
Network Working Group R. Hamilton
Internet-Draft J. Iyengar
Intended status: Experimental I. Swett
Expires: May 4, 2017 A. Wilk
 Google
 October 31, 2016

QUIC: A UDP-Based Multiplexed and Secure Transport
draft-hamilton-quic-transport-protocol-01

Abstract

 QUIC is a multiplexed and secure transport protocol that runs on top
 of UDP. QUIC builds on past transport experience, and implements
 mechanisms that make it useful as a modern general-purpose transport
 protocol. Using UDP as the basis of QUIC is intended to address
 compatibility issues with legacy clients and middleboxes. QUIC
 authenticates all of its headers, preventing third parties from from
 changing them. QUIC encrypts most of its headers, thereby limiting
 protocol evolution to QUIC endpoints only. Therefore, middleboxes,
 in large part, are not required to be updated as new protocol
 versions are deployed. This document describes the core QUIC
 protocol, including the conceptual design, wire format, and
 mechanisms of the QUIC protocol for connection establishment, stream
 multiplexing, stream and connection-level flow control, and data
 reliability. Accompanying documents describe QUIC's loss recovery
 and congestion control, and the use of TLS 1.3 for key negotiation.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 4, 2017.

Hamilton, et al. Expires May 4, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft QUIC October 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Definitions 4
3. A QUIC Overview . 4
3.1. Low-Latency Version Negotiation 5
3.2. Low-Latency Connection Establishment 5
3.3. Stream Multiplexing 5

 3.4. Rich Signaling for Congestion Control and Loss Recovery . 5
3.5. Stream and Connection Flow Control 6
3.6. Authenticated and Encrypted Header and Payload 6
3.7. Connection Migration and Resilience to NAT Rebinding . . 7

4. Packet Types and Formats 7
4.1. Common Header . 7
4.2. Regular Packets . 9
4.2.1. Packet Number Compression and Reconstruction 10
4.2.2. Frames and Frame Types 11

4.3. Version Negotiation Packet 12
4.4. Public Reset Packet 12

5. Life of a Connection . 13
5.1. Version Negotiation 13
5.2. Crypto and Transport Handshake 14
5.2.1. Transport Parameters and Options 14
5.2.2. Proof of Source Address Ownership 15
5.2.3. Crypto Handshake Protocol Features 16

5.3. Connection Migration 17
5.4. Connection Termination 17

6. Frame Types and Formats 18
6.1. STREAM Frame . 19
6.2. ACK Frame . 20
6.2.1. Time Format . 23

6.3. STOP_WAITING Frame 23
6.4. WINDOW_UPDATE Frame 24

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hamilton, et al. Expires May 4, 2017 [Page 2]

Internet-Draft QUIC October 2016

6.5. BLOCKED Frame . 24
6.6. RST_STREAM Frame . 25
6.7. PADDING Frame . 25
6.8. PING frame . 25
6.9. CONNECTION_CLOSE frame 26
6.10. GOAWAY Frame . 26

7. Packetization and Reliability 27
8. Streams: QUIC's Data Structuring Abstraction 28
8.1. Life of a Stream . 29
8.1.1. idle . 31
8.1.2. reserved . 31
8.1.3. open . 31
8.1.4. half-closed (local) 32
8.1.5. half-closed (remote) 32
8.1.6. closed . 33

8.2. Stream Identifiers 33
8.3. Stream Concurrency 34
8.4. Sending and Receiving Data 34

9. Flow Control . 35
9.1. Edge Cases and Other Considerations 36
9.1.1. Mid-stream RST_STREAM 36
9.1.2. Response to a RST_STREAM 37
9.1.3. Offset Increment 37
9.1.4. BLOCKED frames 37

10. Error Codes . 38
11. Security and Privacy Considerations 43
11.1. Spoofed Ack Attack 43

12. Contributors . 44
13. Acknowledgments . 44
14. References . 44
14.1. Normative References 44
14.2. Informative References 44
14.3. URIs . 45

 Authors' Addresses . 45

1. Introduction

 QUIC is a multiplexed and secure transport protocol that runs on top
 of UDP. QUIC builds on past transport experience and implements
 mechanisms that make it useful as a modern general-purpose transport
 protocol. Using UDP as the substrate, QUIC seeks to be compatible
 with legacy clients and middleboxes. QUIC authenticates all of its
 headers, preventing middleboxes and other third parties from changing
 them, and encrypts most of its headers, limiting protocol evolution
 largely to QUIC endpoints only.

 This document describes the core QUIC protocol, including the
 conceptual design, wire format, and mechanisms of the QUIC protocol

Hamilton, et al. Expires May 4, 2017 [Page 3]

Internet-Draft QUIC October 2016

 for connection establishment, stream multiplexing, stream and
 connection-level flow control, and data reliability. Accompanying
 documents describe QUIC's loss detection and congestion control
 [draft-iyengar-quic-loss-detection], and the use of TLS 1.3 for key
 negotiation [draft-thomson-quic-tls].

2. Conventions and Definitions

 Definitions of terms that are used in this document:

 o Client: The endpoint initiating a QUIC connection.

 o Server: The endpoint accepting incoming QUIC connections.

 o Endpoint: The client or server end of a connection.

 o Stream: A logical, bi-directional channel of ordered bytes within
 a QUIC connection.

 o Connection: A conversation between two QUIC endpoints with a
 single encryption context that multiplexes streams within it.

 o Connection ID: The identifier for a QUIC connection.

 o QUIC packet: A well-formed UDP payload that can be parsed by a
 QUIC receiver. QUIC packet size in this document refers to the
 UDP payload size.

3. A QUIC Overview

 This section briefly describes QUIC's key mechanisms and benefits.
 Key strengths of QUIC include:

 o Low-latency Version Negotiation

 o Low-latency connection establishment

 o Multiplexing without head-of-line blocking

 o Authenticated and encrypted header and payload

 o Rich signaling for congestion control and loss recovery

 o Stream and connection flow control

 o Connection Migration and Resilience to NAT rebinding

https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-detection
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls

Hamilton, et al. Expires May 4, 2017 [Page 4]

Internet-Draft QUIC October 2016

3.1. Low-Latency Version Negotiation

 QUIC combines version negotiation with the rest of connection
 establishment to avoid unnecessary roundtrip delays. A QUIC client
 proposes a version to use for the connection, and encodes the rest of
 the handshake using the proposed version. If the server does not
 speak the client-chosen version, it forces version negotiation by
 sending back a Version Negotiation packet to the client, causing a
 roundtrip of delay before connection establishment.

 This mechanism eliminates roundtrip latency when the client's
 optimistically-chosen version is spoken by the server, and
 incentivizes servers to not lag behind clients in deployment of newer
 versions. Additionally, an application may negotiate QUIC versions
 out-of-band to increase chances of success in the first roundtrip and
 to obviate the additional roundtrip in the case of version mismatch.

3.2. Low-Latency Connection Establishment

 QUIC relies on a combined crypto and transport handshake for setting
 up a secure transport connection. QUIC connections are expected to
 commonly use 0-RTT handshakes, meaning that for most QUIC
 connections, data can be sent immediately following the client
 handshake packet, without waiting for a reply from the server. QUIC
 provides a dedicated stream (Stream ID 1) to be used for performing
 the crypto handshake and QUIC options negotiation. The format of the
 QUIC options and parameters used during negotiation are described in
 this document, but the handshake protocol that runs on Stream ID 1 is
 described in the accompanying crypto handshake draft [draft-thomson-

quic-tls].

3.3. Stream Multiplexing

 When application messages are transported over TCP, independent
 application messages can suffer from head-of-line blocking. When an
 application multiplexes many streams atop TCP's single-bytestream
 abstraction, a loss of a TCP segment results in blocking of all
 subsequent segments until a retransmission arrives, irrespective of
 the application streams that are encapsulated in subsequent segments.
 QUIC ensures that lost packets carrying data for an individual stream
 only impact that specific stream. Data received on other streams can
 continue to be reassembled and delivered to the application.

3.4. Rich Signaling for Congestion Control and Loss Recovery

 QUIC's packet framing and acknowledgments carry rich information that
 help both congestion control and loss recovery in fundamental ways.
 Each QUIC packet carries a new packet number, including those

https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls
https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls

Hamilton, et al. Expires May 4, 2017 [Page 5]

Internet-Draft QUIC October 2016

 carrying retransmitted data. This obviates the need for a separate
 mechanism to distinguish acks for retransmissions from those for
 original transmissions, avoiding TCP's retransmission ambiguity
 problem. QUIC acknowledgments also explicitly encode the delay
 between the receipt of a packet and its acknowledgment being sent,
 and together with the monotonically-increasing packet numbers, this
 allows for precise network roundtrip-time (RTT) calculation. QUIC's
 ACK frames support up to 256 ack blocks, so QUIC is more resilient to
 reordering than TCP with SACK support, as well as able to keep more
 bytes on the wire when there is reordering or loss.

3.5. Stream and Connection Flow Control

 QUIC implements stream- and connection-level flow control, closely
 following HTTP/2's flow control mechanisms. At a high level, a QUIC
 receiver advertises the absolute byte offset within each stream up to
 which the receiver is willing to receive data. As data is sent,
 received, and delivered on a particular stream, the receiver sends
 WINDOW_UPDATE frames that increase the advertised offset limit for
 that stream, allowing the peer to send more data on that stream. In
 addition to this stream-level flow control, QUIC implements
 connection-level flow control to limit the aggregate buffer that a
 QUIC receiver is willing to allocate to all streams on a connection.
 Connection-level flow control works in the same way as stream-level
 flow control, but the bytes delivered and highest received offset are
 all aggregates across all streams.

3.6. Authenticated and Encrypted Header and Payload

 TCP headers appear in plaintext on the wire and are not
 authenticated, causing a plethora of injection and header
 manipulation issues for TCP, such as receive-window manipulation and
 sequence-number overwriting. While some of these are mechanisms used
 by middleboxes to improve TCP performance, others are active attacks.
 Even "performance-enhancing" middleboxes that routinely interpose on
 the transport state machine end up limiting the evolvability of the
 transport protocol, as has been observed in the design of MPTCP and
 in its subsequent deployability issues.

 Generally, QUIC packets are always authenticated and the payload is
 typically fully encrypted. The parts of the packet header which are
 not encrypted are still authenticated by the receiver, so as to
 thwart any packet injection or manipulation by third parties. Some
 early handshake packets, such as the Version Negotiation packet, are
 not encrypted, but information sent in these unencrypted handshake
 packets is later verified under crypto cover.

Hamilton, et al. Expires May 4, 2017 [Page 6]

Internet-Draft QUIC October 2016

 PUBLIC_RESET packets that reset a connection are currently not
 authenticated.

3.7. Connection Migration and Resilience to NAT Rebinding

 QUIC connections are identified by a 64-bit Connection ID, randomly
 generated by the client. QUIC's consistent connection ID allows
 connections to survive changes to the client's IP and port, such as
 those caused by NAT rebindings or by the client changing network
 connectivity to a new address. QUIC provides automatic cryptographic
 verification of a rebound client, since the client continues to use
 the same session key for encrypting and decrypting packets. The
 consistent connection ID can be used to allow migration of the
 connection to a new server IP address as well, since the Connection
 ID remains consistent across changes in the client's and the server's
 network addresses.

4. Packet Types and Formats

 We first describe QUIC's packet types and formats, since some are
 referenced in subsequent mechanisms. Note that unless otherwise
 noted, all values specified in this document are in little-endian
 format and all field sizes are in bits.

4.1. Common Header

 All QUIC packets begin with a QUIC Common header, as shown below:

 +------------+---------------------------------+
 | Flags(8) | Connection ID (64) (optional) |
 +------------+---------------------------------+

 The fields in the Common Header are the following:

 o Flags:

 * 0x01 = VERSION. The semantics of this flag depends on whether
 the packet is sent by the server or the client. A client MAY
 set this flag and include exactly one proposed version. A
 server may set this flag when the client-proposed version was
 unsupported, and may then provide a list (0 or more) of
 acceptable versions as a part of version negotiation (described
 in Section XXX.)

 * 0x02 = PUBLIC_RESET. Set to indicate that the packet is a
 Public Reset packet.

Hamilton, et al. Expires May 4, 2017 [Page 7]

Internet-Draft QUIC October 2016

 * 0x04 = DIVERSIFICATION_NONCE. Set to indicate the presence of
 a 32-byte diversification nonce in the header.
 (DISCUSS_AND_MODIFY: This flag should be removed along with the
 Diversification Nonce bits, as discussed further below.)

 * 0x08 = CONNECTION_ID. Indicates the Connection ID is present
 in the packet. This must be set in all packets until
 negotiated to a different value for a given direction. For
 instance, if a client indicates that the 5-tuple fully
 identifies the connection at the client, the connection ID is
 optional in the server-to-client direction.

 * 0x30 = PACKET_NUMBER_SIZE. These two bits indicate the number
 of low-order-bytes of the packet number that are present in
 each packet.

 + 11 indicates that 6 bytes of the packet number are present

 + 10 indicates that 4 bytes of the packet number are present

 + 01 indicates that 2 bytes of the packet number are present

 + 00 indicates that 1 byte of the packet number is present

 * 0x40 = MULTIPATH. This bit is reserved for multipath use.

 * 0x80 is currently unused, and must be set to 0.

 o Connection ID: An unsigned 64-bit random number chosen by the
 client, used as the identifier of the connection. Connection ID
 is tied to a QUIC connection, and remains consistent across client
 and/or server IP and port changes.

 While all QUIC packets have the same common header, there are three
 types of packets: Regular packets, Version Negotiation packets, and
 Public Reset packets. The flowchart below shows how a packet is
 classified into one of these three packet types:

Hamilton, et al. Expires May 4, 2017 [Page 8]

Internet-Draft QUIC October 2016

Check the flags in the common header
 |
 |
 V
 +--------------+
 | PUBLIC_RESET | YES
 | flag set? |-------> Public Reset packet
 +--------------+
 |
 | NO
 V
 +------------+ +-------------+
 | VERSION | YES | Packet sent | YES
 | flag set? |-------->| by server? |--------> Version Negotiation
 +------------+ +-------------+ packet
 | |
 | NO | NO
 V V
 Regular packet with Regular packet with
 no QUIC Version in header QUIC Version in header

4.2. Regular Packets

 Each Regular packet's header consists of a Common Header followed by
 fields specific to Regular packets, as shown below:

+------------+---------------------------------+
| Flags(8) | Connection ID (64) (optional) | ->
+------------+---------------------------------+
+---------------------------------------+-------------------------------+
| Version (32) (client-only, optional) | Diversification Nonce (256) | ->
+---------------------------------------+-------------------------------+
+------------------------------------+
| Packet Number (8, 16, 32, or 48) | ->
+------------------------------------+
+------------+
| AEAD Data |
+------------+

Decrypted AEAD Data:
+------------+-----------+ +-----------+
| Frame 1 | Frame 2 | ... | Frame N |
+------------+-----------+ +-----------+

 The fields in a Regular packet past the Common Header are the
 following:

Hamilton, et al. Expires May 4, 2017 [Page 9]

Internet-Draft QUIC October 2016

 o QUIC Version: A 32-bit opaque tag that represents the version of
 the QUIC protocol. Only present in the client-to-server
 direction, and if the VERSION flag is set. Version Negotiation is
 described in Section XXX.

 o DISCUSS_AND_REPLACE: Diversification Nonce: A 32-byte nonce
 generated by the server and used only in the Server->Client
 direction to ensure that the server is able to generate unique
 keys per connection. Specifically, when using QUIC's 0-RTT crypto
 handshake, a repeated CHLO with the exact same connection ID and
 CHLO can lead to the same (intermediate) initial-encryption keys
 being derived for the connection. A server-generated nonce
 disallows a client from causing the same keys to be derived for
 two distinct connections. Once the connection is forward-secure,
 this nonce is no longer present in packets. This nonce can be
 removed from the packet header if a requirement can be added for
 the crypto handshake to ensure key uniqueness. The expectation is
 that TLS1.3 meets this requirement. Upon working group adoption
 of this document, this requirement should be added to the crypto
 handshake requirements, and the nonce should be removed from the
 packet format.

 o Packet Number: The lower 8, 16, 32, or 48 bits of the packet
 number, based on the PACKET_NUMBER_SIZE flag. Each Regular packet
 is assigned a packet number by the sender. The first packet sent
 by an endpoint MUST have a packet number of 1.

 o AEAD Data: A Regular packet's header, which includes the Common
 Header, and the Version, Diversification Nonce, and Packet Number
 fields, is authenticated but not encrypted. The rest of a Regular
 packet, starting with the first frame, is both authenticated and
 encrypted. Immediately following the header, Regular packets
 contain AEAD (Authenticated Encryption with Associated Data) data.
 This data must be decrypted in order for the contents to be
 interpreted. After decryption, the plaintext consists of a
 sequence of frames, as shown (frames are described in
 Section XXX).

4.2.1. Packet Number Compression and Reconstruction

 The complete packet number is a 64-bit unsigned number and is used as
 part of a cryptographic nonce for packet encryption. To reduce the
 number of bits required to represent the packet number over the wire,
 at most 48 bits of the packet number are transmitted over the wire.
 A QUIC endpoint MUST NOT reuse a complete packet number within the
 same connection (that is, under the same cryptographic keys). If the
 total number of packets transmitted in this connection reaches 2^64 -
 1, the sender MUST close the connection by sending a CONNECTION_CLOSE

Hamilton, et al. Expires May 4, 2017 [Page 10]

Internet-Draft QUIC October 2016

 frame with the error code QUIC_SEQUENCE_NUMBER_LIMIT_REACHED
 (connection termination is described in Section XXX.) For
 unambiguous reconstruction of the complete packet number by a
 receiver from the lower-order bits, a QUIC sender MUST NOT have more
 than 2^(packet_number_size - 2) in flight at any point in the
 connection. In other words,

 o If a sender sets PACKET_NUMBER_SIZE bits to 11, it MUST NOT have
 more than (2^46) packets in flight.

 o If a sender sets PACKET_NUMBER_SIZE bits to 10, it MUST NOT have
 more than (2^30) packets in flight.

 o If a sender sets PACKET_NUMBER_SIZE bits to 01, it MUST NOT have
 more than (2^14) packets in flight.

 o If a sender sets PACKET_NUMBER_SIZE bits to 00, it MUST NOT have
 more than (2^6) packets in flight.

 DISCUSS: Should the receiver be required to enforce this rule that
 the sender MUST NOT exceed the inflight limit? Specifically, should
 the receiver drop packets that are received outside this window?

 Any truncated packet number received from a peer MUST be
 reconstructed as the value closest to the next expected packet number
 from that peer.

 (TODO: Clarify how packet number size can change mid-connection.)

4.2.2. Frames and Frame Types

 A Regular packet MUST contain at least one frame, and MAY contain
 multiple frames and multiple frame types. Frames MUST fit within a
 single QUIC packet and MUST NOT span a QUIC packet boundary. Each
 frame begins with a Frame Type byte, indicating its type, followed by
 type-dependent headers, and variable-length data, as follows:

 +-----------+---------------------------+-------------------------+
 | Type (8) | Headers (type-dependent) | Data (type-dependent) |
 +-----------+---------------------------+-------------------------+

 The following table lists currently defined frame types. Note that
 the Frame Type byte in STREAM and ACK frames is used to carry other
 frame-specific flags. For all other frames, the Frame Type byte
 simply identifies the frame. These frames are explained in more
 detail as they are referenced later in the document.

Hamilton, et al. Expires May 4, 2017 [Page 11]

Internet-Draft QUIC October 2016

 +------------------+--------------------+
 | Type-field value | Frame type |
 +------------------+--------------------+
 | 1FDOOOSS | STREAM |
 | 01NTLLMM | ACK |
 | 00000000 (0x00) | PADDING |
 | 00000001 (0x01) | RST_STREAM |
 | 00000010 (0x02) | CONNECTION_CLOSE |
 | 00000011 (0x03) | GOAWAY |
 | 00000100 (0x04) | WINDOW_UPDATE |
 | 00000101 (0x05) | BLOCKED |
 | 00000110 (0x06) | STOP_WAITING |
 | 00000111 (0x07) | PING |
 +------------------+--------------------+

4.3. Version Negotiation Packet

 A Version Negotiation packet is only sent by the server, MUST have
 the VERSION flag set, and MUST include the full 64-bit Connection ID.
 The rest of the Version Negotiation packet is a list of 4-byte
 versions which the server supports, as shown below.

+-----------------------------------+
| Flags(8) | Connection ID (64) | ->
+-----------------------------------+
+------------------------------+--+
| 1st Supported Version (32) | 2nd Supported Version (32) supported | ...
+------------------------------+--+

4.4. Public Reset Packet

 A Public Reset packet MUST have the PUBLIC_RESET flag set, and MUST
 include the full 64-bit connection ID. The rest of the Public Reset
 packet is encoded as if it were a crypto handshake message of the tag
 PRST, as shown below.

 +-----------------------------------+
 | Flags(8) | Connection ID (64) | ->
 +-----------------------------------+
 +-------------------------------------+
 | Quic Tag (PRST) and tag value map |
 +-------------------------------------+

 The tag value map contains the following tag-values:

 o RNON (public reset nonce proof) - a 64-bit unsigned integer.

 o RSEQ (rejected packet number) - a 64-bit packet number.

Hamilton, et al. Expires May 4, 2017 [Page 12]

Internet-Draft QUIC October 2016

 o CADR (client address) - the observed client IP address and port
 number. This is currently for debugging purposes only and hence
 is optional.

 DISCUSS_AND_REPLACE: The crypto handshake message format is described
 in the QUIC crypto document, and should be replaced with something
 simpler when this document is adopted. The purpose of the tag-value
 map following the PRST tag is to enable the receiver of the Public
 Reset packet to reasonably authenticate the packet. This map is an
 extensible map format that allows specification of various tags,
 which should again be replaced by something simpler.

5. Life of a Connection

 A QUIC connection is a single conversation between two QUIC
 endpoints. QUIC's connection establishment intertwines version
 negotiation with the crypto and transport handshakes to reduce
 connection establishment latency, as described in Section XXX. Once
 established, a connection may migrate to a different IP or port at
 either endpoint, due to NAT rebinding or mobility, as described in
 Section XXX. Finally a connection may be terminated by either
 endpoint, as described in Section XXX.

5.1. Version Negotiation

 QUIC's connection establishment begins with version negotiation,
 since all communication between the endpoints, including packet and
 frame formats, relies on the two endpoints agreeing on a version.

 A QUIC connection begins with a client sending a handshake packet.
 The details of the handshake mechanisms are described in Section XX,
 but all of the initial packets sent from the client to the server
 MUST have the VERSION flag set, and MUST specify the version of the
 protocol being used.

 When the server receives a packet from a client with the VERSION flag
 set for a connection that has not yet been established, it compares
 the client's version to the versions it supports.

 o If the client's version is acceptable to the server, the server
 MUST use this protocol version for the lifetime of the connection.
 All subsequent packets sent by the server MUST have the version
 flag off.

 o If the client's version is not acceptable to the server, the
 server MUST send a Version Negotiation packet to the client. This
 packet will have the VERSION flag set and will include the
 server's set of supported versions. On subsequently received

Hamilton, et al. Expires May 4, 2017 [Page 13]

Internet-Draft QUIC October 2016

 packets for the same connection ID with the unacceptable version,
 the server MUST continue responding with a Version Negotiation
 packet.

 When the client receives a Version Negotiation packet from the
 server, it should select an acceptable protocol version. If such a
 version is found, the client MUST resend all packets using the new
 version, and the resent packets MUST use new packet numbers. These
 packets MUST continue to have the VERSION flag set and MUST include
 the new negotiated protocol version.

 The client MUST send its version on all packets until it receives a
 packet from the server with the VERSION flag off. If version
 negotiation is successful, the client should receive a packet from
 the server with the VERSION flag off indicating the end of version
 negotiation. All subsequent packets the client sends MUST have the
 version flag off.

 Once the server receives a packet from the client with the VERSION
 flag off, it MUST ignore the VERSION flag in subsequently received
 packets.

 The Version Negotiation packet is unencrypted and exchanged without
 authentication. To avoid a downgrade attack, the client needs to
 verify its record of the server's version list in the Version
 Negotiation packet and the server needs to verify its record of the
 client's originally proposed version. Therefore, the client and
 server MUST include this information later in their corresponding
 crypto handshake data.

5.2. Crypto and Transport Handshake

 QUIC relies on a combined crypto and transport handshake to minimize
 connection establishment latency. QUIC provides a dedicated stream
 (Stream ID 1) to be used for performing a combined connection and
 security handshake (streams are described in detail in Section XXX).
 The crypto handshake protocol encapsulates and delivers QUIC's
 transport handshake to the peer on the crypto stream. The first QUIC
 packet from the client to the server MUST carry handshake information
 as data on Stream ID 1.

5.2.1. Transport Parameters and Options

 During connection establishment, the handshake must negotiate various
 transport parameters. The currently defined transport parameters are
 described later in the document.

Hamilton, et al. Expires May 4, 2017 [Page 14]

Internet-Draft QUIC October 2016

 The transport component of the handshake is responsible for
 exchanging and negotiating the following parameters for a QUIC
 connection. Not all parameters are negotiated, some are parameters
 sent in just one direction. These parameters and options are encoded
 and handed off to the crypto handshake protocol to be transmitted to
 the peer.

5.2.1.1. Encoding

 (TODO: Describe format with example)

 QUIC encodes the transport parameters and options as tag-value pairs,
 all as 7-bit ASCII strings. QUIC parameter tags are listed below.

5.2.1.2. Required Transport Parameters

 o SFCW: Stream Flow Control Window. The stream level flow control
 byte offset advertised by the sender of this parameter.

 o CFCW: Connection Flow Control Window. The connection level flow
 control byte offset advertised by the sender of this parameter.

 o MSPC: Maximum number of incoming streams per connection.

5.2.1.3. Optional Transport Parameters

 o TCID: Indicates support for truncated Connection IDs. If sent by
 a peer, indicates that connection IDs sent to the peer should be
 truncated to 0 bytes. This is expected to commonly be used by an
 endpoint where the 5-tuple is sufficient to identify a connection.
 For instance, if the 5-tuple is unique at the client, the client
 MAY send a TCID parameter to the server. When a TCID parameter is
 received, an endpoint MAY choose to not send the connection ID on
 subsequent packets.

 o COPT: Connection Options are a repeated tag field. The field
 contains any connection options being requested by the client or
 server. These are typically used for experimentation and will
 evolve over time. Example use cases include changing congestion
 control algorithms and parameters such as initial window. (TODO:
 List connection options.)

5.2.2. Proof of Source Address Ownership

 Transport protocols commonly use a roundtrip time to verify a
 client's address ownership for protection from malicious clients that
 spoof their source address. QUIC uses a cookie, called the Source
 Address Token (STK), to mostly eliminate this roundtrip of delay.

Hamilton, et al. Expires May 4, 2017 [Page 15]

Internet-Draft QUIC October 2016

 This technique is similar to TCP Fast Open's use of a cookie to avoid
 a roundtrip of delay in TCP connection establishment.

 On a new connection, a QUIC server sends an STK, which is opaque to
 and stored by the client. On a subsequent connection, the client
 echoes it in the transport handshake as proof of IP ownership.

 A QUIC server also uses the STK to store server-designated connection
 IDs for Stateless Rejects, to verify that an incoming connection
 contains the correct connection ID.

 A QUIC server MAY additionally store other data in a the STK, such as
 measured bandwidth and measured minimum RTT to the client that may
 help the server better bootstrap a subsequent connection from the
 same client. A server MAY send an updated STK message mid-connection
 to update server state that is stored at the client in the STK.

 (TODO: Describe server and client actions on STK, encoding,
 recommendations for what to put in an STK. Describe SCUP messages.)

5.2.3. Crypto Handshake Protocol Features

 QUIC's current crypto handshake mechanism is documented in [QUIC-
 CRYPTO]. QUIC does not restrict itself to using a specific handshake
 protocol, so the details of a specific handshake protocol are out of
 this document's scope. If not explicitly specified in the
 application mapping, TLS is assumed to be the default crypto
 handshake protocol, as described in [draft-mthomson-quic-tls]. An
 application that maps to QUIC MAY however specify an alternative
 crypto handshake protocol to be used.

 The following list of requirements and recommendations documents
 properties of the current prototype handshake which should be
 provided by any handshake protocol.

 o The crypto handshake MUST ensure that the final negotiated key is
 distinct for every connection between two endpoints.

 o Transport Negotiation: The crypto handshake MUST provide a
 mechanism for the transport component to exchange transport
 parameters and Source Address Tokens. To avoid downgrade attacks,
 the transport parameters sent and received MUST be verified before
 the handshake completes successfully.

 o Connection Establishment in 0-RTT: Since low-latency connection
 establishment is a critical feature of QUIC, the QUIC handshake
 protocol SHOULD attempt to achieve 0-RTT connection establishment
 latency for repeated connections between the same endpoints.

https://datatracker.ietf.org/doc/html/draft-mthomson-quic-tls

Hamilton, et al. Expires May 4, 2017 [Page 16]

Internet-Draft QUIC October 2016

 o Source Address Spoofing Defense: Since QUIC handles source address
 verification, the crypto protocol SHOULD NOT impose a separate
 source address verification mechanism.

 o Server Config Update: A QUIC server may refresh the source-address
 token (STK) mid-connection, to update the information stored in
 the STK at the client and to extend the period over which 0-RTT
 connections can be established by the client.

 o Certificate Compression: Early QUIC experience demonstrated that
 compressing certificates exchanged during a handshake is valuable
 in reducing latency. This additionally helps to reduce the
 amplification attack footprint when a server sends a large set of
 certificates, which is not uncommon with TLS. The crypto protocol
 SHOULD compress certificates and any other information to minimize
 the number of packets sent during a handshake.

 The following information used during the QUIC handshake MUST be
 cryptographically verified by the crypto handshake protocol:

 o Client's originally proposed version in its first packet.

 o Server's version list in it's Version Negotiation packet, if one
 was sent.

5.3. Connection Migration

 QUIC connections are identified by their 64-bit Connection ID.
 QUIC's consistent connection ID allows connections to survive changes
 to the client's IP and/or port, such as those caused by client or
 server migrating to a new network. QUIC also provides automatic
 cryptographic verification of a rebound client, since the client
 continues to use the same session key for encrypting and decrypting
 packets.

 DISCUSS: Simultaneous migration. Is this reasonable?

 TODO: Perhaps move mitigation techniques from Security Considerations
 here.

5.4. Connection Termination

 Connections should remain open until they become idle for a pre-
 negotiated period of time. A QUIC connection, once established, can
 be terminated in one of three ways:

 1. Explicit Shutdown: An endpoint sends a CONNECTION_CLOSE frame to
 the peer initiating a connection termination. An endpoint may

Hamilton, et al. Expires May 4, 2017 [Page 17]

Internet-Draft QUIC October 2016

 send a GOAWAY frame to the peer prior to a CONNECTION_CLOSE to
 indicate that the connection will soon be terminated. A GOAWAY
 frame signals to the peer that any active streams will continue
 to be processed, but the sender of the GOAWAY will not initiate
 any additional streams and will not accept any new incoming
 streams. On termination of the active streams, a
 CONNECTION_CLOSE may be sent. If an endpoint sends a
 CONNECTION_CLOSE frame while unterminated streams are active (no
 FIN bit or RST_STREAM frames have been sent or received for one
 or more streams), then the peer must assume that the streams were
 incomplete and were abnormally terminated.

 2. Implicit Shutdown: The default idle timeout for a QUIC connection
 is 30 seconds, and is a required parameter (ICSL) in connection
 negotiation. The maximum is 10 minutes. If there is no network
 activity for the duration of the idle timeout, the connection is
 closed. By default a CONNECTION_CLOSE frame will be sent. A
 silent close option can be enabled when it is expensive to send
 an explicit close, such as mobile networks that must wake up the
 radio.

 3. Abrupt Shutdown: An endpoint may send a Public Reset packet at
 any time during the connection to abruptly terminate an active
 connection. A Public Reset packet SHOULD only be used as a final
 recourse. Commonly, a public reset is expected to be sent when a
 packet on an established connection is received by an endpoint
 that is unable decrypt the packet. For instance, if a server
 reboots mid-connection and loses any cryptographic state
 associated with open connections, and then receives a packet on
 an open connection, it should send a Public Reset packet in
 return. (TODO: articulate rules around when a public reset
 should be sent.)

 TODO: Connections that are terminated are added to a TIME_WAIT list
 at the server, so as to absorb any straggler packets in the network.
 Discuss TIME_WAIT list.

6. Frame Types and Formats

 As described in Section XXX, Regular packets contain one or more
 frames. We now describe the various QUIC frame types that can be
 present in a Regular packet. The use of these frames and various
 frame header bits are described in subsequent sections.

Hamilton, et al. Expires May 4, 2017 [Page 18]

Internet-Draft QUIC October 2016

6.1. STREAM Frame

 STREAM frames implicitly create a stream and carry stream data. A
 STREAM frame is shown below.

 +------------+--------------------------------+
 | Type (8) | Stream ID (8, 16, 24, or 32) |
 +------------+--------------------------------+
 +---+
 | Offset (0, 16, 24, 32, 40, 48, 56, or 64) |
 +---+
 +-------------------------+---------------------------------+
 | Data length (0 or 16) | Stream Data (per data length) |
 +-------------------------+---------------------------------+

 The STREAM frame header fields are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value containing
 various flags, and is formatted as the following 8 bits: 1FDOOOSS.

 * The leftmost bit must be set to 1 indicating that this is a
 STREAM frame.

 * 'F' is the FIN bit, which is used for stream termination.

 * The 'D' bit indicates whether a Data Length field is present in
 the STREAM header. When set to 0, this field indicates that
 the Stream Data field extends to the end of the packet. When
 set to 1, this field indicates that Data Length field contains
 the length (in bytes) of the Stream Data field. The option to
 omit the length should only be used when the packet is a "full-
 sized" packet, to avoid the risk of corruption via padding.

 * The 'OOO' bits encode the length of the Offset header field as
 0, 16, 24, 32, 40, 48, 56, or 64 bits long.

 * The 'SS' bits encode the length of the Stream ID header field
 as 8, 16, 24, or 32 bits. (DISCUSS: Consider making this 8,
 16, 32, 64.)

 o Stream ID: A variable-sized unsigned ID unique to this stream.

 o Offset: A variable-sized unsigned number specifying the byte
 offset in the stream for the data in this STREAM frame. The first
 byte in the stream has an offset of 0.

 o Data Length: An optional 16-bit unsigned number specifying the
 length of the Stream Data field in this STREAM frame.

Hamilton, et al. Expires May 4, 2017 [Page 19]

Internet-Draft QUIC October 2016

 A STREAM frame MUST have either non-zero data length or the FIN bit
 set.

 Stream multiplexing is achieved by interleaving STREAM frames from
 multiple streams into one or more QUIC packets. A single QUIC packet
 MAY bundle STREAM frames from multiple streams.

 Implementation note: One of the benefits of QUIC is avoidance of
 head-of-line blocking across multiple streams. When a packet loss
 occurs, only streams with data in that packet are blocked waiting for
 a retransmission to be received, while other streams can continue
 making progress. Note that when data from multiple streams is
 bundled into a single QUIC packet, loss of that packet blocks all
 those streams from making progress. An implementation is therefore
 advised to bundle as few streams as necessary in outgoing packets
 without losing transmission efficiency to underfilled packets.

6.2. ACK Frame

 Receivers send ACK frames to inform senders which packets they have
 received, as well as which packets are considered missing. The ACK
 frame contains between 1 and 256 ack blocks. Ack blocks are ranges
 of acknowledged packets.

 To limit the ACK blocks to the ones that haven't yet been received by
 the sender, the sender periodically sends STOP_WAITING frames that
 signal the receiver to stop acking packets below a specified sequence
 number, raising the "least unacked" packet number at the receiver. A
 sender of an ACK frame thus reports only those ACK blocks between the
 received least unacked and the reported largest observed packet
 numbers. It is recommended for the sender to send the most recent
 largest acked packet it has received in an ack as the STOP_WAITING
 frame's least unacked value.

 Unlike TCP SACKs, QUIC ACK blocks are irrevocable. Once a packet is
 acked, even if it does not appear in a future ack frame, it is
 assumed to be acked.

 A sender MAY intentionally skip packet numbers to introduce entropy
 into the connection, to avoid opportunistic ack attacks. The sender
 MUST close the connection if an unsent packet number is acked. The
 format of the ACK frame is efficient at expressing blocks of missing
 packets; skipping packet numbers between 1 and 255 effectively
 provides up to 8 bits of efficient entropy on demand, which should be
 adequate protection against most opportunistic ack attacks.

Hamilton, et al. Expires May 4, 2017 [Page 20]

Internet-Draft QUIC October 2016

+--+
| Type (8) | Largest Acked (8, 16, 32, or 48) | Ack Delay (16) |
+--+

Ack Block Section:
+---+
| Number Blocks (8) (opt) | First Ack Block Length (8, 16, 32 or 48 bits) |
+---+
+---+
| Gap To Next Block (8) | Ack Block Length (8, 16, 32, or 48 bits | <--
optional,
+---+ repeats

Timestamp Section:
+--------------------+
| Num Timestamps (8) |
+--------------------+
+---+
| Delta Largest Acked (8) | Time Since Largest Acked (32) | <-- optional
+---+
+---+
| Delta Largest Acked (8) | Time Since Previous Timestamp (16) | <-- optional,
+---+ repeats

 The fields in the ACK frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value containing
 various flags. This byte is formatted as the following 8 bits:
 01NULLMM.

 * The first two bits must be set to 01 indicating that this is an
 ACK frame.

 * The 'N' bit indicates whether the frame has more than 1 ack
 range.

 * The 'U' bit is unused.

 * The two 'LL' bits encode the length of the Largest Acked field
 as 1, 2, 4, or 6 bytes long.

 * The two 'MM' bits encode the length of the Ack Block Length
 fields as 1, 2, 4, or 6 bytes long.

 o Largest Acked: A variable-sized unsigned value representing the
 largest packet number the peer is acking in this packet (typically
 the largest that the peer has seen thus far.)

Hamilton, et al. Expires May 4, 2017 [Page 21]

Internet-Draft QUIC October 2016

 o Ack Delay: Time from when the largest acked, as indicated in the
 Largest Acked field, was received by this peer to when this ack
 was sent.

 o Ack Block Section:

 * Num Blocks (opt): An optional 8-bit unsigned value specifying
 the number of additional ack blocks (besides the required First
 Ack Block) in this ACK frame. Only present if the 'N' flag bit
 is 1.

 * First Ack Block Length: An unsigned packet number delta that
 indicates the number of contiguous additional packets being
 acked starting at the Largest Acked.

 * Gap To Next Block (opt, repeated): An unsigned number
 specifying the number of contiguous missing packets from the
 end of the previous ack block to the start of the next.

 * Ack Block Length (opt, repeated): An unsigned packet number
 delta that indicates the number of contiguous packets being
 acked starting after the end of the previous gap. Along with
 the previous field, this field is repeated "Num Blocks" times.

 o Timestamp Section:

 * Num Timestamps: An unsigned 8-bit number specifying the total
 number of <packet number, timestamp> pairs following, including
 the First Timestamp.

 * Delta Largest Acked (opt): An optional 8-bit unsigned packet
 number delta specifying the delta between the largest acked and
 the first packet whose timestamp is being reported. In other
 words, this first packet number may be computed as (Largest
 Acked - Delta Largest Acked.)

 * First Timestamp (opt): An optional 32-bit unsigned value
 specifying the time delta in microseconds, from the beginning
 of the connection to the arrival of this packet.

 * Delta Largest Observed (opt, repeated): (Same as above.)

 * Time Since Previous Timestamp (opt, repeated): An optional
 16-bit unsigned value specifying time delta from the previous
 reported timestamp. It is encoded in the same format as the
 Ack Delay. Along with the previous field, this field is
 repeated "Num Timestamps" times.

Hamilton, et al. Expires May 4, 2017 [Page 22]

Internet-Draft QUIC October 2016

6.2.1. Time Format

 DISCUSS_AND_REPLACE: Perhaps make this format simpler.

 The time format used in the ACK frame above is a 16-bit unsigned
 float with 11 explicit bits of mantissa and 5 bits of explicit
 exponent, specifying time in microseconds. The bit format is loosely
 modeled after IEEE 754. For example, 1 microsecond is represented as
 0x1, which has an exponent of zero, presented in the 5 high order
 bits, and mantissa of 1, presented in the 11 low order bits. When
 the explicit exponent is greater than zero, an implicit high-order
 12th bit of 1 is assumed in the mantissa. For example, a floating
 value of 0x800 has an explicit exponent of 1, as well as an explicit
 mantissa of 0, but then has an effective mantissa of 4096 (12th bit
 is assumed to be 1). Additionally, the actual exponent is one-less
 than the explicit exponent, and the value represents 4096
 microseconds. Any values larger than the representable range are
 clamped to 0xFFFF.

6.3. STOP_WAITING Frame

 The STOP_WAITING frame is sent to inform the peer that it should not
 continue to wait for packets with packet numbers lower than a
 specified value. The packet number is encoded in 1, 2, 4 or 6 bytes,
 using the same coding length as is specified for the packet number
 for the enclosing packet's header (specified in the QUIC Frame
 packet's Flags field.) The frame is as follows:

 +---+
 | Type (8) | Least unacked delta (8, 16, 32, or 48) |
 +---+

 The fields in the STOP_WAITING frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x06 indicating that this is a STOP_WAITING frame.

 o Least Unacked Delta: A variable-length packet number delta with
 the same length as the packet header's packet number. Subtract it
 from the complete packet number of the enclosing packet to
 determine the least unacked packet number. The resulting least
 unacked packet number is the earliest packet for which the sender
 is still awaiting an ack. If the receiver is missing any packets
 earlier than this packet, the receiver SHOULD consider those
 packets to be irrecoverably lost and MUST NOT report those packets
 as missing in subsequent acks.

Hamilton, et al. Expires May 4, 2017 [Page 23]

Internet-Draft QUIC October 2016

6.4. WINDOW_UPDATE Frame

 The WINDOW_UPDATE frame informs the peer of an increase in an
 endpoint's flow control receive window. The StreamID can be zero,
 indicating this WINDOW_UPDATE applies to the connection level flow
 control window, or non-zero, indicating that the specified stream
 should increase its flow control window. The frame is as follows:

 +---+
 | Type(8) | Stream ID (32) | Byte offset (64) |
 +---+

 The fields in the WINDOW_UPDATE frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x04 indicating that this is a WINDOW_UPDATE frame.

 o Stream ID: ID of the stream whose flow control windows is being
 updated, or 0 to specify the connection-level flow control window.

 o Byte offset: A 64-bit unsigned integer indicating the absolute
 byte offset of data which can be sent on the given stream. In the
 case of connection level flow control, the cumulative number of
 bytes which can be sent on all currently open streams.

6.5. BLOCKED Frame

 A sender sends a BLOCKED frame when it is ready to send data (and has
 data to send), but is currently flow control blocked. BLOCKED frames
 are purely informational frames, but extremely useful for debugging
 purposes. A receiver of a BLOCKED frame should simply discard it
 (after possibly printing a helpful log message). The frame is as
 follows:

 +------------------------------+
 | Type(8) | Stream ID (32) |
 +------------------------------+

 The fields in the BLOCKED frame are as follows:

 o Frame Type: The Frame Type byte is an 8-bit value that must be set
 to 0x05 indicating that this is a BLOCKED frame.

 o Stream ID: A 32-bit unsigned number indicating the stream which is
 flow control blocked. A non-zero Stream ID field specifies the
 stream that is flow control blocked. When zero, the Stream ID
 field indicates that the connection is flow control blocked.

Hamilton, et al. Expires May 4, 2017 [Page 24]

Internet-Draft QUIC October 2016

6.6. RST_STREAM Frame

 An endpoint may use a RST_STREAM frame to abruptly terminate a
 stream. The frame is as follows:

+--+
| Type(8) | StreamID (32) | Byte offset (64) | Error code (32) |
+--+

 The fields are:

 o Frame type: The Frame Type is an 8-bit value that must be set to
 0x01 specifying that this is a RST_STREAM frame.

 o Stream ID: The 32-bit Stream ID of the stream being terminated.

 o Byte offset: A 64-bit unsigned integer indicating the absolute
 byte offset of the end of data written on this stream by the
 RST_STREAM sender.

 o Error code: A 32-bit error code which indicates why the stream is
 being closed.

6.7. PADDING Frame

 The PADDING frame pads a packet with 0x00 bytes. When this frame is
 encountered, the rest of the packet is expected to be padding bytes.
 The frame contains 0x00 bytes and extends to the end of the QUIC
 packet. A PADDING frame only has a Frame Type field, and must have
 the 8-bit Frame Type field set to 0x00.

 +--------+
 | 0x00 |
 +--------+

6.8. PING frame

 Endpoints can use PING frames to verify that their peers are still
 alive or to check reachability to the peer. The PING frame contains
 no payload. The receiver of a PING frame simply needs to ACK the
 packet containing this frame. The PING frame SHOULD be used to keep
 a connection alive when a stream is open. The default is to send a
 PING frame after 15 seconds of quiescence. A PING frame only has a
 Frame Type field, and must have the 8-bit Frame Type field set to
 0x07.

Hamilton, et al. Expires May 4, 2017 [Page 25]

Internet-Draft QUIC October 2016

 +--------+
 | 0x07 |
 +--------+

6.9. CONNECTION_CLOSE frame

 An endpoint sends a CONNECTION_CLOSE frame to notify its peer that
 the connection is being closed. If there are open streams that
 haven't been explicitly closed, they are implicitly closed when the
 connection is closed. (Ideally, a GOAWAY frame would be sent with
 enough time that all streams are torn down.) The frame is as
 follows:

+---+
| Type(8) | Error code (32) | Reason phrase length (16) | Reason phrase |
+---+

 The fields of a CONNECTION_CLOSE frame are as follows:

 o Frame Type: An 8-bit value that must be set to 0x02 specifying
 that this is a CONNECTION_CLOSE frame.

 o Error Code: A 32-bit error code which indicates the reason for
 closing this connection.

 o Reason Phrase Length: A 16-bit unsigned number specifying the
 length of the reason phrase. This may be zero if the sender
 chooses to not give details beyond the QuicErrorCode.

 o Reason Phrase: An optional human-readable explanation for why the
 connection was closed.

6.10. GOAWAY Frame

 An endpoint may use a GOAWAY frame to notify its peer that the
 connection should stop being used, and will likely be aborted in the
 future. The endpoints will continue using any active streams, but
 the sender of the GOAWAY will not initiate any additional streams,
 and will not accept any new streams. The frame is as follows:

 +---+
 | Type (8) | Error code (32) | Last Good Stream ID (32) |
 +---+
 +--+
 | Reason phrase length (16) | Reason phrase |
 +--+

 The fields of a GOAWAY frame are as follows:

Hamilton, et al. Expires May 4, 2017 [Page 26]

Internet-Draft QUIC October 2016

 o Frame type: An 8-bit value that must be set to 0x03 specifying
 that this is a GOAWAY frame.

 o Error Code: A 32-bit field error code which indicates the reason
 for closing this connection.

 o Last Good Stream ID: The last Stream ID which was accepted by the
 sender of the GOAWAY message. If no streams were replied to, this
 value must be set to 0.

 o Reason Phrase Length: A 16-bit unsigned number specifying the
 length of the reason phrase. This may be zero if the sender
 chooses to not give details beyond the error code.

 o Reason Phrase: An optional human-readable explanation for why the
 connection was closed.

7. Packetization and Reliability

 The maximum packet size for QUIC is the maximum size of the encrypted
 payload of the resulting UDP datagram. All QUIC packets SHOULD be
 sized to fit within the path's MTU to avoid IP fragmentation. The
 recommended default maximum packet size is 1350 bytes for IPv6 and
 1370 bytes for IPv4. To optimize better, endpoints MAY use PLPMTUD
 [RFC4821] for detecting the path's MTU and setting the maximum packet
 size appropriately.

 A sender bundles one or more frames in a Regular QUIC packet. A
 sender MAY bundle any set of frames in a packet. All QUIC packets
 MUST contain a packet number and MAY contain one or more frames
 (Section XX). Packet numbers MUST be unique within a connection and
 MUST NOT be reused within the same connection. Packet numbers MUST
 be assigned to packets in a strictly monotonically increasing order.
 The initial packet number used, at both the client and the server,
 MUST be 0. That is, the first packet in both directions of the
 connection MUST have a packet number of 0.

 A sender SHOULD minimize per-packet bandwidth and computational costs
 by bundling as many frames as possible within a QUIC packet. A
 sender MAY wait for a short period of time to bundle multiple frames
 before sending a packet that is not maximally packed, to avoid
 sending out large numbers of small packets. An implementation may
 use heuristics about expected application sending behavior to
 determine whether and for how long to wait. This waiting period is
 an implementation decision, and an implementation should be careful
 to delay conservatively, since any delay is likely to increase
 application-visible latency.

https://datatracker.ietf.org/doc/html/rfc4821

Hamilton, et al. Expires May 4, 2017 [Page 27]

Internet-Draft QUIC October 2016

 Regular QUIC packets are "containers" of frames; a packet is never
 retransmitted whole, but frames in a lost packet may be rebundled and
 transmitted in a subsequent packet as necessary.

 A packet may contain frames and/or application data, only some of
 which may require reliability. When a packet is detected as lost,
 the sender SHOULD only resend frames that require retransmission.

 o All application data sent in STREAM frames MUST be retransmitted,
 with one exception. When an endpoint sends a RST_STREAM frame,
 data outstanding on that stream SHOULD NOT be retransmitted, since
 subsequent data on this stream is expected to not be delivered by
 the receiver.

 o ACK, STOP_WAITING, and PADDING frames MUST NOT be retransmitted.
 New frames of these types may however be bundled with any outgoing
 packet.

 o All other frames MUST be retransmitted.

 Upon detecting losses, a sender MUST take appropriate congestion
 control action. The details of loss detection and congestion control
 are described in [draft-loss-recovery].

 A receiver acknowledges receipt of a received packet by sending one
 or more ACK frames containing the packet number of the received
 packet. To avoid perpetual acking between endpoints, a receiver MUST
 NOT generate an ack in response to every packet containing only ACK
 frames. However, since it is possible that an endpoint sends only
 packets containing ACK frame (or other non-retransmittable frames),
 the receiving peer MAY send an ACK frame after a reasonable number
 (currently 20) of such packets have been received.

 Strategies and implications of the frequency of generating
 acknowledgments are discussed in more detail in [draft-loss-

recovery].

8. Streams: QUIC's Data Structuring Abstraction

 Streams in QUIC provide a lightweight, ordered, and bidirectional
 byte-stream abstraction. Streams can be created either by the client
 or the server, can concurrently send data interleaved with other
 streams, and can be cancelled. QUIC's stream lifetime is modeled
 closely after HTTP/2's [RFC7540]. Streams are independent of each
 other in delivery order. That is, data that is received on a stream
 is delivered in order within that stream, but there is no particular
 delivery order across streams. Transmit ordering among streams is
 left to the implementation. QUIC streams are considered lightweight

https://datatracker.ietf.org/doc/html/draft-loss-recovery
https://datatracker.ietf.org/doc/html/draft-loss-recovery
https://datatracker.ietf.org/doc/html/draft-loss-recovery
https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires May 4, 2017 [Page 28]

Internet-Draft QUIC October 2016

 in that the creation and destruction of streams are expected to have
 minimal bandwidth and computational cost. A single STREAM frame may
 create, carry data for, and terminate a stream, or a stream may last
 the entire duration of a connection. Implementations are therefore
 advised to keep these extremes in mind and to implement stream
 creation and destruction to be as lightweight as possible.

 An alternative view of QUIC streams is as an elastic "message"
 abstraction, similar to the way ephemeral streams are used in SST
 [cite SST], which may be a more appealing description for some
 applications.

8.1. Life of a Stream

 The semantics of QUIC streams is based on HTTP/2 streams, and the
 lifecycle of a QUIC stream therefore closely follows that of an
 HTTP/2 stream [RFC7540], with some differences to accommodate the
 possibility of out-of-order delivery due to the use of multiple
 streams in QUIC. The lifecycle of a QUIC stream is shown in the
 following figure and described below.

https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires May 4, 2017 [Page 29]

Internet-Draft QUIC October 2016

 app +--------+
 reserve_stream | |
 ,--------------| idle |
 / | |
 / +--------+
 V |
 +----------+ send data/ |
 | | recv data | send data/
 ,---| reserved |------------. | recv data
 | | | \ |
 | +----------+ v v
 | recv FIN/ +--------+ send FIN/
 | app read_close | | app write_close
 | ,---------| open |-----------.
 | / | | \
 | v +--------+ v
 | +----------+ | +----------+
 | | half | | | half |
 | | closed | | send RST/ | closed |
 | | (remote) | | recv RST | (local) |
 | +----------+ | +----------+
 | | | |
 | | recv FIN/ | send FIN/ |
 | | app write_close/ | app read_close/ |
 | | send RST/ v send RST/ |
 | | recv RST +--------+ recv RST |
 | send RST/ `------------->| |<---------------'
 | recv RST | closed |
 `-------------------------->| |
 +--------+

 send: endpoint sends this frame
 recv: endpoint receives this frame

 data: application data in a STREAM frame
 FIN: FIN flag in a STREAM frame
 RST: RST_STREAM frame

 app: application API signals to QUIC
 reserve_stream: causes a StreamID to be reserved for later use
 read_close: causes stream to be half-closed without receiving a FIN
 write_close: causes stream to be half-closed without sending a FIN

 Note that this diagram shows stream state transitions and the frames
 and flags that affect those transitions only. For the purpose of
 state transitions, the FIN flag is processed as a separate event to
 the frame that bears it; a STREAM frame with the FIN flag set can
 cause two state transitions. When the FIN bit is sent on an empty

Hamilton, et al. Expires May 4, 2017 [Page 30]

Internet-Draft QUIC October 2016

 STREAM frame, the offset in the STREAM frame MUST be one greater than
 the last data byte sent on this stream.

 Both endpoints have a subjective view of the state of a stream that
 could be different when frames are in transit. Endpoints do not
 coordinate the creation of streams; they are created unilaterally by
 either endpoint. The negative consequences of a mismatch in states
 are limited to the "closed" state after sending RST_STREAM, where
 frames might be received for some time after closing.

 Streams have the following states:

8.1.1. idle

 All streams start in the "idle" state.

 The following transitions are valid from this state:

 Sending or receiving a STREAM frame causes the stream to become
 "open". The stream identifier is selected as described in
 Section XX. The same STREAM frame can also cause a stream to
 immediately become "half-closed".

 An application can reserve an idle stream for later use. The stream
 state for the reserved stream transitions to "reserved".

 Receiving any frame other than STREAM or RST_STREAM on a stream in
 this state MUST be treated as a connection error (Section XX) of type
 YYYY.

8.1.2. reserved

 A stream in this state has been reserved for later use by the
 application. In this state only the following transitions are
 possible:

 o Sending or receiving a STREAM frame causes the stream to become
 "open".

 o Sending or receiving a RST_STREAM frame causes the stream to
 become "closed".

8.1.3. open

 A stream in the "open" state may be used by both peers to send frames
 of any type. In this state, a sending peer must observe the flow-
 control limit advertised by its receiving peer (Section XX).

Hamilton, et al. Expires May 4, 2017 [Page 31]

Internet-Draft QUIC October 2016

 From this state, either endpoint can send a frame with the FIN flag
 set, which causes the stream to transition into one of the "half-
 closed" states. An endpoint sending an FIN flag causes the stream
 state to become "half-closed (local)". An endpoint receiving a FIN
 flag causes the stream state to become "half-closed (remote)"; the
 receiving endpoint MUST NOT process the FIN flag until all preceding
 data on the stream has been received.

 Either endpoint can send a RST_STREAM frame from this state, causing
 it to transition immediately to "closed".

8.1.4. half-closed (local)

 A stream that is in the "half-closed (local)" state MUST NOT be used
 for sending STREAM frames; WINDOW_UPDATE and RST_STREAM MAY be sent
 in this state.

 A stream transitions from this state to "closed" when a frame that
 contains an FIN flag is received or when either peer sends a
 RST_STREAM frame.

 An endpoint can receive any type of frame in this state. Providing
 flow-control credit using WINDOW_UPDATE frames is necessary to
 continue receiving flow-controlled frames. In this state, a receiver
 MAY ignore WINDOW_UPDATE frames for this stream, which might arrive
 for a short period after a frame bearing the FIN flag is sent.

8.1.5. half-closed (remote)

 A stream that is "half-closed (remote)" is no longer being used by
 the peer to send any data. In this state, a sender is no longer
 obligated to maintain a receiver stream-level flow-control window.

 If an endpoint receives any STREAM frames for a stream that is in
 this state, it MUST close the connection with a
 QUIC_STREAM_DATA_AFTER_TERMINATION error (Section XX).

 A stream in this state can be used by the endpoint to send frames of
 any type. In this state, the endpoint continues to observe
 advertised stream-level and connection-level flow-control limits
 (Section XX).

 A stream can transition from this state to "closed" by sending a
 frame that contains a FIN flag or when either peer sends a RST_STREAM
 frame.

Hamilton, et al. Expires May 4, 2017 [Page 32]

Internet-Draft QUIC October 2016

8.1.6. closed

 The "closed" state is the terminal state.

 A final offset is present in both a frame bearing a FIN flag and in a
 RST_STREAM frame. Upon sending either of these frames for a stream,
 the endpoint MUST NOT send a STREAM frame carrying data beyond the
 final offset.

 An endpoint that receives any frame for this stream after receiving
 either a FIN flag and all stream data preceding it, or a RST_STREAM
 frame, MUST quietly discard the frame, with one exception. If a
 STREAM frame carrying data beyond the received final offset is
 received, the endpoint MUST close the connection with a
 QUIC_STREAM_DATA_AFTER_TERMINATION error (Section XX).

 An endpoint that receives a RST_STREAM frame (and which has not sent
 a FIN or a RST_STREAM) MUST immediately respond with a RST_STREAM
 frame, and MUST NOT send any more data on the stream. This endpoint
 may continue receiving frames for the stream on which a RST_STREAM is
 received.

 If this state is reached as a result of sending a RST_STREAM frame,
 the peer that receives the RST_STREAM might have already sent -- or
 enqueued for sending -- frames on the stream that cannot be
 withdrawn. An endpoint MUST ignore frames that it receives on closed
 streams after it has sent a RST_STREAM frame. An endpoint MAY choose
 to limit the period over which it ignores frames and treat frames
 that arrive after this time as being in error.

 STREAM frames received after sending RST_STREAM are counted toward
 the connection and stream flow-control windows. Even though these
 frames might be ignored, because they are sent before their sender
 receives the RST_STREAM, the sender will consider the frames to count
 against its flow-control windows.

 In the absence of more specific guidance elsewhere in this document,
 implementations SHOULD treat the receipt of a frame that is not
 expressly permitted in the description of a state as a connection
 error (Section XX). Frames of unknown types are ignored.

 (TODO: QUIC_STREAM_NO_ERROR is a special case. Write it up.)

8.2. Stream Identifiers

 Streams are identified by an unsigned 32-bit integer, referred to as
 the StreamID. To avoid StreamID collision, clients MUST initiate

Hamilton, et al. Expires May 4, 2017 [Page 33]

Internet-Draft QUIC October 2016

 streams usinge odd-numbered StreamIDs; streams initiated by the
 server MUST use even-numbered StreamIDs.

 A StreamID of zero (0x0) is reserved and used for connection-level
 flow control frames (Section XX); the StreamID of zero cannot be used
 to establish a new stream.

 StreamID 1 (0x1) is reserved for the crypto handshake. StreamID 1
 MUST NOT be used for application data, and MUST be the first client-
 initiated stream.

 Streams MUST be created or reserved in sequential order, but MAY be
 used in arbitrary order. A QUIC endpoint MUST NOT reuse a StreamID
 on a given connection.

8.3. Stream Concurrency

 An endpoint can limit the number of concurrently active incoming
 streams by setting the MSPC parameter (see Section XX) in the
 transport parameters. The maximum concurrent streams setting is
 specific to each endpoint and applies only to the peer that receives
 the setting. That is, clients specify the maximum number of
 concurrent streams the server can initiate, and servers specify the
 maximum number of concurrent streams the client can initiate.

 Streams that are in the "open" state or in either of the "half-
 closed" states count toward the maximum number of streams that an
 endpoint is permitted to open. Streams in any of these three states
 count toward the limit advertised in the MSPC setting.

 Endpoints MUST NOT exceed the limit set by their peer. An endpoint
 that receives a STREAM frame that causes its advertised concurrent
 stream limit to be exceeded MUST treat this as a stream error of type
 QUIC_TOO_MANY_OPEN_STREAMS (Section XX).

8.4. Sending and Receiving Data

 Once a stream is created, endpoints may use the stream to send and
 receive data. Each endpoint may send a series of STREAM frames
 encapsulating data on a stream until the stream is terminated in that
 direction. Streams are an ordered byte-stream abstraction, and they
 have no other structure within them. STREAM frame boundaries are not
 expected to be preserved in retransmissions from the sender or during
 delivery to the application at the receiver.

 When new data is to be sent on a stream, a sender MUST set the
 encapsulating STREAM frame's offset field to the stream offset of the
 first byte of this new data. The first byte of data that is sent on

Hamilton, et al. Expires May 4, 2017 [Page 34]

Internet-Draft QUIC October 2016

 a stream has the stream offset 0. A receiver MUST ensure that
 received stream data is delivered to the application as an ordered
 byte-stream. Data received out of order MUST be buffered for later
 delivery, as long as it is not in violation of the receiver's flow
 control limits.

 An endpoint MUST NOT send any stream data without consulting the
 congestion controller and the flow controller, with the following two
 exceptions.

 o The crypto handshake stream, Stream 1, MUST NOT be subject to
 congestion control or connection-level flow control, but MUST be
 subject to stream-level flow control.

 o An application MAY exclude specific stream IDs from connection-
 level flow control. If so, these streams MUST NOT be subject to
 connection-level flow control.

 Flow control is described in detail in Section XX, and congestion
 control is described in the companion document [draft-iyengar-quic-

loss-recovery].

9. Flow Control

 It is necessary to limit the amount of data that a sender may have
 outstanding at any time, so as to prevent a fast sender from
 overwhelming a slow receiver, or to prevent a malicious sender from
 consuming significant resources at a receiver. This section
 describes QUIC's flow-control mechanisms.

 QUIC employs a credit-based flow-control scheme similar to HTTP/2's
 flow control [RFC7540]. A receiver advertises the number of octets
 it is prepared to receive on a given stream and for the entire
 connection. This leads to two levels of flow control in QUIC: (i)
 Connection flow control, which prevents senders from exceeding a
 receiver's buffer capacity for the connection, and (ii) Stream flow
 control, which prevents a single stream from consuming the entire
 receive buffer for a connection.

 A receiver sends WINDOW_UPDATE frames to the sender to advertise
 additional credit, for both connection and stream flow control. A
 receiver advertises the maximum absolute byte offset in the stream or
 in the connection which the receiver is willing to receive.

 The initial flow control credit is 65536 bytes for both the stream
 and connection flow controllers.

https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery
https://datatracker.ietf.org/doc/html/rfc7540

Hamilton, et al. Expires May 4, 2017 [Page 35]

Internet-Draft QUIC October 2016

 A receiver MAY advertise a larger offset at any point in the
 connection by sending a WINDOW_UPDATE frame. A receiver MUST NOT
 renege on an advertisement; that is, once a receiver advertises an
 offset via a WINDOW_UPDATE frame, it MUST NOT subsequently advertise
 a smaller offset. A sender may receive WINDOW_UPDATE frames out of
 order; a sender MUST therefore ignore any reductions in flow control
 credit.

 A sender MUST send BLOCKED frames to indicate it has data to write
 but is blocked by lack of connection or stream flow control credit.
 BLOCKED frames are expected to be sent infrequently in common cases,
 but they are considered useful for debugging and monitoring purposes.

 A receiver advertises credit for a stream by sending a WINDOW_UPDATE
 frame with the StreamID set appropriately. A receiver may simply use
 the current received offset to determine the flow control offset to
 be advertised.

 Connection flow control is a limit to the total bytes of stream data
 sent in STREAM frames. A receiver advertises credit for a connection
 by sending a WINDOW_UPDATE frame with the StreamID set to zero
 (0x00). A receiver may maintain a cumulative sum of bytes received
 cumulatively on all streams to determine the value of the connection
 flow control offset to be advertised in WINDOW_UPDATE frames. A
 sender may maintain a cumulative sum of stream data bytes sent to
 impose the connection flow control limit.

9.1. Edge Cases and Other Considerations

 There are some edge cases which must be considered when dealing with
 stream and connection level flow control. Given enough time, both
 endpoints must agree on flow control state. If one end believes it
 can send more than the other end is willing to receive, the
 connection will be torn down when too much data arrives. Conversely
 if a sender believes it is blocked, while endpoint B expects more
 data can be received, then the connection can be in a deadlock, with
 the sender waiting for a WINDOW_UPDATE which will never come.

9.1.1. Mid-stream RST_STREAM

 On receipt of an RST_STREAM frame, an endpoint will tear down state
 for the matching stream and ignore further data arriving on that
 stream. This could result in the endpoints getting out of sync,
 since the RST_STREAM frame may have arrived out of order and there
 may be further bytes in flight. The data sender would have counted
 the data against its connection level flow control budget, but a
 receiver that has not received these bytes would not know to include
 them as well. The receiver must learn of the number of bytes that

Hamilton, et al. Expires May 4, 2017 [Page 36]

Internet-Draft QUIC October 2016

 were sent on the stream to make the same adjustment in its connection
 flow controller.

 To avoid this de-synchronization, a RST_STREAM sender MUST include
 the final byte offset sent on the stream in the RST_STREAM frame. On
 receiving a RST_STREAM frame, a receiver definitively knows how many
 bytes were sent on that stream before the RST_STREAM frame, and the
 receiver MUST use the final offset to account for all bytes sent on
 the stream in its connection level flow controller.

9.1.2. Response to a RST_STREAM

 Since streams are bidirectional, a sender of a RST_STREAM needs to
 know how many bytes the peer has sent on the stream. If an endpoint
 receives a RST_STREAM frame and has sent neither a FIN nor a
 RST_STREAM, it MUST send a RST_STREAM in response, bearing the offset
 of the last byte sent on this stream as the final offset.

9.1.3. Offset Increment

 This document leaves when and how many bytes to advertise in a
 WINDOW_UPDATE to the implementation, but offers a few considerations.
 WINDOW_UPDATE frames constitute overhead, and therefore, sending a
 WINDOW_UPDATE with small offset increments is undesirable. At the
 same time, sending WINDOW_UPDATES with large offset increments
 requires the sender to commit to that amount of buffer.
 Implementations must find the correct tradeoff between these sides to
 determine how large an offset increment to send in a WINDOW_UPDATE.

 A receiver MAY use an autotuning mechanism to tune the size of the
 offset increment to advertise based on a roundtrip time estimate and
 the rate at which the receiving application consumes data, similar to
 common TCP implementations.

9.1.4. BLOCKED frames

 If a sender does not receive a WINDOW_UPDATE frame when it has run
 out of flow control credit, the sender will be blocked and MUST send
 a BLOCKED frame. A BLOCKED frame is expected to be useful for
 debugging at the receiver. A receiver SHOULD NOT wait for a BLOCKED
 frame before sending with a WINDOW_UPDATE, since doing so will cause
 at least one roundtrip of quiescence. For smooth operation of the
 congestion controller, it is generally considered best to not let the
 sender go into quiescence if avoidable. To avoid blocking a sender,
 and to reasonably account for the possibiity of loss, a receiver
 should send a WINDOW_UPDATE frame at least two roundtrips before it
 expects the sender to get blocked.

Hamilton, et al. Expires May 4, 2017 [Page 37]

Internet-Draft QUIC October 2016

10. Error Codes

 This section lists all the QUIC error codes that may be used in a
 CONNECTION_CLOSE frame. TODO: Trim list and group errors for
 readabiity.

 o 0x01: QUIC_INTERNAL_ERROR. (Connection has reached an invalid
 state.)

 o 0x02: QUIC_STREAM_DATA_AFTER_TERMINATION. (There were data frames
 after the a fin or reset.)

 o 0x03: QUIC_INVALID_PACKET_HEADER. (Control frame is malformed.)

 o 0x04: QUIC_INVALID_FRAME_DATA. (Frame data is malformed.)

 o 0x30: QUIC_MISSING_PAYLOAD. (The packet contained no payload.)

 o 0x2e: QUIC_INVALID_STREAM_DATA. (STREAM frame data is malformed.)

 o 0x57: QUIC_OVERLAPPING_STREAM_DATA. (STREAM frame data overlaps
 with buffered data.)

 o 0x3d: QUIC_UNENCRYPTED_STREAM_DATA. (Received STREAM frame data
 is not encrypted.)

 o 0x58: QUIC_ATTEMPT_TO_SEND_UNENCRYPTED_STREAM_DATA. (Attempt to
 send unencrypted STREAM frame. Not sent on the wire, used for
 local logging.)

 o 0x59: QUIC_MAYBE_CORRUPTED_MEMORY. (Received a frame which is
 likely the result of memory corruption.)

 o 0x06: QUIC_INVALID_RST_STREAM_DATA. (RST_STREAM frame data is
 malformed.)

 o 0x07: QUIC_INVALID_CONNECTION_CLOSE_DATA. (CONNECTION_CLOSE frame
 data is malformed.)

 o 0x08: QUIC_INVALID_GOAWAY_DATA. (GOAWAY frame data is malformed.)

 o 0x39: QUIC_INVALID_WINDOW_UPDATE_DATA. (WINDOW_UPDATE frame data
 is malformed.)

 o 0x3a: QUIC_INVALID_BLOCKED_DATA. (BLOCKED frame data is
 malformed.)

Hamilton, et al. Expires May 4, 2017 [Page 38]

Internet-Draft QUIC October 2016

 o 0x3c: QUIC_INVALID_STOP_WAITING_DATA. (STOP_WAITING frame data is
 malformed.)

 o 0x4e: QUIC_INVALID_PATH_CLOSE_DATA. (PATH_CLOSE frame data is
 malformed.)

 o 0x09: QUIC_INVALID_ACK_DATA. (ACK frame data is malformed.)

 o 0x0a: QUIC_INVALID_VERSION_NEGOTIATION_PACKET. (Version
 negotiation packet is malformed.)

 o 0x0b: QUIC_INVALID_PUBLIC_RST_PACKET. (Public RST packet is
 malformed.)

 o 0x0c: QUIC_DECRYPTION_FAILURE. (There was an error decrypting.)

 o 0x0d: QUIC_ENCRYPTION_FAILURE. (There was an error encrypting.)

 o 0x0e: QUIC_PACKET_TOO_LARGE. (The packet exceeded
 kMaxPacketSize.)

 o 0x10: QUIC_PEER_GOING_AWAY. (The peer is going away. May be a
 client or server.)

 o 0x11: QUIC_INVALID_STREAM_ID. (A stream ID was invalid.)

 o 0x31: QUIC_INVALID_PRIORITY. (A priority was invalid.)

 o 0x12: QUIC_TOO_MANY_OPEN_STREAMS. (Too many streams already
 open.)

 o 0x4c: QUIC_TOO_MANY_AVAILABLE_STREAMS. (The peer created too many
 available streams.)

 o 0x13: QUIC_PUBLIC_RESET. (Received public reset for this
 connection.)

 o 0x14: QUIC_INVALID_VERSION. (Invalid protocol version.)

 o 0x16: QUIC_INVALID_HEADER_ID. (The Header ID for a stream was too
 far from the previous.)

 o 0x17: QUIC_INVALID_NEGOTIATED_VALUE. (Negotiable parameter
 received during handshake had invalid value.)

 o 0x18: QUIC_DECOMPRESSION_FAILURE. (There was an error
 decompressing data.)

Hamilton, et al. Expires May 4, 2017 [Page 39]

Internet-Draft QUIC October 2016

 o 0x19: QUIC_NETWORK_IDLE_TIMEOUT. (The connection timed out due to
 no network activity.)

 o 0x43: QUIC_HANDSHAKE_TIMEOUT. (The connection timed out waiting
 for the handshake to complete.)

 o 0x1a: QUIC_ERROR_MIGRATING_ADDRESS. (There was an error
 encountered migrating addresses.)

 o 0x56: QUIC_ERROR_MIGRATING_PORT. (There was an error encountered
 migrating port only.)

 o 0x1b: QUIC_PACKET_WRITE_ERROR. (There was an error while writing
 to the socket.)

 o 0x33: QUIC_PACKET_READ_ERROR. (There was an error while reading
 from the socket.)

 o 0x32: QUIC_EMPTY_STREAM_FRAME_NO_FIN. (We received a STREAM_FRAME
 with no data and no fin flag set.)

 o 0x38: QUIC_INVALID_HEADERS_STREAM_DATA. (We received invalid data
 on the headers stream.)

 o 0x3b: QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA. (The peer
 received too much data, violating flow control.)

 o 0x3f: QUIC_FLOW_CONTROL_SENT_TOO_MUCH_DATA. (The peer sent too
 much data, violating flow control.)

 o 0x40: QUIC_FLOW_CONTROL_INVALID_WINDOW. (The peer received an
 invalid flow control window.)

 o 0x3e: QUIC_CONNECTION_IP_POOLED. (The connection has been IP
 pooled into an existing connection.)

 o 0x44: QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS. (The connection has
 too many outstanding sent packets.)

 o 0x45: QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS. (The connection
 has too many outstanding received packets.)

 o 0x46: QUIC_CONNECTION_CANCELLED. (The quic connection has been
 cancelled.)

 o 0x47: QUIC_BAD_PACKET_LOSS_RATE. (Disabled QUIC because of high
 packet loss rate.)

Hamilton, et al. Expires May 4, 2017 [Page 40]

Internet-Draft QUIC October 2016

 o 0x49: QUIC_PUBLIC_RESETS_POST_HANDSHAKE. (Disabled QUIC because
 of too many PUBLIC_RESETs post handshake.)

 o 0x4a: QUIC_TIMEOUTS_WITH_OPEN_STREAMS. (Disabled QUIC because of
 too many timeouts with streams open.)

 o 0x4b: QUIC_FAILED_TO_SERIALIZE_PACKET. (Closed because we failed
 to serialize a packet.)

 o 0x55: QUIC_TOO_MANY_RTOS. (QUIC timed out after too many RTOs.)

 o 0x1c: QUIC_HANDSHAKE_FAILED. (Crypto errors.Hanshake failed.)

 o 0x1d: QUIC_CRYPTO_TAGS_OUT_OF_ORDER. (Handshake message contained
 out of order tags.)

 o 0x1e: QUIC_CRYPTO_TOO_MANY_ENTRIES. (Handshake message contained
 too many entries.)

 o 0x1f: QUIC_CRYPTO_INVALID_VALUE_LENGTH. (Handshake message
 contained an invalid value length.)

 o 0x20: QUIC_CRYPTO_MESSAGE_AFTER_HANDSHAKE_COMPLETE. (A crypto
 message was received after the handshake was complete.)

 o 0x21: QUIC_INVALID_CRYPTO_MESSAGE_TYPE. (A crypto message was
 received with an illegal message tag.)

 o 0x22: QUIC_INVALID_CRYPTO_MESSAGE_PARAMETER. (A crypto message
 was received with an illegal parameter.)

 o 0x34: QUIC_INVALID_CHANNEL_ID_SIGNATURE. (An invalid channel id
 signature was supplied.)

 o 0x23: QUIC_CRYPTO_MESSAGE_PARAMETER_NOT_FOUND. (A crypto message
 was received with a mandatory parameter missing.)

 o 0x24: QUIC_CRYPTO_MESSAGE_PARAMETER_NO_OVERLAP. (A crypto message
 was received with a parameter that has no overlapwith the local
 parameter.)

 o 0x25: QUIC_CRYPTO_MESSAGE_INDEX_NOT_FOUND. (A crypto message was
 received that contained a parameter with too fewvalues.)

 o 0x5e: QUIC_UNSUPPORTED_PROOF_DEMAND. (A demand for an unsupport
 proof type was received.)

Hamilton, et al. Expires May 4, 2017 [Page 41]

Internet-Draft QUIC October 2016

 o 0x26: QUIC_CRYPTO_INTERNAL_ERROR. (An internal error occured in
 crypto processing.)

 o 0x27: QUIC_CRYPTO_VERSION_NOT_SUPPORTED. (A crypto handshake
 message specified an unsupported version.)

 o 0x48: QUIC_CRYPTO_HANDSHAKE_STATELESS_REJECT. (A crypto handshake
 message resulted in a stateless reject.)

 o 0x28: QUIC_CRYPTO_NO_SUPPORT. (There was no intersection between
 the crypto primitives supported by thepeer and ourselves.)

 o 0x29: QUIC_CRYPTO_TOO_MANY_REJECTS. (The server rejected our
 client hello messages too many times.)

 o 0x2a: QUIC_PROOF_INVALID. (The client rejected the server's
 certificate chain or signature.)

 o 0x2b: QUIC_CRYPTO_DUPLICATE_TAG. (A crypto message was received
 with a duplicate tag.)

 o 0x2c: QUIC_CRYPTO_ENCRYPTION_LEVEL_INCORRECT. (A crypto message
 was received with the wrong encryption level (i.e. itshould have
 been encrypted but was not.))

 o 0x2d: QUIC_CRYPTO_SERVER_CONFIG_EXPIRED. (The server config for a
 server has expired.)

 o 0x35: QUIC_CRYPTO_SYMMETRIC_KEY_SETUP_FAILED. (We failed to setup
 the symmetric keys for a connection.)

 o 0x36: QUIC_CRYPTO_MESSAGE_WHILE_VALIDATING_CLIENT_HELLO. (A
 handshake message arrived, but we are still validating theprevious
 handshake message.)

 o 0x41: QUIC_CRYPTO_UPDATE_BEFORE_HANDSHAKE_COMPLETE. (A server
 config update arrived before the handshake is complete.)

 o 0x5a: QUIC_CRYPTO_CHLO_TOO_LARGE. (CHLO cannot fit in one
 packet.)

 o 0x37: QUIC_VERSION_NEGOTIATION_MISMATCH. (This connection
 involved a version negotiation which appears to have beentampered
 with.)

 o 0x50: QUIC_IP_ADDRESS_CHANGED. (IP address changed causing
 connection close.)

Hamilton, et al. Expires May 4, 2017 [Page 42]

Internet-Draft QUIC October 2016

 o 0x51: QUIC_CONNECTION_MIGRATION_NO_MIGRATABLE_STREAMS.
 (Connection migration errors.Network changed, but connection had
 no migratable streams.)

 o 0x52: QUIC_CONNECTION_MIGRATION_TOO_MANY_CHANGES. (Connection
 changed networks too many times.)

 o 0x53: QUIC_CONNECTION_MIGRATION_NO_NEW_NETWORK. (Connection
 migration was attempted, but there was no new network tomigrate
 to.)

 o 0x54: QUIC_CONNECTION_MIGRATION_NON_MIGRATABLE_STREAM. (Network
 changed, but connection had one or more non-migratable streams.)

 o 0x5d: QUIC_TOO_MANY_FRAME_GAPS. (Stream frames arrived too
 discontiguously so that stream sequencer buffermaintains too many
 gaps.)

 o 0x5f: QUIC_STREAM_SEQUENCER_INVALID_STATE. (Sequencer buffer get
 into weird state where continuing read/write will leadto crash.)

 o 0x60: QUIC_TOO_MANY_SESSIONS_ON_SERVER. (Connection closed
 because of server hits max number of sessions allowed.

11. Security and Privacy Considerations

11.1. Spoofed Ack Attack

 An attacker receives an STK from the server and then releases the IP
 address on which it received the STK. The attacked may in the
 future, spoof this same address (which now presumably addresses a
 different endpoint), and initiates a 0-RTT connection with a server
 on the victim's behalf. The attacker then spoofs ack packets to the
 server which cause the server to potentially drown the victim in
 data.

 There are two possible mitigations to this attack. The simplest one
 is that a server can unilaterally create a gap in packet-number
 space. In the non-attack scenario, the client will send an ack with
 a larger largest acked. In the attack scenario, the attacker may ack
 a packet in the gap. If the server sees an ack for a packet that was
 never sent, the connection can be aborted.

 The second mitigation is that the server can require that acks for
 sent packets match the encryption level of the sent packet. This
 mitigation is useful if the connection has an ephemeral forward-
 secure key that is generated and used for every new connection. If a
 packet sent is encrypted with a forward-secure key, then any acks

Hamilton, et al. Expires May 4, 2017 [Page 43]

Internet-Draft QUIC October 2016

 that are received for them must also be forward-secure encrypted.
 Since the attacker will not have the forward secure key, the attacker
 will not be able to generate forward-secure encrypted ack packets.

12. Contributors

 This protocol is the outcome of work by many engineers, not just the
 authors of this document. The design and rationale behind QUIC draw
 significantly from work by Jim Roskind [1]. In alphabetical order,
 the contributors to the project are: Britt Cyr, Jeremy Dorfman, Ryan
 Hamilton, Jana Iyengar, Fedor Kouranov, Charles Krasic, Jo Kulik,
 Adam Langley, Jim Roskind, Robbie Shade, Satyam Shekhar, Cherie Shi,
 Ian Swett, Raman Tenneti, Victor Vasiliev, Antonio Vicente, Patrik
 Westin, Alyssa Wilk, Dale Worley, Fan Yang, Dan Zhang, Daniel
 Ziegler.

13. Acknowledgments

 Special thanks are due to the following for helping shape QUIC and
 its deployment: Chris Bentzel, Misha Efimov, Roberto Peon, Alistair
 Riddoch, Siddharth Vijayakrishnan, and Assar Westerlund. QUIC has
 also benefited immensely from discussions with folks in private
 conversations and public ones on the proto-quic@chromium.org mailing
 list.

 .

14. References

14.1. Normative References

 [RFC2119] Bradner, S., "Key Words for use in RFCs to Indicate
 Requirement Levels", March 1997.

 [draft-thomson-quic-tls]
 Thomson, M. and R. Hamilton, "Porting QUIC to TLS", March
 2016.

 [draft-iyengar-quic-loss-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Recovery and
 Congestion Control", July 2016.

14.2. Informative References

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, "Hypertext Transfer
 Protocol Version 2 (HTTP/2)", May 2015.

https://datatracker.ietf.org/doc/html/draft-thomson-quic-tls
https://datatracker.ietf.org/doc/html/draft-iyengar-quic-loss-recovery

Hamilton, et al. Expires May 4, 2017 [Page 44]

Internet-Draft QUIC October 2016

 [QUIC-CRYPTO]
 Langley, A. and W. Chang, "QUIC Crypto", June 2015,
 <http://goo.gl/OuVSxa>.

14.3. URIs

 [1] https://goo.gl/dMVtFi

Authors' Addresses

 Ryan Hamilton
 Google

 Email: rch@google.com

 Janardhan Iyengar
 Google

 Email: jri@google.com

 Ian Swett
 Google

 Email: ianswett@google.com

 Alyssa Wilk
 Google

 Email: alyssar@google.com

http://goo.gl/OuVSxa
https://goo.gl/dMVtFi

Hamilton, et al. Expires May 4, 2017 [Page 45]

