Network Working Group E. Hammer -Lahav ToC

Internet-Draft Yahoo!
Intended status: January 09,
Informational 2009

Expires: July 13, 2009

HTTP-based Resource Descriptor Discovery
draft-hammer-discovery-00

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 13, 2009.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents in effect on the date of
publication of this document (http://trustee.ietf.org/license-info).
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document.

Abstract

This memo describes an HTTP-based process for obtaining information
about a resource identified by a URI. The 'information about a
resource' - a resource descriptor - typically provides machine-readable
information that aims to assist and enhance the interaction with the
resource. This memo only defines the process for locating and obtaining
the descriptor, but leaves the descriptor format and its interpretation
out of scope.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

Introduction

Notational Conventions

Scope

Resource Discovery and Service Discovery
Discovery Workflow
'"describedby' Link Relationship
Method Selection

Obtaining Descriptor Location
8.1. <LINK> Element

8.2. HTTP Link Header

8.3. Site-Meta Document

.3.1. Site-Wide Links

.3.2. <link-template> Element

.3.3. DNS Verification for Non-HTTP(S) URIs

N Y e 2

0o |00 |00

8.3.4. Method Workflow

Caching
0. Security Considerations

P

11. TIANA Considerations

Appendix A. Method Suitability Analysis

Appendix A.1. Requirements

Appendix A.2. Analysis

Appendix A.2.1. HTTP Response Header

Appendix A.2.2. HTTP Response Header Via HEAD
Appendix A.2.3. HTTP Content Negotiation

Appendix A.2.4. HTTP Header Negotiation

Appendix A.2.5. <Link> Element

Appendix A.2.6. HTTP OPTIONS Method

Appendix A.2.7. WebDAV PROPFIND Method

Appendix A.2.8. Custom HTTP Method

Appendix A.2.9. Static Resource URI Transformation
Appendix A.2.10. Dynamic Resource URI Transformation

Appendix B. Acknowledgments
12. References
12.1. Normative References
12.2. 1Informative References
§ Author's Address

1. Introduction TOC

This memo aims to provide a uniform and easily implementable process
for locating resource descriptors. With the development of
interoperability specifications comes the need to enable compliant
services and resources to declare their conformance to these

specifications. There is a growing need to describe resources in a way
that does not depend on their internal structure, or even the
availability of an HTTP-accessible representation of these resources.
For example, while an end-user is reading a web page such as a blog
article, the user-agent can discover whether the content of this page
has generated from an Atom feed or Atom entry and whether that feed
supports Atom authoring. It can discover whether there is an iCalendar-
formatted or CalDAV calendar associated with the page, or where other
content by the same page author might be found.

In an example related to the identity space, an end-user can use a URI
as an identifier for signing into web services, and in turn, the web
service can discover more information about the user's resources and
preferences such as who did the user delegate their identity management
to, where they keep their address book or list of social network
friends, where their profile information is stored to reduce signup
registration requirements, and what other services they use which may
enhance their interaction with the web service.

2. Notational Conventions TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY'", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

3. Scope TOC

The scope of this memo is intentionally restricted to locating resource
descriptors, leaving out their format. Given the wide range of use
cases and information that can be provided 'about a resource', no
single descriptor format can adequately accommodate all needs. However,
the process in which the desired descriptor is located should be
consistent across use cases and formats.

4. Resource Discovery and Service Discovery TOC

Resource discovery provides a process for obtaining information about a
resource identified with a URI. It allows resource-providers to
describe their resources in a machine-readable format, enabling
automatic interoperability by user-agents and resource-consuming

applications. Discovery enables applications to utilize a wide range of
web services and resources across multiple providers without the need
to know about their capabilities in advance, reducing the need for
manual configuration and resource-specific software.

When discussing discovery, it is important to differentiate between
resource discovery and service discovery. Both types attempts to
associate capabilities with resources, but they approach it from
opposite ends.

Service discovery centers around identifying the location of qualified
resources, typically finding an endpoint capable of certain protocols
and capabilities. In contrast, resource discovery begins with a
resource, trying to find which capabilities it supports.

A simple way to distinguish between the two types of discovery is to
define the questions they are each trying to answer:

Resource-Discovery: Given a resource, what are its attributes:
capabilities, characteristics, and relationships to other
resources?

Service-Discovery: Given a set of attributes, which available
resources match the desired set and what is their location?

While this memo deals exclusively with resource discovery, it is
important to note that the two discovery types are closely related and
are usually used in tandem. In fact, a typical use case will switch
between service discovery and resource discovery multiple times in a
single workflow, and can start with either one.

One reason for this dependency between the two discovery types is that
resource descriptors usually contain not only a list of capabilities,
but also relationships to other resources. Since those relationships
are usually typed, the process in which an application chooses which
links to use is in fact service discovery.

Applications use resource discovery to obtain the list of links, and
service discovery to choose the relevant links. In another common
example, the application uses service discovery to find a resource with
a given capability, then uses resource discovery to find out what other
capabilities it supports.

Unless otherwise noted, the term 'discovery' is used in this memo to
mean resource discovery.

5. Discovery Workflow TOC

Discovery can be performed before or after a resource is obtained.
Performing discovery ahead of accessing the resource allows a resource-
consumer to learn more about the properties of the resource. For
example, a consumer can learn about the protocols supported by the
resource and if understood, utilize them to interact with it.

In many cases, discovery is performed after the resource has been
obtained, based on the content of the resource and the way in which the
user-agent interacts with it (or based on human interactions). Most web
applications make strong assumptions about the resources they interact
with, mostly due to lack of a standard discovery protocol for web
resources. Such assumptions are not likely to disappear even with the
introduction of a discovery workflow. In many cases, discovery will be
used as a secondary step for enhancing the interaction with a resource
rather than the first step of determining how to interact with it at
all.

The focus of this memo is on the first step in discovery: identifying
the location of the resource descriptors. The overall discovery
workflow includes two additional steps:

1. The location of the resource descriptor document is obtained
using the resource URI. It does not matter how the resource URI
has been obtained, just that a URI is known. Once the
descriptor location has been identified, the descriptor
document 1is retrieved.

2. The resource descriptor document is parsed based on the
descriptor document format used. For example, two such formats
are POWDER (Protocol for Web Description Resources c) and XRD
(Extensible Resource Descriptor [XRD] (Hammer-Lahav, E., Ed.,
“XRD 1.0,"” .) [[replace with new XRD specification
reference]]).

3. The information about the resource contained within the
descriptor document is processed to find out its capabilities,
characteristics, and relationships to other resources.
Capabilities are usually described with identifiers or
description languages that the consuming application can match
to a database of known capabilities or process via an
interpreter.

While the process described in this memo utilizes the HTTP protocol
[REC2616] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.4,” June 1999.) for locating descriptors, it can be used with
any URI scheme and is not limited to just the 'http' and 'https' URI
schemes. HTTP is an ideal framework for performing discovery activities
on web resources, but it does not clearly define a mechanism for
attaching a descriptor or metadata to a resource identified with a URI.

T0C

6. 'describedby' Link Relationship

The first step when performing discovery is to identify the location of
the resource descriptor document for the desired resource. This can be
simply described as a link between the URI of the resource and the URI
of the descriptor. Links are one of the most fundamental building
blocks of the web, and provide all that is necessary to define the
relationship between a resource and its descriptors.

The purpose of this memo is to define a consistent set of methods using
HTTP through which this link information is obtained when performing
discovery. The web provides a large number of methods for defining
links between resources, but in order to achieve interoperability, the
selection has to be narrowed down to a much smaller set of options.
Since a single resource can have many descriptors, the descriptor 1link
relationship has a one-to-many structure. In the case of multiple
descriptors, selecting which descriptor to use is application-specific.
It can involve factors such as the descriptor document format,
accessibility, and other typed relationships, and as such is beyond the
scope of this memo.

All the methods described in this memo build directly on the typed-
relationships framework defined in [I-D.nottingham-http-link-header]
(Nottingham, M., “Link Relations and HTTP Header Linking,”

November 2008.). The relationship type between a resource and its
descriptor used for discovery is 'describedby' which was originally
defined by [POWDER] (Archer, P., Ed., Smith, K., Ed., and A. Perego,
Ed., “POWDER: Protocol for Web Description Resources,” .) as a generic
relationship type as follows:

Relationship type: describedby

Purpose: To link a resource to a description that applies to that
resource

Documentation: http://www.w3.0rg/TR/powder-dr/#assoc-1inking

Note: The relationship A 'describedby' B does not imply that B is a
POWDER file (the Media Type does that), simply that B provides a
description of A. This is the only constraint placed on A and B by
asserting the describedby relationship.

[[NOTE: the link type 'describedby' Link Relationship has been
submitted to IANA for review, approval, and inclusion in the Atom Link
Relations registry. The Atom Link Relations registry is expected to be
replaced by a generic Link Relations registry as defined in
[I-D.nottingham-http-link-header] (Nottingham, M., “Link Relations and
HTTP Header Linking,” November 2008.) section 4.2.]].

For example, the following HTTP response header (fragment) returned
with the HTTP representation of the resource http://example.com/
resource/1:

HEAD /resource/1 HTTP/1.1
Server: example.com

Link: <http://example.com/resource/1;about>;
rel="describedby"; type="application/xrd+xml"

defines a link between the resource http://example.com/resource/1 and
its descriptor located at http://example.com/resource/1;about and is
hinted to be using the XRD [XRD] (Hammer-Lahav, E., Ed., “XRD 1.0,” .)
document format.

The methods described in this memo all result in one or more link
relationships with type 'describedby'. Two out of the three methods use
existing link mechanisms as-is, by simply specifying the relationship
type used. The third defines a new mechanism for dynamically
constructing links using templates.

7. Method Selection TOC

Due to the wide range of use cases requiring resource descriptors, and
the desire to reuse as much as possible, no single solution has been
found to sufficiently cover the requirements for linking between the
resource URI and the descriptor URI. An analysis of the potential
methods considered and the reason for their inclusion or rejection can
be found in Appendix A (Method Suitability Analysis). A discussion
regarding the architectural issues around discovery can be found in
[Uniform Access] (Rees, J., “Uniform Access to Information About,” .).
Obtaining the link information between the resource URI and the
descriptor URI is accomplished using one of three methods. The criteria
used to determine which methods a resource-provider SHOULD support and
resource-consumer SHOULD attempt to use are based on a combination of
factors:

*The document type of the available resource representation (text/
html, application/atom+xml, image/png, unknown, etc.).

*The URI scheme (http, https, mailto, xmpp, etc.).

*The availability of an HTTP-accessible representation for the
resource (a representation of the resource that can be retrieved
using an HTTP GET request).

*The ability, desire, or applicability of the resource-consumer to
directly interact and retrieve a resource representation (which
might be unknown to it).

When selecting a method to use, the following requirement of each
method are considered (each method is described in details in Section 8
(Obtaining Descriptor Location)):

*<LINK> Element: Limited to resources with an accessible markup
representation with direct support for typed-relationships using
the <LINK> element, such as HTML [W3C.REC-html401-19991224]
(Hors, A., Jacobs, I., and D. Raggett, “HTML 4.01 Specification,”
December 1999.) and Atom [RFC4287] (Nottingham, M., Ed. and R.
Sayre, Ed., “The Atom Syndication Format,” December 2005.). Other
document types are allowed as long as the semantics of their
<LINK> element are fully compatible with the link framework
defined in [I-D.nottingham-http-link-header] (Nottingham, M.,
“Link Relations and HTTP Header Linking,” November 2008.). This
method requires full retrieval of the resource representation
before any discovery information about it is available. While
HTTP is the most common transport for HTML and Atom documents,
this method is transport independent.

*HTTP Link Header: Limited to resources with an accessible
representation using the HTTP protocol [RFC2616] (Fielding, R.,
Gettys, J., Moqul, J., Frystyk, H., Masinter, L., Leach, P., and
T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,”

June 1999.), or resources for which an HTTP GET or HEAD request
returns a valid HTTP response header. This method uses the Link
header defined in [I-D.nottingham-http-link-header] (Nottingham,
M., “Link Relations and HTTP Header Linking,” November 2008.).
This method requires the retrieval of the resource representation
header (using an HTTP GET or HEAD request).

*Site-Meta Document: A known-location based solution used for any
resources identified by a URI with a DNS-resolvable authority
component (i.e. an authority that can be directly mapped to an IP
address). This method uses the Site-Meta document defined in
[I-D.nottingham-site-meta] (Nottingham, M. and E. Hammer-Lahayv,
“draft-nottingham-site-meta-00,"” October 2008.). This method does
not require any direct interaction with the resource.

The order in which the methods are listed is based on their
applicability specialization, from the most restrictive method to the
most generic method. This ordering however does not imply the order in
which multiple applicable methods should be attempted (which is
application specific). Because different methods are more appropriate
in different circumstances, all three methods described are considered
equal and can be attempted in any order. To ensure interoperability,
the following rules MUST be observed:

*Resource-providers MUST support at least one of the three methods
for each resource for which discovery information is to be made

available. If more than one method is supported, all methods MUST
produce the same resource descriptor location (either by
returning the same descriptor URI or a different descriptor URI
that leads to the same descriptor URI after following HTTP
redirections).

*Resource-consumers SHOULD support all three methods and attempt
each in their preferred order until a descriptor URI is obtained
successfully. Resource-consumers SHOULD NOT attempt additional
methods after a previous method has concluded successfully.

8. Obtaining Descriptor Location TOC

To obtain the location of the resource descriptor using the resource
URI, the resource-consumer SHALL proceed as follows:

1. Select one of the three methods as defined in Section 7 (Method
Selection). In many cases, only some of the methods will be
applicable. If more than one method is available, the resource-
consumer SHOULD pick the method most efficient for its needs.

2. Perform the steps described below for the selected method. If
successful, the method will produce the descriptor location. If
the method fails, repeat the process from the previous step by
selecting another method. If no method is left, the discovery
process fails.

3. Once the desired descriptor URI has been obtained, the
descriptor document is obtained via an HTTP GET request to the
identified URI. The resource-consumer MUST obey all HTTP 301
and 302 redirects and the descriptor document is considered
valid only if contained within an HTTP response with the HTTP
200 response code.

8.1. <LINK> Element TOC

Resources with an HTML [W3C.REC-html401-19991224] (Hors, A., Jacobs,
I., and D. Raggett, “HTML 4.01 Specification,” December 1999.) or an
Atom [RFC4287] (Nottingham, M., Ed. and R. Sayre, Ed., “The Atom
Syndication Format,” December 2005.) representations MAY include a
<LINK> element with the 'describedby' relationship type to link between
the resource and its descriptor.

For example:

<LINK href="http://example.com/resource;about"
rel="describedby" type="application/powder+xml">

A resource-consumer trying to obtain the location of the resource's
descriptor using this method SHALL:

1. Retrieve a valid representation of the resource using the
applicable transport for that resource URI. If the resource
representation is obtained using HTTP, the resource-consumer
MUST only use it if the HTTP response containing the
representation carries a valid HTTP 200 response code. If any
other response code is returned, the method fails. [[This is
written specifically about the request producing the
representation, ignoring any potential redirects that might
have occurred prior. Should redirects be explicitly mentioned
here?]]

2. Parse the document as defined by the document specification and
look for <LINK> elements with a 'rel' attribute value
containing the 'describedby' relationship (a multiple
relationship 'rel' attribute value is allowed and MUST be
handled by the consumer, for example 'rel="describedby
copyright"').

3. The resource-consumer SHOULD examine any available 'type'
attributes as hints for the document format used by the
descriptor document. If more than one link is found, the
descriptor mime-type SHOULD be used to narrow down the
selection.

4. The descriptor location is obtained from the value of the
'"href' attribute on the selected <LINK> element.

8.2. HTTP Link Header TOC

Resources with an accessible HTTP representation MAY include a Link
header in the HTTP response header as defined by
[I-D.nottingham-http-link-header] (Nottingham, M., “Link Relations and
HTTP Header Linking,” November 2008.) with a 'rel' parameter value set
to 'describedby'.

For example:

Link: <http://example.com/resource;about>; rel="describedby";
type="application/powder+xml"

A resource-consumer trying to obtain the location of the resource's
descriptor using this method SHALL:

1. Retrieve a valid HTTP response header for the representation of
the resource using an HTTP GET or HEAD request. The resource-
consumer MUST follow HTTP redirections 301 and 302. The
resulting header MUST only be used for the purpose of discovery
if the HTTP response containing the header has one of the
following HTTP response codes: 200, 303, and 401. If any other
response code is returned, the method fails.

2. Parse the HTTP response header and look for a Link header with
a 'rel' parameter value containing the 'describedby'
relationship (a multiple relationship 'rel' parameter value is
allowed and MUST be handled by the consumer, for example
'rel="describedby copyright";"').

3. The resource-consumer SHOULD examine any available 'type'
parameters as hints for the document format used by the
descriptor document. If more than one link is found, the
descriptor mime-type SHOULD be used to narrow down the
selection.

4. The descriptor location is obtained from the URI-reference
locating between the '<>' characters of the selected Link
header.

If the HTTP response code is 303, any descriptor location is defined to
be between the requested resource and the descriptor and not between
the 'See other' resource indicated by a Location header. If the
response code is 401, any descriptor location MUST only be used in
association with obtaining access to the resource, which once obtained,
must be queried again for its descriptor location which MAY be
different from the unauthorized response.

8.3. Site-Meta Document TOC

The descriptor location of resources identified with a URI which
contains a DNS-resolvable authority component MAY be obtained from the
Site-Meta document [I-D.nottingham-site-meta] (Nottingham, M. and E.
Hammer -Lahav, “draft-nottingham-site-meta-00,"” October 2008.) via a
templatized map used to transform the resource URI to the descriptor
URI. The templatized link is provided by an extension (defined by this

memo) to the Site-Meta schema for describing link templates. Using a
template provided by Site-Meta for URIs under its authority, a resource
URI can be deconstructed and then reconstructed to form the URI of the
descriptor location.

For example, given the resource identified by http://example.com/r/1,
the Site-Meta document for its authority example.com is obtained from
http://example.com/site-meta. The Site-Meta document defines a template
in which the resource URI is converted to the descriptor URI by
appending ';about' to the URI:

<metadata>
<link-template template="{uri};about"
rel="describedby"
type="application/powder+xml" />
</metadata>

resulting in the descriptor location URI http://example.com/r/1;about.

8.3.1. Site-Wide Links TOC

Site-Meta defines a method for locating site-wide metadata for web
sites. Its primary objective is to avoid the need of further known-
location solutions by creating one last such resource which can point
to other resources. It can be considered a registry for "known-
location" resources to avoid further intrusion into the site's naming
authority, hopefully the last such resource.

In the context of discovery, Site-Meta offers a convenient location for
storing information about how to map between resource URIs and their
descriptor URIs at an authority level. Site-Meta provides a method for
obtaining descriptor locations that does not depend on the availability
of an HTTP representation (or 303 See Other response) for resources. It
can also, with an additional authority verification step (described in
Section 8.3.3 (DNS Verification for Non-HTTP(S) URIs)), provide
descriptor locations for URIs with schemes other than 'http' and
"https'.

The elements defined by Site-Meta are meant to contain site-wide
information. Unlike Link headers included in the HTTP response to
requests for the domain root resource (obtained via 'GET / HTTP/1.1' or
'"HEAD / HTTP/1.1'"') which are specific to the root resource, links in
Site-Meta are between the abstract 'web site' entity and the linked
resources. It is critical not to confuse the root resource of a domain
authority with the abstract 'web site' entity described by Site-Meta.
For this reason, any <meta> elements containing linked resources with
relationship type 'describedby', identify the location of the abstract
'web site' entity description which by itself cannot be described using

a URI. While this is a valid application of the 'describedby'
relationship type, it is beyond the scope of this memo.

8.3.2. <link-template> Element TOC

The <link-template> element is defined as a child of the root
<metadata> element and identical to the Site-Meta <meta> element with
the following differences:

*It cannot contain any value or child elements and must be self-
closing.

*The 'href' attribute in the <meta> element is replaced by the
'template' attribute.

*The OPTIONAL 'scheme' attribute is added.

*The resulting relationship is defined as between the individual
resource used as an input to the template and the resulting
descriptor URI, and do not in relation to the abstract 'web site'
entity.

The 'scheme' attribute serves as a filter indicating which URI scheme
are meant to be transformed using the provided template. This OPTIONAL
attribute is meant to allow different handling of different URI
schemes. The attribute value is a space separated list of lowercase
scheme names. If omitted, the template is meant to be applied to any
URI schemes.

The 'template' attribute defines a URI template with a very simple
syntax. The attribute value is used to construct a valid URI by
substituting the variable enclosed in '{}' with the value of the
variable.

In the example above, the 'uri' variable is replaced with the actual
resource URI (the resource URI http://example.com replaces the '{uri}'
string which results in http://example.com;about). If the variable name
is prefixed by a '%' character, any character other than unreserved in
variable value MUST be percent-encoded per [RFC3986] (Berners-Lee, T.,
Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI):
Generic Syntax,” January 2005.).

unreserved = ALPHA / DIGIT / "-" ,/ ", "/ "_ "™ / "=V

For example, the following template when used with the resource URI
http://example.com:

<metadata>
<link-template template="http://example.com?describe={%uri}"
rel="describedby"
type="application/xrd+xml"
scheme="mailto http https" />
</metadata>

produces the descriptor URI: http://example.com?
describe=http%3A%2F%2Fexample.com.

[[This initial draft only defines a single 'uri' variable. However, it
is expected that future revision will define a larger template
vocabulary which will be based on the URI structure definition and
include: uri, scheme, authority, domain, port, path, query, fragment,
and username (for 'mailto' URIs).]]

[[Site-Meta is pending a major revision of its document format which is
likely to replace its XML structure with a simpler text based
structure. This memo will be revised as soon as the new Site-Meta draft
is published to reflect these changes. However, the changes are
expected to only change the document formatting.]]

8.3.3. DNS Verification for Non-HTTP(S) URIs TOC

Site-Meta uses the HTTP protocol for providing metadata about the
abstract 'web site' entity. This raises the issue whether an HTTP
server can speak authoritatively for a non-HTTP resource, namely, a
resource identified by a URI with a scheme other than 'http' or
"https'.

From a deployment perspective, many organizations separate the
administration responsibilities of their HTTP resources from other
resources such as email (SMTP) or instant messaging (XMPP). It would be
an unexpected behavior in such organizations if the HTTP server
provides authoritative information about identifiers belonging to other
departments.

The process defined in this memo was design with ease of deployment as
one of its top priorities. Since it is unlikely that protocols such as
SMTP will introduce their own discovery extensions (which will realize
any significant deployment in the foreseeable future), Site-Meta must
be able to provide authoritative information regarding the descriptor
location of non-HTTP(S) resources.

To obtain such authority, the owner of the domain (as represented by
the administrator of its DNS records) MUST declare that Site-Meta is
indeed allowed to provide such information. To do so, the domain DNS
records MUST include, for each domain or sub-domain for which the HTTP
server has such authority, a TXT record with the exact value of '/site-
meta non-http delegation enabled'. [[The DNS record type and value are

included in this draft only as a straw man proposal and are likely to
change based on feedback received from the DNS community. Proposals for
such record are requested.]]

Resource-consumers MUST verify the existence of such DNS record before
obtaining and utilizing the Site-Meta document for the discovery of
non-HTTP(S) resources. If no such record is found, the method fails.

8.3.4. Method Workflow TOC

A resource-consumer trying to obtain the location of the resource's
descriptor using this method SHALL:

1. Examine the resource URI and extract its authority component as
defined by [RFC3986] (Berners-lLee, T., Fielding, R., and L.
Masinter, “Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3:

foo://example.com:8042/over/there?name=ferret#nose
_/ N\ /\ / \ / _/
| I | | I

scheme authority path query fragment

If the authority contains an '@' character, the '@' character
and everything to its left is removed. For example, in the URI
mailto:username@example.com the authority component
username@example.com is stripped of the '@' character and the
characters to its left, leaving example.com as the extracted
authority value used in follow-up steps.

2. If the URI scheme being discovered is not 'http' or 'https',
the resource-consumer MUST perform DNS verification as
described in Section 8.3.3 (DNS Verification for Non-HTTP(S)
URIs) to ensure that the HTTP protocol service for that domain
has the authority to relay discovery location for other
schemes.

3. Retrieve the Site-Meta document for the extracted authority as
defined by [I-D.nottingham-site-meta] (Nottingham, M. and E.
Hammer -Lahav, “draft-nottingham-site-meta-00,"” October 2008.)
section 4, by making an HTTP GET request:

GET /site-meta HTTP/1.1
Host: example.com

If the request fails to retrieve a valid Site-Meta document,
the method fails. [[Should the method require the use of HTTPS

when retrieving the Site-Meta document when performing
discovery on 'https' scheme URIs?]]

4, Parse Site-Meta document and look for <link-template> elements
with a 'rel' attribute value containing the 'describedby'
relationship (a multiple relationship 'rel' attribute value is
allowed and MUST be handled by the consumer, for example
'rel="describedby copyright"').

5. The resource-consumer SHOULD examine any available 'type'
attributes as hints for the document format used by the
descriptor document. If more than one link template is found,
the descriptor mime-type SHOULD be used to narrow down the
selection.

6. The descriptor location is constructed by applying the template

obtained from the 'template' attribute of the selected <link-
template> element on the resource URI.

9. Caching TOC

Resource-consumers MUST obey all HTTP caching headers and directives
and discard any cached descriptor location as defined by the resource-
provider. The ability to cache descriptor locations was a key
requirement in selecting which methods to include in the discovery
workflow. It is critical that such information is cached as defined by
HTTP.

10. Security Considerations TOC

The methods used to perform discovery are not secure, private or
integrity-guaranteed, and due caution should be exercised when using
them. Applications that perform discovery should consider the attack
vectors opened by automatically following, trusting, or otherwise using
links gathered from <LINK> elements, HTTP Link headers, or Site-Meta
documents.

11. TIANA Considerations TOC

This memo includes no request to IANA. The relationship type
'describedby' used by this memo is pending approval by the IANA and

must be fully registered before this memo can become final. If for any
reason the 'describedby' relationship type fails to register with the
IANA, it is expected that this memo will define a new relationship

type.

Appendix A. Method Suitability Analysis TOC

The following analysis attempts to list all the method proposed for
addressing resource discovery. It has been previously published as an
article at [Discovery and HTTP] (Hammer-Lahav, E., “Discovery and
HTTP,” .) and is included here to provide background information as to
why certain methods have been selected while others rejected from the
discovery process. It has been updated to match the terms used in this
memo and its structure.

Appendix A.1. Requirements TOC

Getting from a resource URI to its descriptor document can be
implemented in many ways. The problem is that none of the current
methods address all of the requirements presented by the common use
cases. The requirements are simple, but the more we try to address, the
less elegant and accessible the process becomes. While working on the
now defunct XRDS-Simple specification [XRDS-Simple] (Hammer-Lahav, E.,
“XRDS-Simple 1.0,” .) and talking to companies and individual about it,
the following requirements emerged for any proposed process:

Self Declaration:

Allow resources to declare the availability of
descriptor information and its location. When a resource 1is
accessed, it needs to have a way to communicate to the resource-
consumer that it supports the discovery protocol and to indicates
the location of such descriptor.

This is useful when the consumer is able or is already
interacting with the resource but can enhance its interaction
with additional information. For example, accessing a blog page
enhanced if it was generated from an Atom feed or Atom entry and
that feed supports Atom authoring.

Direct Descriptor Access:
Enable direct retrieval of the resource
descriptor without interacting with the resource itself. Before a
resource is accessed, the resource-consumer should have a way to
obtain the resource descriptor without accessing the resource.

This is important for two reasons.

First, accessing an unknown resource may have undesirable
consequences. After all, the information contained in the
descriptor is supposed to inform the consumer how to interact
with the resource. The second is efficiency - removing the need
to first obtain the resource in order to get its descriptor
(reducing HTTP round-trips, network bandwidth, and application
latency).

Web Architecture Compliant:

Work with well-established web
infrastructure. This may sound obvious but it is in fact the most
complex requirement. Deploying new extensions to the HTTP
protocol is a complicated endeavor. Beside getting applications
to support a new header, method, or content negotiation, existing
caches and proxies must be enhanced to properly handle these
requests, and they must not fail performing their normal duties
without such enhancements.

For example, a new content negotiation method may cause an
existing cache to serve the wrong data to a non-discovery
consumer due to its inability to distinguish the metadata request
from the resource representation request.

Scale and Technology Agnostic:
Support large and small web

providers regardless of the size of operations and deployment.
Any solution must work for a small hosted web site as well as the
world largest search engine. It must be flexible enough to allow
developers with restricted access to the full HTTP protocol (such
as limited access to request or response headers) to be able to
both provide and consume resource descriptors. Any solution
should also support caching as much as possible and allow reuse
of source code and data.

Extensible:

Accommodate future enhancements and unknown descriptor
formats. It should support the existing set of descriptor formats
such as XRD and POWDER, as well as new descriptor relationships
that might emerge in the future. In addition, the solution should
not depend on the descriptor format itself and work equally well
with any document format - it should aim to keep the road and
destination separate.

Appendix A.2. Analysis

The following is a list of proposed and implemented methods trying to
address resource discovery. Each method is reviewed for its compliance
with the requirements identified previously. The [-], [+], or [+-]
symbols next to each requirement indicate how well the method complies
with the requirement.

Appendix A.2.1. HTTP Response Header TOC

When a resource representation is retrieved using and HTTP GET request,
the server includes in the response a header pointing to the location
of the descriptor document. For example, POWDER uses the 'Link'
response header to create an association between the resource and its
descriptor. XRDS [XRDS] (Wachob, G., Reed, D., Chasen, L., Tan, W., and
S. Churchill, “Extensible Resource Identifier (XRI) Resolution V2.0,”
.) (based on the Yadis protocol [Yadis] (Miller, J., “Yadis
Specification 1.0,” .)) uses a similar approach, but since the Link
header was not available when Yadis was first drafted, it defines a
custom header X-XRDS-Location which serves a similar but less generic
purpose.

[+] Self Declaration - using the Link header, any resource can
point to its descriptor documents.

[-] Direct Descriptor Access - the header is only accessible when
requesting the resource itself via an HTTP GET request. While
HTTP GET is meant to be a safe operation, it is still possible
for some resource to have side-effects.

[+] Web Architecture Compliant - uses the Link header which is an
IETF Internet Standard [[Currently a standard-track draft]], and
is consistent with HTTP protocol design.

[-] Scale and Technology Agnostic - since discovery accounts for a
small percent of resource requests, the extra Link header 1is
wasteful. For some hosted servers, access to HTTP headers is
limited and will prevent implementation.

[+] Extensible - the Link header provides built-in extensibility by
allowing new link relationships, mime-types, and other
extensions.

Minimum roundtrips to retrieve the resource descriptor: 2

Appendix A.2.2. HTTP Response Header Via HEAD TOC

Same as the HTTP Response Header method but used with an HTTP HEAD
request. The idea of using the HEAD method is to solve the wasteful
overhead of including the Link header in every reply. By limiting the
appearance of the Link header only to HEAD responses, typical GET
requests are not encumbered by the extra bytes.

[+] Self Declaration - Same as the HTTP Response Header method.
[-] Direct Descriptor Access - Same as the HTTP Response Header
method.

[-] Web Architecture Compliant - HTTP HEAD should return the exact
same response as HTTP GET with the sole exception that the
response body is omitted. By adding headers only to the HEAD
response, this solution violates the HTTP protocol and might not
work properly with proxies as they can return the header of the
cached GET request.

[+] Scale and Technology Agnostic - solves the wasted bandwidth
associated with the HTTP Response Header method, but still
suffers from the limitation imposed by requiring access to HTTP
headers.

[+] Extensible - Same as the HTTP Response Header method.

Minimum roundtrips to retrieve the resource descriptor: 2

Appendix A.2.3. HTTP Content Negotiation TOC

Using the Accept request header, the consumer informs the server it is
interested in the descriptor and not the resource itself, to which the
server responds with the descriptor document or its location. In Yadis,
the consumer sends an HTTP GET (or HEAD) request to the resource URI
with an Accept header and content-type application/xrds+xml. This
informs the server of the consumer's discovery interest, which in turn
may reply with the descriptor document itself, redirect to it, or
return its location via the X-XRDS-Location response header.

[-] Self Declaration - does not address as it focuses on the
consumer declaring its intentions.

[+] Direct Descriptor Access - provides a simple method for
directly requesting the descriptor document.

[-] Web Architecture Compliant -

while it can be argued that the
descriptor can be considered another representation of the
resource, it is very much external to it. Using the Accept header
to request a separate resource (as opposed to a different
representation of the same resource) violates web architecture.
It also prevents using the discovery content-type as a valid
(self-standing) web resource having its own descriptor.

[-] Scale and Technology Agnostic - requires access to HTTP request
and response headers, as well as the registration of multiple
handlers for the same resource URI based on the Accept header. In
addition, improper use or implementation of the Vary header in
conjunction with the Accept header will cause caches to serve the
descriptor document instead of the resource itself - a great
concern to large providers with frequently visited front-pages.

[-] Extensible - applies an implicit relationship type to the
descriptor mime-type, limiting descriptor formats to a single
purpose. It also prevents using existing mime-types from being

used as a descriptor format.

Minimum roundtrips to retrieve the resource descriptor: 1

Appendix A.2.4. HTTP Header Negotiation TOC

Similar to the HTTP Content Negotiation method, this solution uses a
custom HTTP request header to inform the server of the consumer's
discovery intentions. The server responds by serving the same resource
representation (via an HTTP GET or HEAD requests) with the relevant
Link headers. It attempts to solve the HTTP Response Header waste issue
by allowing the consumer to explicitly request the inclusion of Link
headers. One such header can be called 'Request-links' to inform the
server the consumer would like it to include certain Link headers of a
given 'rel' type in its reply.

[+] Self Declaration -
same as HTTP Response Header with the option
of selective inclusion.

[-] Direct Descriptor Access - does not address.

[-] Web Architecture Compliant - HTTP does not include any
mechanism for header negotiation and any custom solution will
break existing caches.

[+-] Scale and Technology Agnostic - Requires advance access to
HTTP headers on both the consumer and provider sides, but solves
the bandwidth waste issue of the HTTP Response Header method.

[+] Extensible - Dbuilds on top of Link header extensibility.

Minimum roundtrips to retrieve the resource descriptor: 2

Appendix A.2.5. <Link> Element TO0C

Embeds the location of the descriptor document within the resource
representation by leveraging the HTML <Link> header element (as opposed
to the HTTP header). Applies to HTML resource representations or
similar markup-based formats with support for 'Link'-like elements such
as Atom. POWDER uses the <Link> element in this manner, while XRDS uses
the HTML <meta> element with an 'http-equiv' attribute equals to X-
XRDS-Location (to create an embedded version of the X-XRDS-Location
custom header).

[+] Self Declaration - similar to HTTP Response Header method but
limited to HTML resources.

[-] Direct Descriptor Access - the method requires fetching the
entire resource representation in order to obtain the descriptor
location. In addition, it requires changing the resource HTML
representation which makes discovery an intrusive process.

[+] Web Architecture Compliant - uses the <Link> element as
designed.
[+] Scale and Technology Agnostic - while this solution requires

direct retrieval of the resource and manipulation of its content,
it is extremely accessible in many platforms.

[-] Extensible - extensibility is restricted to HTML
representations or similar markup formats with support for a
similar element.

Minimum roundtrips to retrieve the resource descriptor: 2

Appendix A.2.6. HTTP OPTIONS Method TOC

The HTTP OPTIONS method is used to interact with the HTTP server with
regard to its capabilities and communication-related information about
its resources. The OPTIONS method, together with an optional request
header, can be used to request both the descriptor location and
descriptor content itself.

[-] Self Declaration - does not address.

[+] Direct Descriptor Access - provides a clean mechanism for
requesting descriptor information about a resource without
interacting with it.

[+] Web Architecture Compliant - uses an existing HTTP featured.

[-] Scale and Technology Agnostic - requires consumer and provider
access to the OPTIONS HTTP method. Also does not support caching
which makes this solution inefficient.

[+] Extensible - Dbuilt-into the OPTIONS method.

Minimum roundtrips to retrieve the resource descriptor: 1

Appendix A.2.7. WebDAV PROPFIND Method TOC

Similar to the HTTP OPTIONS method, the WebDAV PROPFIND method defined
in [RFC4918] (Dusseault, L., “HTTP Extensions for Web Distributed
Authoring and Versioning (WebDAV),” June 2007.) can be used to request
resource specific properties, one of which can hold the location of the
descriptor document. PROPFIND, unlike OPTIONS, cannot return the
descriptor itself, unless it is returned in the required PROPFIND
schema (a multi-status XML element). Other alternatives include URIQA
[URIQA] (Nokia, “The URI Query Agent Model,” .), an HTTP extension
which defines a method called MGET, and ARK (Archival Resource Key)
[ARK] (Kunze, J. and R. Rodgers, “The ARK Identifier Scheme,” .) - a
method similar to PROPFIND that allows the retrieval of resource
attributes using keys (which describe the resource).

[-] Self Declaration -
does not address.

[+-] Direct Descriptor Access - does not require interaction with
the resource, but does require at least two requests to get the
descriptor (get location, get document).

[+] Web Architecture Compliant - uses an HTTP extension with less
support than core HTTP, but still based on published standards.

[-] Scale and Technology Agnostic - same as the HTTP OPTIONS
Method.

[+-] Extensible - uses extensible protocols but at the same time
depends on solutions that have already gone beyond the standard
HTTP protocol, which makes further extensions more complex and

unsupported.

Minimum roundtrips to retrieve the resource descriptor: 2

Appendix A.2.8. Custom HTTP Method TOC

Similar to the HTTP OPTIONS Method, a new method can be defined (such
as DISCOVER) to return (or redirect to) the descriptor document. The
new method can allow caching.

[-] Self Declaration - does not address.

[+] Direct Descriptor Access - same as the HTTP OPTIONS Method.

[-] Web Architecture Compliant - depends heavily on extending every
platform to support the extension. Unlikely to be supported by
existing proxy services and caches.

[-] Scale and Technology Agnostic - same as HTTP OPTIONS Method
with the additional burden on smaller sites requiring access to
the new protocol.

[+] Extensible - new protocol that can extend as needed.

Minimum roundtrips to retrieve the resource descriptor: 1

TOC

Appendix A.2.9. Static Resource URI Transformation

Instead of using HTTP facilities to access the descriptor location,
this method defines a template to transform any resource URI to the
descriptor document URI. This can be done by adding a prefix or suffix
to the resource URI, which turns it into a new resource URI. The new
URI points to the descriptor document. For example, to fetch the
descriptor document for http://example.com/resource, the consumer makes
an HTTP GET request to http://example.com/resource;about using a static
template that adds the ';about' suffix.

[-] Self Declaration - does not address.

[+] Direct Descriptor Access - creates a unique URI for the
descriptor document.

[+-] Web Architecture Compliant - uses basic HTTP facilities but
intrudes on the domain authority namespace as it defines a static
template for URI transformation that is not likely to be
compatible with many existing URI naming conventions.

[+-] Scale and Technology Agnostic - depending on the static
mapping chosen. Some hosted environment will have a problem
gaining access to the mapped URI based on the URI format chosen.

[-] Extensible - provides a very specific and limited method to map
between resources and their descriptor, since each relationship
type must mint its own static template.

Minimum roundtrips to retrieve the resource descriptor: 1

Appendix A.2.10. Dynamic Resource URI Transformation TOC

Same as the Static Resource URI Transformation method but with the
ability for each domain authority to specify its own discovery
transformation template. This can done by placing a configuration file
at a known location (such as robots.txt) which contains the template
needed to perform the URL mapping. The consumer first obtains the
configuration document (which may be cached using normal HTTP
facilities), parses it, then uses that information to transform the
resource URI and access the descriptor document.

[+-] Self Declaration -
does not address individual resources, but

allows entire domains to declare their support (and how to use
it).

[+-] Direct Descriptor Access - once the mapping template has been
obtained, descriptors can be accessed directly.

[+-]1 Web Architecture Compliant - wuses an existing known-location
design pattern (such as robots.txt) and standard HTTP facilities.
The use of a known-location if not ideal and is considered a
violation of web architecture but if it serves as the last of its
kind, can be tolerated. An alternative to the known-location
approach can be using DNS to store either the location of the
mapping or the map template itself, but DNS adds a layer of
complexity not always available.

[+-] Scale and Technology Agnostic - works well at the URI
authority level (domain) but is inefficient at the URI path level
(resource path) and harder to implement when different paths
within the same domain need to use different templates. With the
decreasing cost of custom domains and sub-domains hosting, this
will not be an issue for most services, but it does require
sharing configuration at the domain/sub-domain level.

[+-] Extensible - can be, depending on the schema used to format
the known-location configuration document.

Minimum roundtrips to retrieve the resource descriptor: initially 2, 1
after caching

Appendix B. Acknowledgments TOC

with the exception of the Site-Meta template extension, very little of
this memo is original work. Many communities and individuals have been
working on solving discovery for many years and this work is a direct
result of their hard and dedicated efforts.

Inspiration for this memo derived from previous work on a descriptor
format called XRDS-Simple, which in turn derived from another
descriptor format, XRDS. Previous discovery workflows include Yadis
which is currently used by the OpenID community. While suffering from
significant shortcomings, Yadis was a breakthrough approach to
performing discovery using extremely restricted hosting environments,
and this memo has strived to preserve as much of that spirit as
possible.

The use of Link elements and headers and the introduction of the
'describedby' relationship type in this memo is a direct result of the

dedicated work and contribution of Phil Archer to the W3C POWDER
specification and Jonathan Rees to the W3C review of Uniform Access to
Information About. The Site-Meta approach was first proposed by Mark
Nottingham as an alternative to attaching links directly to resource
representations.

The author wishes to thanks the O0ASIS XRI community for their support,
encouragement, and enthusiasm for this work. Special thanks go to Lisa
Dusseault, Mark Nottingham, Drummond Reed, John Panzer, and Joseph
Holsten for their invaluable feedback.

The author takes all responsibility for errors and omissions.

12. References TOC

12.1. Normative References

TOC
[I-D.nottingham- Nottingham, M., “Link Relations and HTTP Header
http-link-header] Linking,” draft-nottingham-http-link-header-03
(work in progress), November 2008 (TXT).
[I-D.nottingham- Nottingham, M. and E. Hammer-Lahav, “draft-
site-metal] nottingham-site-meta-00,” draft-nottingham-
site-meta-00 (work in progress), October 2008
(TXT).
[RFC2119] Bradner, S., “Key words for use in RFCs to

Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).

[RFC2616] Fielding, R., Gettys, J., Moqul, J., Frystyk,
H., Masinter, L., Leach, P., and T. Berners-
Lee, “Hypertext Transfer Protocol -- HTTP/1.1,”
RFC 2616, June 1999 (TXT, PS, PDF, HTML, XML).

[RFC3986] Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).

[RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., “The
Atom Syndication Format,” RFC 4287,
December 2005 (TXT, HTML, XML).

[RFC4918] Dusseault, L., “HTTP Extensions for Web
Distributed Authoring and Versioning (WebDAV),”
RFC 4918, June 2007 (TXT).

[W3C.REC- Hors, A., Jacobs, I., and D. Raggett, “HTML

html401-19991224] 4.01 Specification,” World Wide Web Consortium
Recommendation REC-html401-19991224,
December 1999 (HTML).

http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-03.txt
http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-03.txt
http://www.ietf.org/internet-drafts/draft-nottingham-http-link-header-03.txt
http://www.ietf.org/internet-drafts/draft-nottingham-site-meta-00.txt
http://www.ietf.org/internet-drafts/draft-nottingham-site-meta-00.txt
http://www.ietf.org/internet-drafts/draft-nottingham-site-meta-00.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
mailto:mnot@pobox.com
mailto:rfsayre@boswijck.com
http://tools.ietf.org/html/rfc4287
http://tools.ietf.org/html/rfc4287
http://www.rfc-editor.org/rfc/rfc4287.txt
http://xml.resource.org/public/rfc/html/rfc4287.html
http://xml.resource.org/public/rfc/xml/rfc4287.xml
http://tools.ietf.org/html/rfc4918
http://tools.ietf.org/html/rfc4918
http://www.rfc-editor.org/rfc/rfc4918.txt
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224

12.2. Informative References

TOC
[ARK] Kunze, J. and R. Rodgers, “The ARK Identifier
Scheme” (HTML).
[Discovery Hammer -Lahav, E., “Discovery and HTTP” (HTML).
and HTTP]
[POWDER] Archer, P., Ed., Smith, K., Ed., and A. Perego, Ed.,
“POWDER: Protocol for Web Description
Resources” (HTML).
[URIQA] Nokia, “The URI Query Agent Model” (HTML).
[Uniform Rees, J., “Uniform Access to Information
Access] About” (HTML).
[XRD] Hammer-Lahav, E., Ed., “XRD 1.0.”
[XRDS] wWachob, G., Reed, D., Chasen, L., Tan, W., and S.

Churchill, “Extensible Resource Identifier (XRI)
Resolution V2.0” (HTML, PDF).
[XRDS-Simple] Hammer-Lahav, E., “XRDS-Simple 1.0"” (HTML).
[Yadis] Miller, J., “Yadis Specification 1.0” (PDF, ODT).

Author's Address
TOC
Eran Hammer-Lahav
Yahoo!
Email: eran@hueniverse.com
URI: http://hueniverse.com

http://www.cdlib.org/inside/diglib/ark/arkspec.html
http://www.cdlib.org/inside/diglib/ark/arkspec.html
http://www.cdlib.org/inside/diglib/ark/arkspec.html
http://www.hueniverse.com/hueniverse/2008/09/discovery-and-h.html
http://www.hueniverse.com/hueniverse/2008/09/discovery-and-h.html
http://www.w3.org/TR/powder-dr/
http://www.w3.org/TR/powder-dr/
http://www.w3.org/TR/powder-dr/
http://sw.nokia.com/uriqa/URIQA.html
http://sw.nokia.com/uriqa/URIQA.html
http://w3.org/2001/tag/doc/more-uniform-access.html
http://w3.org/2001/tag/doc/more-uniform-access.html
http://w3.org/2001/tag/doc/more-uniform-access.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.html
http://docs.oasis-open.org/xri/2.0/specs/xri-resolution-V2.0.pdf
http://xrds-simple.net/core/1.0/
http://xrds-simple.net/core/1.0/
http://yadis.org/papers/yadis-v1.0.pdf
http://yadis.org/papers/yadis-v1.0.pdf
http://yadis.org/papers/yadis-v1.0.odt
mailto:eran@hueniverse.com
http://hueniverse.com

	HTTP-based Resource Descriptor Discoverydraft-hammer-discovery-00
	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1. Introduction
	2. Notational Conventions
	3. Scope
	4. Resource Discovery and Service Discovery
	5. Discovery Workflow
	6. 'describedby' Link Relationship
	7. Method Selection
	8. Obtaining Descriptor Location
	8.1. <LINK> Element
	8.2. HTTP Link Header
	8.3. Site-Meta Document
	8.3.1. Site-Wide Links
	8.3.2. <link-template> Element
	8.3.3. DNS Verification for Non-HTTP(S) URIs
	8.3.4. Method Workflow
	9. Caching
	10. Security Considerations
	11. IANA Considerations
	Appendix A. Method Suitability Analysis
	Appendix A.1. Requirements
	Appendix A.2. Analysis
	Appendix A.2.1. HTTP Response Header
	Appendix A.2.2. HTTP Response Header Via HEAD
	Appendix A.2.3. HTTP Content Negotiation
	Appendix A.2.4. HTTP Header Negotiation
	Appendix A.2.5. <Link> Element
	Appendix A.2.6. HTTP OPTIONS Method
	Appendix A.2.7. WebDAV PROPFIND Method
	Appendix A.2.8. Custom HTTP Method
	Appendix A.2.9. Static Resource URI Transformation
	Appendix A.2.10. Dynamic Resource URI Transformation
	Appendix B. Acknowledgments
	12. References
	12.1. Normative References
	12.2. Informative References
	Author's Address

