

 o Server Config Update: A QUIC server may refresh the source-address
 token (STK) mid-connection, to update the information stored in
 the STK at the client and to extend the period over which 0-RTT
 connections can be established by the client. A crypto protocol

 o Certificate Compression: Early QUIC experience demonstrated that
 compressing certificates exchanged during a handshake is valuable
 in reducing latency. This additionally helps to reduce the
 amplification attack footprint when a server sends a large set of
 certificates, which is not uncommon with TLS. The crypto protocol
 SHOULD compress certificates and any other information to minimize
 the number of packets sent during a handshake.

5. Streams: QUIC's Data Structuring Abstraction

 Streams in QUIC provide a lightweight, ordered, and bidirectional
 byte-stream abstraction. Streams can be created either by the client
 or the server, can concurrently send data interleaved with other
 streams, and can be cancelled. QUIC's stream lifetime is modeled
 closely after HTTP/2's [RFC7540]. Streams are independent of each
 other in delivery order. That is, data that is received on a stream
 is delivered in order within that stream, but there is no particular
 delivery order across streams. Transmit ordering among streams is
 left to the implementation. (TODO: Perhaps define HTTP/2-like
 priority scheme, including a PRIORITY frame for QUIC stream
 priorities.) QUIC streams are considered lightweight in that the
 creation and destruction of streams are expected to have minimal
 bandwidth and computational cost. A single STREAM frame may create,

https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires January 9, 2017 [Page 10]

Internet-Draft QUIC July 2016

 carry data for, and terminate a stream, or a stream may last the
 entire duration of a connection. Implementations are therefore
 advised to keep these extremes in mind and to implement stream
 creation and destruction to be as lightweight as possible.

 An alternative view of QUIC streams is as an elastic "message"
 abstraction, similar to the way ephemeral streams are used in SST
 [cite SST], which may be a more appealing description for some
 applications.

5.1. Life of a Stream

 The semantics of QUIC streams is based on HTTP/2 streams, and the
 lifecycle of a QUIC stream therefore closely follows that of an
 HTTP/2 stream [RFC7540], with some differences to accommodate the
 possibility of out-of-order delivery in QUIC. The lifecycle of a
 QUIC stream is shown in the following figure and described below.

https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires January 9, 2017 [Page 11]

Internet-Draft QUIC July 2016

 app +--------+
 reserve_stream | |
 ,--------------| idle |
 / | |
 / +--------+
 V |
 +----------+ send data/ |
 | | recv data | send data/
 ,---| reserved |------------. | recv data
 | | | \ |
 | +----------+ v v
 | recv FIN/ +--------+ send FIN/
 | app read_close | | app write_close
 | ,---------| open |-----------.
 | / | | \
 | v +--------+ v
 | +----------+ | +----------+
 | | half | | | half |
 | | closed | | send RST/ | closed |
 | | (remote) | | recv RST | (local) |
 | +----------+ | +----------+
 | | | |
 | | recv FIN/ | send FIN/ |
 | | app write_close/ | app read_close/ |
 | | send RST/ v send RST/ |
 | | recv RST +--------+ recv RST |
 | send RST/ `------------->| |<---------------'
 | recv RST | closed |
 `-------------------------->| |
 +--------+

 send: endpoint sends this frame
 recv: endpoint receives this frame

 data: application data in a STREAM frame
 FIN: FIN flag in a STREAM frame
 RST: RST_STREAM frame

 app: application API signals to QUIC
 reserve_stream: causes a StreamID to be reserved for later use
 read_close: causes stream to be half-closed without receiving a FIN
 write_close: causes stream to be half-closed without sending a FIN

 Note that this diagram shows stream state transitions and the frames
 and flags that affect those transitions only. For the purpose of
 state transitions, the FIN flag is processed as a separate event to
 the frame that bears it; a STREAM frame with the FIN flag set can
 cause two state transitions. When the FIN bit is sent on an empty

Hamilton, et al. Expires January 9, 2017 [Page 12]

Internet-Draft QUIC July 2016

 STREAM frame, the offset in the STREAM frame MUST be one greater than
 the last data byte sent on this stream.

 Both endpoints have a subjective view of the state of a stream that
 could be different when frames are in transit. Endpoints do not
 coordinate the creation of streams; they are created unilaterally by
 either endpoint. The negative consequences of a mismatch in states
 are limited to the "closed" state after sending RST_STREAM, where
 frames might be received for some time after closing.

 Streams have the following states:

5.1.1. idle

 All streams start in the "idle" state.

 The following transitions are valid from this state:

 Sending or receiving a STREAM frame causes the stream to become
 "open". The stream identifier is selected as described in
 Section XX. The same STREAM frame can also cause a stream to
 immediately become "half-closed".

 An application can reserve an idle stream for later use. The stream
 state for the reserved stream transitions to "reserved".

 Receiving any frame other than STREAM or RST_STREAM on a stream in
 this state MUST be treated as a connection error (Section XX) of type
 YYYY.

5.1.2. reserved

 A stream in this state has been reserved for later use by the
 application. In this state only the following transitions are
 possible:

 o Sending or receiving a STREAM frame causes the stream to become
 "open".

 o Sending or receiving a RST_STREAM frame causes the stream to
 become "closed".

5.1.3. open

 A stream in the "open" state may be used by both peers to send frames
 of any type. In this state, a sending peer must observe the flow-
 control limit advertised by its receiving peer (Section XX).

Hamilton, et al. Expires January 9, 2017 [Page 13]

Internet-Draft QUIC July 2016

 From this state, either endpoint can send a frame with the FIN flag
 set, which causes the stream to transition into one of the "half-
 closed" states. An endpoint sending an FIN flag causes the stream
 state to become "half-closed (local)". An endpoint receiving a FIN
 flag causes the stream state to become "half-closed (remote)"; the
 receiving endpoint MUST NOT process the FIN flag until all preceding
 data on the stream has been received.

 Either endpoint can send a RST_STREAM frame from this state, causing
 it to transition immediately to "closed".

5.1.4. half-closed (local)

 A stream that is in the "half-closed (local)" state MUST NOT be used
 for sending STREAM frames; WINDOW_UPDATE and RST_STREAM MAY be sent
 in this state.

 A stream transitions from this state to "closed" when a frame that
 contains an FIN flag is received or when either peer sends a
 RST_STREAM frame.

 An endpoint can receive any type of frame in this state. Providing
 flow-control credit using WINDOW_UPDATE frames is necessary to
 continue receiving flow-controlled frames. In this state, a receiver
 MAY ignore WINDOW_UPDATE frames for this stream, which might arrive
 for a short period after a frame bearing the FIN flag is sent.

5.1.5. half-closed (remote)

 A stream that is "half-closed (remote)" is no longer being used by
 the peer to send any data. In this state, a sender is no longer
 obligated to maintain a receiver stream-level flow-control window.

 If an endpoint receives any STREAM frames for a stream that is in
 this state, it MUST close the connection with a
 QUIC_STREAM_DATA_AFTER_TERMINATION error (Section XX).

 A stream in this state can be used by the endpoint to send frames of
 any type. In this state, the endpoint continues to observe
 advertised stream-level and connection-level flow-control limits
 (Section XX).

 A stream can transition from this state to "closed" by sending a
 frame that contains a FIN flag or when either peer sends a RST_STREAM
 frame.

Hamilton, et al. Expires January 9, 2017 [Page 14]

Internet-Draft QUIC July 2016

5.1.6. closed

 The "closed" state is the terminal state.

 A final offset is present in both a frame bearing a FIN flag and in a
 RST_STREAM frame. Upon sending either of these frames for a stream,
 the endpoint MUST NOT send a STREAM frame carrying data beyond the
 final offset.

 An endpoint that receives any frame for this stream after receiving
 either a FIN flag and all stream data preceding it, or a RST_STREAM
 frame, MUST quietly discard the frame, with one exception. If a
 STREAM frame carrying data beyond the received final offset is
 received, the endpoint MUST close the connection with a
 QUIC_STREAM_DATA_AFTER_TERMINATION error (Section XX).

 An endpoint that receives a RST_STREAM frame (and which has not sent
 a FIN or a RST_STREAM) MUST immediately respond with a RST_STREAM
 frame, and MUST NOT send any more data on the stream. This endpoint
 may continue receiving frames for the stream on which a RST_STREAM is
 received.

 If this state is reached as a result of sending a RST_STREAM frame,
 the peer that receives the RST_STREAM might have already sent -- or
 enqueued for sending -- frames on the stream that cannot be
 withdrawn. An endpoint MUST ignore frames that it receives on closed
 streams after it has sent a RST_STREAM frame. An endpoint MAY choose
 to limit the period over which it ignores frames and treat frames
 that arrive after this time as being in error.

 STREAM frames received after sending RST_STREAM are counted toward
 the connection and stream flow-control windows. Even though these
 frames might be ignored, because they are sent before their sender
 receives the RST_STREAM, the sender will consider the frames to count
 against its flow-control windows.

 In the absence of more specific guidance elsewhere in this document,
 implementations SHOULD treat the receipt of a frame that is not
 expressly permitted in the description of a state as a connection
 error (Section XX). Frames of unknown types are ignored.

 (TODO: QUIC_STREAM_NO_ERROR is a special case. Write it up.)

5.2. Stream Identifiers

 Streams are identified by an unsigned 32-bit integer, referred to as
 the StreamID. To avoid StreamID collision, clients MUST initiate

Hamilton, et al. Expires January 9, 2017 [Page 15]

Internet-Draft QUIC July 2016

 streams usinge odd-numbered StreamIDs; streams initiated by the
 server MUST use even-numbered StreamIDs.

 A StreamID of zero (0x0) is reserved and used for connection-level
 flow control frames (Section XX); the StreamID of zero cannot be used
 to establish a new stream.

 StreamID 1 (0x1) is reserved for the crypto handshake. StreamID 1
 MUST NOT be used for application data, and MUST be the first client-
 initiated stream.

 Streams MAY be created in arbitrary order. A QUIC endpoint MUST NOT
 reuse a StreamID on a given connection.

5.3. Stream Concurrency

 An endpoint can limit the number of concurrently active incoming
 streams by setting the MSPC parameter (see Section XX) in the
 transport parameters. The maximum concurrent streams setting is
 specific to each endpoint and applies only to the peer that receives
 the setting. That is, clients specify the maximum number of
 concurrent streams the server can initiate, and servers specify the
 maximum number of concurrent streams the client can initiate.

 Streams that are in the "open" state or in either of the "half-
 closed" states count toward the maximum number of streams that an
 endpoint is permitted to open. Streams in any of these three states
 count toward the limit advertised in the MSPC setting.

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a STREAM frame that causes its advertised concurrent
 stream limit to be exceeded MUST treat this as a stream error of type
 QUIC_TOO_MANY_OPEN_STREAMS (Section XX).

5.4. Sending and Receiving Data

 Once a stream is created, endpoints may use the stream to send and
 receive data. Each endpoint may send a series of STREAM frames
 encapsulating data on a stream until the stream is terminated in that
 direction. Streams are an ordered byte-stream abstraction, and they
 have no other structure within them. STREAM frame boundaries are not
 expected to be preserved in retransmissions from the sender or during
 delivery to the application at the receiver.

 When new data is to be sent on a stream, a sender MUST set the
 encapsulating STREAM frame's offset field to the stream offset of the
 first byte of this new data. A receiver MUST ensure that received
 stream data is delivered to the application as an ordered byte-

Hamilton, et al. Expires January 9, 2017 [Page 16]

Internet-Draft QUIC July 2016

 stream. Data received out of order MUST be buffered for later
 delivery, as long as it is not in violation of the receiver's flow
 control limits.

 An endpoint MUST NOT send any stream data without consulting the
 congestion controller and the flow windows, with one exception in the
 case of connection-level flow control, as described in Section XX.
 The congestion controller is described in the companion document
 [draft-loss-recovery].

6. Packetization and Reliability

 The maximum packet size for QUIC is the maximum size of the encrypted
 payload of the resulting UDP datagram. A default maximum packet size
 of 1350 bytes is recommended. Endpoints SHOULD use PLPMTUD [RFC4821]
 for detecting the path's MTU and setting the maximum packet size
 appropriately.

 A sender bundles one or more frames to send in a Regular QUIC Packet.
 A sender MAY bundle any set of frames in a packet. All QUIC Packets
 MUST contain a Packet Sequence Number (PSN) and MAY contain one or
 more frames (Section XX). PSNs MUST be unique within a connection
 and MUST NOT be reused within the same connection. PSNs MUST be
 assigned to packets in a strictly monotonically increasing order.

 A sender SHOULD minimize per-packet bandwidth and computational costs
 by bundling as many frames as possible within a QUIC packet. A
 sender MAY wait for a short period of time to bundle multiple frames
 before sending a packet that is not maximally packed, to avoid
 sending out large numbers of small packets.

 Regular QUIC Packets are "containers" of frames; a packet is never
 retransmitted whole, but frames in a lost packet may be rebundled and
 transmitted in a subsequent packet as necessary.

 A packet may contain frames and/or application data, only some of
 which may require reliability. When a packet is detected as lost,
 the sender SHOULD only rebundle frames and application data that
 require retransmission.

 o All application data sent in STREAM frames MUST be retransmitted,
 with one exception. When an endpoint sends a RST_STREAM frame,
 data outstanding on that stream SHOULD NOT be retransmitted, since
 subsequent data on this stream is expected to not be delivered by
 the receiver.

https://datatracker.ietf.org/doc/html/draft-loss-recovery
https://datatracker.ietf.org/doc/html/rfc4821

Hamilton, et al. Expires January 9, 2017 [Page 17]

Internet-Draft QUIC July 2016

 o ACK, STOP_WAITING, and PADDING frames MUST NOT be retransmitted.
 New frames of these types may however be bundled with any outgoing
 packet.

 o All other frames MUST be retransmitted.

 Upon detecting losses, a sender MUST take appropriate congestion
 control action. The details of loss detection and congestion control
 are described in [draft-loss-recovery].

 A receiver acknowledges receipt of a received packet by sending one
 or more ACK frames containing the PSN of the received packet. To
 avoid perpetual acking between endpoints, a receiver MUST NOT
 generate an ack in response to every packet containing only ACK
 frames (TODO: Describe acking acks.) Strategies and implications of
 the frequency of generating acknowledgments are discussed in more
 detail in [draft-loss-recovery].

7. Flow Control

 QUIC employs a credit-based flow-control scheme similar to HTTP/2's
 flow control [RFC7540].

 A receiver advertises the number of octets it is prepared to receive
 on a given stream and for the entire connection. This leads to two
 levels of flow control in QUIC: (i) Connection flow control, which
 prevents senders from exceeding a receiver's buffer capacity for the
 connection, and (ii) Stream flow control, which prevents a single
 stream from consuming the entire receive buffer for a connection.

 A receiver sends WINDOW_UPDATE frames to the sender to advertise
 additional credit, for both connection and stream flow control. A
 receiver advertisesadvertise the maximum absolute byte offset in the
 stream or in the connection which the receiver is willing to receive.

 The initial flow control credit is 65536 bytes for both the stream
 and connection flow controllers.

 A receiver MAY advertise a larger offset at any point in the
 connection by sending a WINDOW_UPDATE frame. A receiver MUST NOT
 renege on an advertisement; that is, once a receiver advertises an
 offset via a WINDOW_UPDATE frame, it MUST NOT subsequently advertise
 a smaller offset. A sender may receive WINDOW_UPDATE frames out of
 order; a sender MUST therefore ignore any reductions in flow control
 credit.

 A sender MUST send BLOCKED frames to indicate it has data to write
 but is blocked by lack of connection or stream flow control credit.

https://datatracker.ietf.org/doc/html/draft-loss-recovery
https://datatracker.ietf.org/doc/html/draft-loss-recovery
https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires January 9, 2017 [Page 18]

Internet-Draft QUIC July 2016

 BLOCKED frames are expected to be sent infrequently in common cases,
 but they MAY be useful for debugging and monitoring purposes.

 A receiver advertises credit for a stream by sending a WINDOW_UPDATE
 frame with the StreamID set appropriately. A receiver may simply use
 the current received offset to determine the flow control offset to
 be advertised.

 Connection flow control is a limit to the total bytes of stream data
 sent in STREAM frames. A receiver advertises credit for a connection
 by sending a WINDOW_UPDATE frame with the StreamID set to zero
 (0x00). A receiver may maintain a cumulative sum of bytes received
 cumulatively on all streams to determine the value of the connection
 flow control offset to be advertised in WINDOW_UPDATE frames. A
 sender may maintain a cumulative sum of stream data bytes sent to
 impose the connection flow control limit.

7.1. Important considerations

 There are some edge cases which must be considered when dealing with
 stream and connection level flow control. Given enough time, both
 endpoints must agree on flow control state. If one end believes it
 can send more than the other end is willing to receive, the
 connection will be torn down when too much data arrives. Conversely
 if a sender believes it is blocked, while endpoint B expects more
 data can be received, then the connection can be in a deadlock, with
 the sender waiting for a WINDOW_UPDATE which will never come.

7.1.1. Mid-stream RST_STREAM

 On receipt of an RST_STREAM frame, an endpoint will tear down state
 for the matching stream and ignore further data arriving on that
 stream. This could result in the endpoints getting out of sync,
 since the RST_STREAM frame may have arrived out of order and there
 may be further bytes in flight. The data sender would have counted
 the data against its connection level flow control budget, but a
 receiver that has not received these bytes would not know to include
 them as well. The receiver must learn of the number of bytes that
 were sent on the stream to make the same adjustment in its connection
 flow controller.

 To avoid this de-synchronization, a RST_STREAM sender MUST include
 the final byte offset sent on the stream in the RST_STREAM frame. On
 receiving a RST_STREAM frame, a receiver definitively knows how many
 bytes were sent on that stream before the RST_STREAM frame, and the
 receiver MUST use the final offset to account for all bytes sent on
 the stream in its connection level flow controller.

Hamilton, et al. Expires January 9, 2017 [Page 19]

Internet-Draft QUIC July 2016

7.1.2. Response to a RST_STREAM

 Since streams are bidirectional, a sender of a RST_STREAM needs to
 know how many bytes the peer has sent on the stream. If an endpoint
 receives a RST_STREAM frame and has sent neither a FIN nor a
 RST_STREAM, it MUST send a RST_STREAM in response, bearing the offset
 of the last byte sent on this stream as the final offset.

7.1.3. Offset Increment

 This document leaves when and how many bytes to advertise in a
 WINDOW_UPDATE to the implementation, but offers a few considerations.
 WINDOW_UPDATE frames constitute overhead, and therefore, sending a
 WINDOW_UPDATE with small offset increments is undesirable. At the
 same time, sending WINDOW_UPDATES with large offset increments
 requires the sender to commit to that amount of buffer.
 Implementations must find the correct tradeoff between these sides to
 determine how large an offset increment to send in a WINDOW_UPDATE.

 A receiver MAY use an autotuning mechanism to tune the size of the
 offset increment to advertise based on a roundtrip time estimate and
 the rate at which the receiving application consumes data, similar to
 common TCP implementations.

7.1.4. BLOCKED frames

 If a sender does not receive a WINDOW_UPDATE frame when it has run
 out of flow control credit, the sender will be blocked and may send a
 BLOCKED frame. A receiver should not wait for a BLOCKED frame before
 responding with a WINDOW_UPDATE, since doing so will cause at least
 one roundtrip of quiescence. Further, if blocked, a sender will go
 into quiescence, which may result in poor performance of the
 congestion controller. For smooth operation of the congestion
 controller, it is generally considered best to not let the sender go
 into quiescence if avoidable. To avoid blocking a sender, and
 reasonably accounting for the possibiity of loss, a receiver should
 send a WINDOW_UPDATE frame at least two roundtrip times before the
 sender gets blocked.

8. Connection Termination

 Connections should remain open until they become idle for a pre-
 negotiated period of time. A QUIC connection, once established, can
 be terminated in one of two ways:

 1. Explicit Shutdown: An endpoint sends a CONNECTION_CLOSE frame to
 the peer initiating a connection termination. An endpoint may
 send a GOAWAY frame to the peer prior to a CONNECTION_CLOSE to

Hamilton, et al. Expires January 9, 2017 [Page 20]

Internet-Draft QUIC July 2016

 indicate that the connection will soon be terminated. A GOAWAY
 frame signals to the peer that any active streams will continue
 to be processed, but the sender of the GOAWAY will not initiate
 any additional streams and will not accept any new incoming
 streams. On termination of the active streams, a
 CONNECTION_CLOSE may be sent. If an endpoint sends a
 CONNECTION_CLOSE frame while unterminated streams are active (no
 FIN bit or RST_STREAM frames have been sent or received for one
 or more streams), then the peer must assume that the streams were
 incomplete and were abnormally terminated.

 2. Implicit Shutdown: The default idle timeout for a QUIC connection
 is 30 seconds, and is a required parameter (ICSL) in connection
 negotiation. The maximum is 10 minutes. If there is no network
 activity for the duration of the idle timeout, the connection is
 closed. By default a CONNECTION_CLOSE frame will be sent. A
 silent close option can be enabled when it is expensive to send
 an explicit close, such as mobile networks that must wake up the
 radio.

 An endpoint may also send a PUBLIC_RESET packet at any time during
 the connection to abruptly terminate an active connection.

9. Packet Types and Formats

 QUIC has two types of packets: Regular Packets containing frames, and
 Special Packets. There are two types of Special Packets: Version
 Negotiation Packets and Public Reset Packets. All QUIC packets
 should be sized to fit within the path's MTU to avoid IP
 fragmentation. Path MTU discovery is a work in progress, and the
 current QUIC implementation uses a 1350-byte maximum QUIC packet size
 for IPv6, 1370 for IPv4. Both sizes are without IP and UDP overhead.

9.1. Public Packet Header

 All QUIC packets on the wire begin with a public header sized between
 2 and 19 bytes. The wire format for the public header is as follows:

Hamilton, et al. Expires January 9, 2017 [Page 21]

Internet-Draft QUIC July 2016

 0 1 2 3 4 5 8
+--------+--------+--------+--------+--------+--------+--- ---+
|Flags(8)| Connection ID (64) (optional) ... | ->
+--------+--------+--------+--------+--------+--------+-- ---+

 9 10 11 12
+--------+--------+--------+--------+
| QUIC Version (32) | ->
| (optional) |
+--------+--------+--------+--------+

 13 14 15 16 17 18 19 20
+--------+--------+--------+--------+--------+--------+--------+--------+
| Diversification Nonce | ->
| (optional) |
+--------+--------+--------+--------+--------+--------+--------+--------+

 21 22 23 24 25 26 27 28
+--------+--------+--------+--------+--------+--------+--------+--------+
| Diversification Nonce Continued | ->
| (optional) |
+--------+--------+--------+--------+--------+--------+--------+--------+

 29 30 31 32 33 34 35 36
+--------+--------+--------+--------+--------+--------+--------+--------+
| Diversification Nonce Continued | ->
| (optional) |
+--------+--------+--------+--------+--------+--------+--------+--------+

 37 38 39 40 41 42 43 44
+--------+--------+--------+--------+--------+--------+--------+--------+
| Diversification Nonce Continued | ->
| (optional) |
+--------+--------+--------+--------+--------+--------+--------+--------+

 45 46 47 48 49 50
+--------+--------+--------+--------+--------+--------+
| Packet Number (8, 16, 32, or 48) |
| (variable length) |
+--------+--------+--------+--------+--------+--------+

 The payload may include various type-dependent header bytes as
 described below.

 The fields in the public header are the following:

Hamilton, et al. Expires January 9, 2017 [Page 22]

Internet-Draft QUIC July 2016

 o Flags:

 * 0x01 = FLAG_VERSION. The semantics of this flag depends on
 whether the packet is sent by the server or the client. A
 client sets this flag to indicate that the header contains a
 QUIC version (see below). A client MUST set this bit in all
 packets until confirmation from the server arrives agreeing to
 the proposed version. A server indicates agreement on a
 version by sending packets without setting this bit. When the
 server sets this bit, the packet is a Version Negotiation
 Packet. Version Negotiation is described in more detail later.

 * 0x02 = FLAG_PUBLIC_RESET. Set to indicate that the packet is a
 Public Reset packet.

 * 0x04 = Indicates the presence of a 32 byte diversification
 nonce in the header.

 * 0x08 = Indicates the Connection ID is present in the packet.
 This must be set in all packets until negotiated to a different
 value for a given direction (e.g., client indicates the 5-tuple
 fully identifies the connection, so connection is is optional).

 * Two bits at 0x30 indicate the number of low-order-bytes of the
 packet number that are present in each packet. The bits are
 only used for Frame Packets. For Public Reset and Version
 Negotiation Packets (sent by the server) which don't have a
 packet number, these bits are not used and must be set to 0.
 Within this 2 bit mask:

 + 0x30 indicates that 6 bytes of the packet number is present

 + 0x20 indicates that 4 bytes of the packet number is present

 + 0x10 indicates that 2 bytes of the packet number is present

 + 0x00 indicates that 1 byte of the packet number is present

 * 0x40 is reserved for multipath use.

 * 0x80 is currently unused, and must be set to 0.

 o Connection ID: This is an unsigned 64 bit statistically random
 number selected by the client that is the identifier of the
 connection. Because QUIC connections are designed to remain
 established even if the client roams, the IP 4-tuple (source IP,
 source port, destination IP, destination port) may be insufficient
 to identify the connection. For each transmission direction, when

Hamilton, et al. Expires January 9, 2017 [Page 23]

Internet-Draft QUIC July 2016

 the 4-tuple is sufficient to identify the connection, the
 connection ID may be omitted.

 o QUIC Version: A 32 bit opaque tag that represents the version of
 the QUIC protocol. Only present if the flags contain FLAG_VERSION
 (i.e flags & FLAG_VERSION !=0). A client may set this flag, and
 include EXACTLY one proposed version, as well as including
 arbitrary data (conforming to that version). A server may set
 this flag when the client-proposed version was unsupported, and
 may then provide a list (0 or more) of acceptable versions, but
 MUST not include any data after the version(s). Examples of
 version values in recent experimental versions include "Q025"
 which corresponds to byte 9 containing 'Q", byte 10 containing
 '0", etc. [See list of changes in various versions listed at the
 end of this document.]

 o Packet Number: The lower 8, 16, 32, or 48 bits of the packet
 number, based on which FLAG_?BYTE_SEQUENCE_NUMBER flag is set in
 the flags. Each Regular Packet (as opposed to the Special public
 reset and version negotiation packets) is assigned a packet number
 by the sender. The first packet sent by an endpoint shall have a
 packet number of 1, and each subsequent packet shall have a packet
 number one larger than that of the previous packet. The lower 64
 bits of the packet number is used as part of a cryptographic
 nonce; therefore, a QUIC endpoint MUST NOT send a packet with a
 packet number that cannot be represented in 64 bits. If a QUIC
 endpoint transmits a packet with a packet number of (2^64-1), that
 packet must include a CONNECTION_CLOSE frame with an error code of
 QUIC_SEQUENCE_NUMBER_LIMIT_REACHED, and the endpoint must not
 transmit any additional packets. At most the lower 48 bits of a
 packet number are transmitted. To enable unambiguous
 reconstruction of the packet number by the receiver, a QUIC
 endpoint MUST NOT transmit a packet whose packet number is larger
 by (2^(bitlength-2)) than the largest packet number for which an
 acknowledgement is known to have been transmitted by the receiver.
 Therefore, there must never be more than (2^46) packets in flight.
 Any truncated packet number received from a peer shall be inferred
 to have the value closest to the one more than the largest known
 packet number received from that peer. The transmitted portion of
 the packet number matches the lowest bits of the inferred value.

 A Flags processing flowchart follows:

Hamilton, et al. Expires January 9, 2017 [Page 24]

Internet-Draft QUIC July 2016

Check the flags in public header
 |
 |
 V
 +--------------+
 | Public Reset | YES
 | flag set? |---------------> Public Reset Packet
 +--------------+
 |
 | NO
 V
 +------------+ +-------------+
 | Version | YES | Packet sent | YES
 | flag set? |--------->| by server? |--------> Version Negotiation
 +------------+ +-------------+ Packet
 | |
 | NO | NO
 V V
 Regular Packet Regular Packet with
 QUIC Version present in header

9.2. Special Packets

9.2.1. Version Negotiation Packet

 A Version Negotiation packet is only sent by the server. Version
 Negotiation packets begin with an 8-bit flags and 64-bit Connection
 ID. The flags must set FLAG_VERSION and indicate the 64-bit
 Connection ID. The rest of the Version Negotiation packet is a list
 of 4-byte versions which the server supports:

 0 1 2 3 4 5 6 7 8
+--------+--------+--------+--------+--------+--------+--------+--------
+--------+
|Flags(8)| Connection ID
(64) | ->
+--------+--------+--------+--------+--------+--------+--------+--------
+--------+

 9 10 11 12 13 14 15 16 17
+--------+--------+--------+--------+--------+--------+--------+--------
+---...--+
| 1st QUIC version supported | 2nd QUIC version supported | ...
| by server (32) | by server (32) |
+--------+--------+--------+--------+--------+--------+--------+--------
+---...--+

9.2.2. Public Reset Packet

 A Public Reset packet begins with an 8-bit flags and 64-bit
 Connection ID. The PUBLIC_FLAG_RESET flag MUST be set and the header
 MUST indicate the entire 64-bit Connection ID. The rest of the

Hamilton, et al. Expires January 9, 2017 [Page 25]

Internet-Draft QUIC July 2016

 Public Reset packet is encoded as if it were a crypto handshake
 message of the tag PRST ():

 0 1 2 3 4 8
 +--------+--------+--------+--------+--------+-- --+
 | Public | Connection ID (64) ... | ->
 |Flags(8)| |
 +--------+--------+--------+--------+--------+-- --+

 9 10 11 12 13 14
 +--------+--------+--------+--------+--------+--------+---
 | Quic Tag (32) | Tag value map ... ->
 | (PRST) | (variable length)
 +--------+--------+--------+--------+--------+--------+---

 Tag value map: The tag value map contains the following tag-values:

 o RNON (public reset nonce proof) - a 64-bit unsigned integer.
 Mandatory.

 o RSEQ (rejected packet number) - a 64-bit packet number.
 Mandatory.

 o CADR (client address) - the observed client IP address and port
 number. This is currently for debugging purposes only and hence
 is optional.

9.3. Regular Packets

 Each Regular Packet consists of a Public Header followed by a series
 of data frames. The Public Header is authenticated but not
 encrypted, and the rest of the packet starting with the first frame
 both authenticated and encrypted. Immediately following the Public
 Header, Regular Packets contain AEAD (authenticated encryption and
 associated data) data. This data must be decrypted in order for the
 contents to be interpreted. After decryption, the plaintext consists
 of a sequence of frames, as described in the following section.

 (TODO: Document the inputs to encryption and decryption and describe
 trial decryption.)

10. Frame Types and Formats

 A single Regular Packet MAY contain multiple frames and multiple
 frame types. Frames MUST fit within a single QUIC Packet and MUST
 NOT span a QUIC Packet boundary. Each Frame begins with a Frame Type
 byte, indicating its type, followed by type-dependent header fields,
 and variable-length data.

Hamilton, et al. Expires January 9, 2017 [Page 26]

Internet-Draft QUIC July 2016

10.1. Frames

 Frame Packets have a payload that is a series of type-prefixed
 frames. The format of frame types is defined later in this document,
 but the general format of a Frame Packet is as follows:

 +--------+---...---+--------+---...---+
 | Type | Payload | Type | Payload |
 +--------+---...---+--------+---...---+

10.2. Frame Types

 There are two types of Frames: Special Frame Types, and Regular Frame
 Types. Special Frame Types encode both a Frame Type and
 corresponding flags all in the Frame Type byte, while Regular Frame
 Types use the Frame Type byte simply.

 Currently defined Special Frame Types are:

 +------------------+-----------------------------+
 | Type-field value | Control Frame-type |
 +------------------+-----------------------------+
 | 1fdooossB | STREAM |
 | 01ntllmmB | ACK |
 +------------------+-----------------------------+

 Currently defined Regular Frame Types are:

 +------------------+-----------------------------+
 | Type-field value | Control Frame-type |
 +------------------+-----------------------------+
 | 00000000B (0x00) | PADDING |
 | 00000001B (0x01) | RST_STREAM |
 | 00000010B (0x02) | CONNECTION_CLOSE |
 | 00000011B (0x03) | GOAWAY |
 | 00000100B (0x04) | WINDOW_UPDATE |
 | 00000101B (0x05) | BLOCKED |
 | 00000110B (0x06) | STOP_WAITING |
 | 00000111B (0x07) | PING |
 +------------------+-----------------------------+

10.3. STREAM Frame

 STREAM frames implicitly create a stream and carry stream data. A
 STREAM frame is shown below.

Hamilton, et al. Expires January 9, 2017 [Page 27]

Internet-Draft QUIC July 2016

 0 1 ... SLEN
+--------+--------+--------+--------+--------+
|Type (8)| Stream ID (8, 16, 24, or 32 bits) |
| | (Variable length SLEN bytes) |
+--------+--------+--------+--------+--------+

 SLEN+1 SLEN+2 ... SLEN+OLEN
+--------+--------+--------+--------+--------+--------+--------+--------+
| Offset (0, 16, 24, 32, 40, 48, 56, or 64 bits) (variable length) |
| (Variable length: OLEN bytes) |
+--------+--------+--------+--------+--------+--------+--------+--------+

 SLEN+OLEN+1 SLEN+OLEN+2
+-------------+-------------+
| Data length (0 or 16 bits)|
| Optional(maybe 0 bytes) |
+------------+--------------+

 The STREAM frame header fields are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value containing
 various flags (1fdooossB):

 * The leftmost bit must be set to 1 indicating that this is a
 STREAM frame.

 * The 'f' bit is the FIN bit. When set to 1, this bit indicates
 the sender is done sending on this stream and wishes to "half-
 close" (described in more detail later.)

 * which is described in more detail later in this document.

 * The 'd' bit indicates whether a Data Length is present in the
 STREAM header. When set to 0, this field indicates that the
 STREAM frame extends to the end of the Packet.

 * The next three 'ooo' bits encode the length of the Offset
 header field as 0, 16, 24, 32, 40, 48, 56, or 64 bits long.

 * The next two 'ss' bits encode the length of the Stream ID
 header field as 8, 16, 24, or 32 bits long.

 o Stream ID: A variable-sized unsigned ID unique to this stream.

 o Offset: A variable-sized unsigned number specifying the byte
 offset in the stream for this block of data. The first byte in
 the stream has an offset of 0.

Hamilton, et al. Expires January 9, 2017 [Page 28]

Internet-Draft QUIC July 2016

 o Data length: An optional 16-bit unsigned number specifying the
 length of the data in this stream frame. The option to omit the
 length should only be used when the packet is a "full-sized"
 Packet, to avoid the risk of corruption via padding.

 A stream frame must have either non-zero data length or the FIN bit
 set.

 Stream multiplexing is achieved by interleaving STREAM frames from
 multiple streams into one or more QUIC Packets. A single QUIC packet
 MAY bundle STREAM frames from multiple streams.

 Implementation note: One of the benefits of QUIC is avoidance of
 head-of-line blocking across multiple streams. When a packet loss
 occurs, only streams with data in that packet are blocked waiting for
 a retransmission to be received, while other streams can continue
 making progress. Note that when data from multiple streams is
 bundled into a single QUIC packet, loss of that packet blocks all
 those streams from making progress. An implementation is therefore
 advised to bundle as few streams as necessary in outgoing packets
 without losing transmission efficiency to underfilled packets.

10.4. ACK Frame

 Receivers send ACK frames to inform senders which packets they have
 received, as well as which packets it still considers missing. The
 ack frame contains between 1 and 256 ack blocks. Ack blocks are
 ranges of acknowledged packets, similar to TCP's SACK blocks, but
 QUIC has no equivalent of TCP's cumulative ack point, because packets
 are retransmitted with new sequence numbers.

 To limit the ACK blocks to the ones that haven't yet been received by
 the sender, the sender periodically sends STOP_WAITING frames that
 signal the receiver to stop acking packets below a specified sequence
 number, raising the "least unacked" packet number at the receiver. A
 sender of an ACK frame thus reports only those ACK blocks between the
 received least unacked and the reported largest observed packet
 numbers. It is recommended for the sender to send the most recent
 largest acked packet it has received in an ack as the STOP_WAITING
 frame's least unacked value.

 Unlike TCP SACKs, QUIC ACK blocks are irrevocable. Once a packet is
 acked, even if it does not appear in a future ack frame, it is
 assumed to be acked.

 A sender MAY intentionally skip packet numbers to introduce entropy
 into the connection, to avoid opportunistic ack attacks. The sender
 MUST close the connection if an unsent packet number is acked. The

Hamilton, et al. Expires January 9, 2017 [Page 29]

Internet-Draft QUIC July 2016

 format of the ACK frame is efficient at expressing blocks of missing
 packets; skipping packet sequence numbers between 1 and 255
 effectively provides up to 8 bits of efficient entropy on demand,
 which should be adequate protection against most opportunistic ack
 attacks.

 Section Offsets

 0: Start of the ack frame.

 T: Byte offset of the start of the timestamp section.

 A: Byte offset of the start of the ack block section.

 N: Length in bytes of the largest acked.

 0 1 => N N+1 => A(aka N +
3)
+---------+---+--------+--------+
Type	Largest Acked	Largest Acked
(8)	(8, 16, 32, or 48 bits, determined by ll)	Delta Time (16)
01nullmm		
+---------+---+--------+--------+

 A A + 1 ==> A + N
+--------+--+
Number	First Ack
Blocks-1	Block Length
(opt)	(8, 16, 32 or 48 bits, determined by mm)
+--------+--+

 A + N + 1 A + N + 2 ==> T(aka A + 2N + 1)
+------------+---+
Gap to next	Ack Block Length
Block (8)	(8, 16, 32, or 48 bits, determined by mm)
(Repeats)	(repeats Number Ranges times)
+------------+---+
 T T+1 T+2 (Repeated Num Timestamps)
+----------+--------+---------------------+ ... --------+------------------+
Num	Delta	Time Since		Delta	Time
Timestamps	Largest	Largest Acked		Largest	Since Previous
(8)	Acked	(32 bits)		Acked	Timestamp(16 bits)
+----------+--------+---------------------+ +--------+------------------+

 The fields in the ACK frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value containing
 various flags (01nullmmB).

Hamilton, et al. Expires January 9, 2017 [Page 30]

Internet-Draft QUIC July 2016

 * The first two bits must be set to 01 indicating that this is an
 ACK frame.

 * The 'n' bit indicates whether the frame has more than 1 ack
 range.

 * The 'u' bit is unused.

 * The two 'll' bits encode the length of the Largest Observed
 field as 1, 2, 4, or 6 bytes long.

 * The two 'mm' bits encode the length of the Missing Packet
 Sequence Number Delta field as 1, 2, 4, or 6 bytes long.

 o Largest Acked: A variable-sized unsigned value representing the
 largest packet number the peer has observed.

 o Largest Acked Delta Time: A 16-bit unsigned float with 11 explicit
 bits of mantissa and 5 bits of explicit exponent, specifying the
 time elapsed in microseconds from when largest acked was received
 until this Ack frame was sent. The bit format is loosely modeled
 after IEEE 754. For example, 1 microsecond is represented as 0x1,
 which has an exponent of zero, presented in the 5 high order bits,
 and mantissa of 1, presented in the 11 low order bits. When the
 explicit exponent is greater than zero, an implicit high-order
 12th bit of 1 is assumed in the mantissa. For example, a floating
 value of 0x800 has an explicit exponent of 1, as well as an
 explicit mantissa of 0, but then has an effective mantissa of 4096
 (12th bit is assumed to be 1). Additionally, the actual exponent
 is one-less than the explicit exponent, and the value represents
 4096 microseconds. Any values larger than the representable range
 are clamped to 0xFFFF.

 o Ack Block Section:

 * Num Blocks: An optional 8-bit unsigned value specifying one
 less than the number of ack blocks. Only present if the 'n'
 flag bit is 1.

 * Ack block length: A variable-sized packet number delta. For
 the first missing packet range, the ack block starts at largest
 acked. For the first ack block, the length of the ack block is
 1 + this value. For subsequent ack blocks, it is the length of
 the ack block. For non-first blocks, a value of 0 indicates
 more than 256 packets in a row were lost.

 * Gap to next block: An 8-bit unsigned value specifying the
 number of packets between ack blocks.

Hamilton, et al. Expires January 9, 2017 [Page 31]

Internet-Draft QUIC July 2016

 o Timestamp Section:

 * Num Timestamp: An 8-bit unsigned value specifying the number of
 timestamps that are included in this ack frame. There will be
 this many pairs of <packet number, timestamp> following in the
 timestamps.

 * Delta Largest Observed: An 8-bit unsigned value specifying the
 packet number delta from the first timestamp to the largest
 observed. Therefore, the packet number is the largest observed
 minus the delta largest observed.

 * First Timestamp: A 32-bit unsigned value specifying the time
 delta in microseconds, from the beginning of the connection of
 the arrival of the packet specified by Largest Observed minus
 Delta Largest Observed.

 * Delta Largest Observed (Repeated): (Same as above.)

 * Time Since Previous Timestamp (Repeated): A 16-bit unsigned
 value specifying delta from the previous timestamp. It is
 encoded in the same format as the Ack Delay Time.

10.5. STOP_WAITING Frame

 The STOP_WAITING frame is sent to inform the peer that it should not
 continue to wait for packets with packet numbers lower than a
 specified value. The packet number is encoded in 1, 2, 4 or 6 bytes,
 using the same coding length as is specified for the packet number
 for the enclosing packet's header (specified in the QUIC Frame
 Packet's Flags field.) The frame is as follows:

 0 1 2 3 4 5 6
 +--------+--------+--------+--------+--------+-------+-------+
 |Type (8)| Least unacked delta (8, 16, 32, or 48 bits) |
 | | (variable length) |
 +--------+--------+--------+--------+--------+--------+------+

 The fields in the STOP_WAITING frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x06 indicating that this is a STOP_WAITING frame.

 o Least Unacked Delta: A variable length packet number delta with
 the same length as the packet header's packet number. Subtract it
 from the header's packet number to determine the least unacked.
 The resulting least unacked is the smallest packet number of any
 packet for which the sender is still awaiting an ack. If the

Hamilton, et al. Expires January 9, 2017 [Page 32]

Internet-Draft QUIC July 2016

 receiver is missing any packets smaller than this value, the
 receiver should consider those packets to be irrecoverably lost.

10.6. WINDOW_UPDATE Frame

 The WINDOW_UPDATE frame informs the peer of an increase in an
 endpoint's flow control receive window. The StreamID can be zero,
 indicating this WINDOW_UPDATE applies to the connection level flow
 control window, or non-zero, indicating that the specified stream
 should increase its flow control window. The frame is as follows:

 0 1 4 5 12
 +--------+--------+-- ... --+-------+--------+-- ... --+-------+
 |Type(8) | Stream ID (32 bits) | Byte offset (64 bits) |
 +--------+--------+-- ... --+-------+--------+-- ... --+-------+

 The fields in the WINDOW_UPDATE frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x04 indicating that this is a WINDOW_UPDATE frame.

 o Stream ID: ID of the stream whose flow control windows is being
 updated, or 0 to specify the connection-level flow control window.

 o Byte offset: A 64-bit unsigned integer indicating the absolute
 byte offset of data which can be sent on the given stream. In the
 case of connection level flow control, the cumulative number of
 bytes which can be sent on all currently open streams.

 An absolute byte offset is specified, and the receiver of a
 WINDOW_UPDATE frame may only send up to that number of bytes on the
 specified stream. Violating flow control by sending further bytes
 will result in the receiving endpoint closing the connection.

 On receipt of multiple WINDOW_UPDATE frames for a specific stream ID,
 it is only necessary to keep track of the maximum byte offset.

 Both stream and session windows start with a default value of 16 KB,
 but this is typically increased during the handshake. To do this, an
 endpoint should negotiate the SFCW (Stream Flow Control Window) and
 CFCW (Connection/Session Flow Control Window) parameters in the
 handshake. The value associated with each tag should be the number
 of bytes for initial stream window and initial connection window
 respectively.

Hamilton, et al. Expires January 9, 2017 [Page 33]

Internet-Draft QUIC July 2016

10.7. BLOCKED Frame

 A sender sends a BLOCKED frame when it is ready to send data (and has
 data to send), but is currently flow control blocked. BLOCKED frames
 are purely informational frames, but extremely useful for debugging
 purposes.. A receiver of a BLOCKED frame should simply discard it
 (after possibly printing a helpful log message). The frame is as
 follows:

 0 1 2 3 4
 +--------+--------+--------+--------+--------+
 |Type(8) | Stream ID (32 bits) |
 +--------+--------+--------+--------+--------+

 The fields in the BLOCKED frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x05 indicating that this is a BLOCKED frame.

 o Stream ID: A 32-bit unsigned number indicating the stream which is
 flow control blocked. A non-zero Stream ID field specifies the
 stream that is flow control blocked. When zero, the Stream ID
 field indicates that the connection is flow control blocked at the
 connection level.

10.8. PADDING Frame

 The PADDING frame pads a packet with 0x00 bytes. When this frame is
 encountered, the rest of the packet is expected to be padding bytes.
 The frame contains 0x00 bytes and extends to the end of the QUIC
 packet. A PADDING frame only has a Frame Type field, and must have
 the 8-bit Frame Type field set to 0x00.

10.9. RST_STREAM Frame

 An endpoint may use a RST_STREAM frame to abruptly terminate a
 stream. The frame is as follows:

 0 1 4 5 12 8 16
+-------+--------+-- ... ----+--------+-- ... ------+-------+-- ... ------+
|Type(8)| StreamID (32 bits) | Byte offset (64 bits)| Error code (32 bits)|
+-------+--------+-- ... ----+--------+-- ... ------+-------+-- ... ------+

 The fields are:

 o Frame type: The Frame Type is an 8-bit value that must be set to
 0x01 specifying that this is a RST_STREAM frame.

Hamilton, et al. Expires January 9, 2017 [Page 34]

Internet-Draft QUIC July 2016

 o Stream ID: The 32-bit Stream ID of the stream being terminated.

 o Byte offset: A 64-bit unsigned integer indicating the absolute
 byte offset of the end of data written on this stream by the
 RST_STREAM sender.

 o Error code: A 32-bit error code which indicates why the stream is
 being closed.

10.10. PING frame

 Endpoints can use PING frames to verify that their peers are still
 alive or to check reachability to the peer. The PING frame contains
 no payload. The receiver of a PING frame simply needs to ACK the
 packet containing this frame. The PING frame SHOULD be used to keep
 a connection alive when a stream is open. The default is to send a
 PING frame after 15 seconds of quiescence. A PING frame only has a
 Frame Type field, and must have the 8-bit Frame Type field set to
 0x07.

10.11. CONNECTION_CLOSE frame

 An endpoint sends a CONNECTION_CLOSE frame to notify its peer that
 the connection is being closed. If there are open streams that
 haven't been explicitly closed, they are implicitly closed when the
 connection is closed. (Ideally, a GOAWAY frame would be sent with
 enough time that all streams are torn down.) The frame is as
 follows:

 0 1 4 5 6 7
 +--------+--------+-- ... -----+--------+--------+--------+----- ...
 |Type(8) | Error code (32 bits)| Reason phrase | Reason phrase
 | | | length (16 bits)|(variable length)
 +--------+--------+-- ... -----+--------+--------+--------+----- ...

 The fields of a CONNECTION_CLOSE frame are as follows:

 o Frame Type: An 8-bit value that must be set to 0x02 specifying
 that this is a CONNECTION_CLOSE frame.

 o Error Code: A 32-bit error code which indicates the reason for
 closing this connection.

 o Reason Phrase Length: A 16-bit unsigned number specifying the
 length of the reason phrase. This may be zero if the sender
 chooses to not give details beyond the QuicErrorCode.

Hamilton, et al. Expires January 9, 2017 [Page 35]

Internet-Draft QUIC July 2016

 o Reason Phrase: An optional human-readable explanation for why the
 connection was closed.

10.12. GOAWAY Frame

 An endpoint may use a GOAWAY frame to notify its peer that the
 connection should stop being used, and will likely be aborted in the
 future. The endpoints will continue using any active streams, but
 the sender of the GOAWAY will not initiate any additional streams,
 and will not accept any new streams. The frame is as follows:

 0 1 4 5 6 7 8
 +--------+--------+-- ... -----+-------+-------+-------+------+
 |Type(8) | Error code (32 bits)| Last Good Stream ID (32 bits)| ->
 +--------+--------+-- ... -----+-------+-------+-------+------+

 9 10 11
 +--------+--------+--------+----- ...
 | Reason phrase | Reason phrase
 | length (16 bits)|(variable length)
 +--------+--------+--------+----- ...

 The fields of a GOAWAY frame are as follows:

 o Frame type: An 8-bit value that must be set to 0x06 specifying
 that this is a GOAWAY frame.

 o Error Code: A 32-bit field error code which indicates the reason
 for closing this connection.

 o Last Good Stream ID: The last Stream ID which was accepted by the
 sender of the GOAWAY message. If no streams were replied to, this
 value must be set to 0.

 o Reason Phrase Length: A 16-bit unsigned number specifying the
 length of the reason phrase. This may be zero if the sender
 chooses to not give details beyond the error code.

 o Reason Phrase: An optional human-readable explanation for why the
 connection was closed.

11. Error Codes

 The number to code mappings for QuicErrorCodes are currently defined
 in the Chromium source code in src/net/quic/quic_protocol.h. (TODO:
 hardcode numbers and add them here)

Hamilton, et al. Expires January 9, 2017 [Page 36]

Internet-Draft QUIC July 2016

 o QUIC_NO_ERROR: There was no error. This is not valid for
 RST_STREAM frames or CONNECTION_CLOSE frames

 o QUIC_STREAM_DATA_AFTER_TERMINATION: There were data frames after
 the a fin or reset.

 o QUIC_SERVER_ERROR_PROCESSING_STREAM: There was some server error
 which halted stream processing.

 o QUIC_MULTIPLE_TERMINATION_OFFSETS: The sender received two
 mismatching fin or reset offsets for a single stream.

 o QUIC_BAD_APPLICATION_PAYLOAD: The sender received bad application
 data.

 o QUIC_INVALID_PACKET_HEADER: The sender received a malformed packet
 header.

 o QUIC_INVALID_FRAME_DATA: The sender received an frame data. The
 more detailed error codes below are prefered where possible.

 o QUIC_INVALID_RST_STREAM_DATA: Stream rst data is malformed

 o QUIC_INVALID_CONNECTION_CLOSE_DATA: Connection close data is
 malformed.

 o QUIC_INVALID_ACK_DATA: Ack data is malformed.

 o QUIC_DECRYPTION_FAILURE: There was an error decrypting.

 o QUIC_ENCRYPTION_FAILURE: There was an error encrypting.

 o QUIC_PACKET_TOO_LARGE: The packet exceeded MaxPacketSize.

 o QUIC_PACKET_FOR_NONEXISTENT_STREAM: Data was sent for a stream
 which did not exist.

 o QUIC_CLIENT_GOING_AWAY: The client is going away (browser close,
 etc.)

 o QUIC_SERVER_GOING_AWAY: The server is going away (restart etc.)

 o QUIC_INVALID_STREAM_ID: A stream ID was invalid.

 o QUIC_TOO_MANY_OPEN_STREAMS: Too many streams already open.

 o QUIC_CONNECTION_TIMED_OUT: We hit our pre-negotiated (or default)
 timeout

Hamilton, et al. Expires January 9, 2017 [Page 37]

Internet-Draft QUIC July 2016

 o QUIC_CRYPTO_TAGS_OUT_OF_ORDER: Handshake message contained out of
 order tags.

 o QUIC_CRYPTO_TOO_MANY_ENTRIES: Handshake message contained too many
 entries.

 o QUIC_CRYPTO_INVALID_VALUE_LENGTH: Handshake message contained an
 invalid value length.

 o QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE: A crypto message was
 received after the handshake was complete.

 o QUIC_INVALID_CRYPTO_MESSAGE_TYPE: A crypto message was received
 with an illegal message tag.

 o QUIC_SEQUENCE_NUMBER_LIMIT_REACHED: Transmitting an additional
 packet would cause a packet number to be reused.

12. Security and Privacy Considerations

 (TODO: List considerations)

13. Contributors

 This protocol is the outcome of work by many engineers, not just the
 authors of this document. The design and rationale behind QUIC draw
 significantly from work by Jim Roskind [1]. In alphabetical order,
 the contributors to the project are: Britt Cyr, Jeremy Dorfman, Ryan
 Hamilton, Jana Iyengar, Fedor Kouranov, Charles Krasic, Jo Kulik,
 Adam Langley, Jim Roskind, Robbie Shade, Satyam Shekhar, Cherie Shi,
 Ian Swett, Raman Tenneti, Victor Vasiliev, Antonio Vicente, Patrik
 Westin, Alyssa Wilk, Dale Worley, Fan Yang, Dan Zhang, Daniel
 Ziegler.

14. Acknowledgments

 Special thanks are due to the following for helping shape QUIC and
 its deployment: Chris Bentzel, Misha Efimov, Roberto Peon, Alistair
 Riddoch, Siddharth Vijayakrishnan, and Assar Westerlund. QUIC has
 also benefited immensely from discussions with folks in private
 conversations and public ones on the proto-quic@chromium.org mailing
 list.

 .

Hamilton, et al. Expires January 9, 2017 [Page 38]

Internet-Draft QUIC July 2016

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

 [draft-thomson-quic-tls]
 Thomson, M. and R. Hamilton, "Porting QUIC to TLS", March
 2016.

 [draft-iyengar-quic-loss-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Recovery and
 Congestion Control", July 2016.

15.2. Informative References

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", May 2015.

15.3. URIs

 [1] https://goo.gl/dMVtFi

Authors' Addresses

 Ryan Hamilton
 Google

 Email: rch@google.com

 Janardhan Iyengar
 Google

 Email: jri@google.com

 Ian Swett
 Google

 Email: ianswett@google.com

 Alyssa Wilk
 Google

 Email: alyssar@google.com

https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery
https://goo.gl/dMVtFi

Hamilton, et al. Expires January 9, 2017 [Page 39]

