Network Working Group E. Hammer-Lahav ToC

Internet-Draft Yahoo!
Intended status: Standards January 22,
Track 2011

Expires: July 26, 2011

HTTP Authentication: MAC Authentication
draft-hammer-oauth-v2-mac-token-02

Abstract

This document specifies the HTTP MAC authentication scheme, as well as
its OAuth 2.0 binding.

Status of this Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF). Note that other groups may also distribute working
documents as Internet-Drafts. The list of current Internet-Drafts is at
http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

This Internet-Draft will expire on July 26, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction
1.1. Example
1.2. Notational Conventions
2. Issuing MAC Credentials
3. Making Requests
3.1. The "Authorization" Request Header
3.2. Body Hash
3.3. Signature
3.3.1. Normalized Request String
3.3.2. hmac-sha-1
3.3.3. hmac-sha-256
4. Verifying Requests
4.1. The "wwwW-Authenticate" Response Header Field
5. Scheme Extensions
6. Use with OAuth 2.0
6.1. Issuing MAC-Type Access Tokens
7. Security Considerations
7.1. Secrets Transmission
7.2. Confidentiality of Requests
7.3. Spoofing by Counterfeit Servers
7.4. Plaintext Storage of Credentials
7.5. Entropy of Secrets
7.6. Denial of Service / Resource Exhaustion Attacks
7.7. Coverage Limitations
8. IANA Considerations

8.1. OAuth Access Token Type Registration
8.1.1. The "mac" OAuth Access Token Type
8.2. OAuth Parameters Registration
8.2.1. The "secret" OAuth Parameter
8.2.2. The "algorithm" OAuth Parameter
9. Acknowledgments
Appendix A. Document History
10. References
10.1. Normative References
10.2. Informative References
8§ Author's Address

1. Introduction TOC

This specification defines the HTTP MAC authentication scheme and
provides a method for making authenticated HTTP requests with partial
cryptographic verification of the request - covering the HTTP method,
request URI, host, and in some cases the request body.

This specification uses the terminology defined in [I-D.ietf-oauth-v2]
(Hammer-Lahav, E., Recordon, D., and D. Hardt, “The OAuth 2.0
Authorization Protocol,” January 2011.).

Please discuss this draft on the ocauth@ietf.org mailing list.

1.1. Example TOC

The client attempts to access a protected resource without
authentication, making the following HTTP request to the resource
server:

GET /resource/1?b=1&a=2 HTTP/1.1
Host: example.com

The resource server returns the following authentication challenge:

HTTP/1.1 401 Unauthorized
WwWw-Authenticate: MAC realm="example"
Date: Thu, 02 Dec 2010 21:39:45 GMT

The client has previously obtained a set of token credentials for
accessing resources on the http://example.com/ resource server. The MAC
credentials issued to the client included the following attributes:

Access Token: h480djs93hd8
Token secret: 489dks293j39
MAC algorithm: hmac-sha-1

The client attempts the HTTP request again, this time using the token
credentials issued earlier to authenticate. To construct the
authentication header, the client calculates the current timestamp and
generates a nonce. The nonce is unique to the timestamp used, typically
a random string:

Timestamp: 137131200
Nonce: dj83hs9s
The client normalizes the request and constructs the normalized request

string (the new line separator character is represented by \n for
display purposes only):

https://www.ietf.org/mailman/listinfo/oauth

h480djs93hd8\n
137131200\n
dj83hs9s\n

\n

GET\n
example.com\n
80\n
/resource/1\n
a=2\n

b=1\n

The normalized request string is signed using the specified MAC
algorithm hmac-sha-1 with the normalized request string as text and the
token secret as key. The resulting digest is base64-encoded to produce
the request signature:

YTVjyNSujYsiwWsDurFnvFi4JK6o=

The client includes the access token, timestamp, nonce, and signature
with the request using the Authorization request header field:

GET /resource/1 HTTP/1.1

Host: example.com

Authorization: MAC token="h480djs93hd8",
timestamp="137131200",
nonce="dj83hs9s",
signature="YTVjyNSujYsiWsDurFnvFi4JK60="

The resource server validates the request by calculating the signature
again based on the request received and verifies the validity and scope
of the access token. If valid, the resource server responds with the
requested protected resource representation.

1.2. Notational Conventions TOC

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
specification are to be interpreted as described in [RFC2119] (Bradner,

S., “Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

This specification uses the Augmented Backus-Naur Form (ABNF) notation
of [I-D.ietf-httpbis-pl-messaging] (Fielding, R., Gettys, J., Mogqul,
J., Nielsen, H., Masinter, L., Leach, P., Berners-Lee, T., and J.
Reschke, “HTTP/1.41, part 1: URIs, Connections, and Message Parsing,”
October 2009.). Additionally, the following rules are included from
[RFC2617]: realm, auth-param.

2. TIssuing MAC Credentials TOC

This specification does not define a general purpose method for
requesting or issuing MAC credentials (an OAuth 2.0 (Hammer-Lahav, E.,
Recordon, D., and D. Hardt, “The OAuth 2.0 Authorization Protocol,”
January 2011.) [I-D.ietf-oauth-v2] binding is provided in Section 6
(Use with OAuth 2.0)). It simply assumes that the client is in the
possession of a set of MAC credentials with the following REQUIRES
attributes:

access token A string representing an access authorization issued
to the client. The string is usually opaque to the client. Tokens
represent specific scopes and durations of access. The token may
denote an identifier used to retrieve the authorization
information, or self-contain the authorization information in a
verifiable manner (i.e. a token string consisting of some data
and a signature).

secret A shared symmetric secret used as the MAC algorithm key.

algorithm A MAC algorithm used to calculate the request signature.
Value MUST be one of hmac-sha-1, hmac-sha-256, or a registered
extension algorithm name as described in Section 5 (Scheme

Extensions).

The access token and secret strings MUST NOT include characters other
than:

DIGIT / ALPHA / %x20-21 / %x23-5B / %Xx5D-7E
; Any printable ASCII character except for <"> and <\>

TOC

3. Making Requests

To make authenticated requests, the client must be in possession of a
valid set of MAC credentials accepted by the resource server. The
client constructs the request by calculating of a set of attributes,
and adding them to the HTTP request using the Authorization header
field (The "Authorization" Request Header). Authenticated requests can
be sent in response to an authentication challenge or directly.

3.1. The "Authorization" Request Header TOC

The Authorization request header field uses the framework defined by
[RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J., lLawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, “HTTP Authentication: Basic
and Digest Access Authentication,” June 1999.) as follows:

credentials = 'MAC' [RWS 1#param]
param = access-token /

timestamp /

nonce /

body-hash /

signature
access-token = 'token' '=' <"> plain-string <">
timestamp = 'timestamp' '=' <"> 1*DIGIT <">
nonce = 'nonce' '=' <"> plain-string <">
body-hash = 'bodyhash' '=' <"> plain-string <">
signature = 'signature' '=' <"> plain-string <">
plain-string = 1*(DIGIT / ALPHA / %x20-21 / %x23-5B / %Xx5D-7E)

The header attributes are defined as follows:
token REQUIRED. The access token string.

timestamp REQUIRED. The current time expressed in the number of
seconds since January 1, 1970 00:00:00 GMT, and MUST be a
positive integer.

nonce REQUIRED. A random string, uniquely generated by the client
to allow the resource server to verify that a request has never
been made before and helps prevent replay attacks when requests
are made over an insecure channel. The nonce value MUST be unique
across all requests with the same timestamp and access token

combination.

To avoid the need to retain an infinite number of nonce values
for future checks, resource servers MAY choose to restrict the
time period after which a request with an old timestamp is
rejected. Such a restriction implies a level of synchronization
between the client's and server's clocks. The client MAY use the
Date response header field to synchronize its clock after a
failed request.

bodyhash OPTIONAL. The HTTP request entity-body hash as described
in Section 3.2 (Body Hash).

signature REQUIRED. The HTTP request signature as described in
Section 3.3 (Signature).

Attributes MUST NOT appear more than once. Attribute values are limited
to a subset of ASCII, which does not require escaping, as defined by
the plain-string ABNF.

3.2. Body Hash TOC

The body hash is used to provide integrity verification of the HTTP
request entity-body. The hash value is calculated using a hash
algorithm over the entire HTTP request entity-body as included in the
request.

The client MAY include the body hash with any request. The server
SHOULD require the calculation and inclusion of the body hash with any
request containing an entity-body, or when the presence (or lack of) of
an entity-body matters.

The body hash algorithm is determined by the access token algorithm
provided with the access token. The SHA-1 hash algorithm as defined by
[NIST FIPS-180-3] (National Institute of Standards and Technology,
“Secure Hash Standard (SHS). FIPS PUB 180-3, October 2008,” .) is used
with the hmac-sha-1 access token algorithm. The SHA-256 hash algorithm
as defined by [NIST FIPS-180-3] (National Institute of Standards and
Technology, “Secure Hash Standard (SHS). FIPS PUB 180-3, October 2008,"
.) 1is used with the hmac-sha-256 access token algorithm. Additional
access token algorithms MUST specify the body hash algorithm.

The body hash is calculated as follows:

bodyhash = BASE64 (HASH (text))

Where:

HASH is the hash algorithm function,

text
is the HTTP request entity-body,

BASE64 1is the base64-encoding function per [RFC2045] (Freed, N.

N. Borenstein, “Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies,” November 1996.) section

6.8, applied to the hash digest result octet string, and

bodyhash is the value used in the normalized request string and to

set the bodyhash attribute of the Authorization header field.

The body hash is calculated before the normalized request string is
constructed and the signature is calculated.
For example, the HTTP request:

POST /request HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded

hello=world%21

using access token j92fsdjf094gjfdi, timestamp 137131206, nonce

f403hksd, access token algorithm hmac-sha-1, and secret 8yfrufh348h, is

transmitted as (line breaks are for display purposes only):

POST /request HTTP/1.1

Host: example.com

Content-Type: application/x-www-form-urlencoded

Authorization: MAC token="h480djs93hd8",
timestamp="137131200",
nonce="dj83hs9s",
bodyhash="k9kbtCIyOCkI3/FEfpS/0IDjk6k="",
signature="FR1UCL6Ny6bsx8EkKkiveFYv5vU="

hello=world%21

3.3. Signature

The client uses the MAC algorithm and the token secret to calculate the

request signature. This specification defines two algorithms: hmac-
sha-1 and hmac-sha-256, and provides an extension registry for
additional algorithms.

3.3.1. Normalized Request String TOC

The normalized request string is a consistent, reproducible
concatenation of several of the HTTP request elements into a single
string. By normalizing the request into a reproducible string, the
client and resource server can both sign the same string.

The string is constructed by concatenating together, in order, the
following HTTP request elements, each followed by a new line character
(%X0A) :

1. The access token.

2. The timestamp value calculated for the request.

3. The nonce value generated for the request.

4. The request entity-body hash as described in Section 3.2 (Body
Hash) if one was calculated and included in the request,

otherwise, an empty string. Note that the body hash of an empty
entity-body is typically not an empty string.

5. The HTTP request method in upper case. For example: HEAD, GET,
POST, etc.

6. The hostname included in the HTTP request using the Host
request header field in lower case.

7. The port as included in the HTTP request using the Host request
header field. If the header field does not include a port, the
default value for the scheme MUST be used (e.g. 80 for HTTP and
443 for HTTPS).

8. The path component of the HTTP request URI as defined by
[REC3986] (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3.3.

9. The query component of the HTTP request URI as defined by
[REC3986] (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
January 2005.) section 3.4, normalized as described in
Section 3.3.1.1 (Parameters Normalization).

[[TODO: I18N]]
For example, the HTTP request:

POST /request?b5=%3D%253D&a3=a&c%40=8&a2=r%20b&c2&a3=2+q HTTP/1.1

Host: example.com

Hello World!

using access token kkk9d7dh3k39sjv7, timestamp 137131201, nonce

7d8f3e4a, and body hash Lve95gjOVATpfV8EL5X4nxwjKHE= is normalized into
the following string (the new line separator character is represented

by \n for display purposes only):

kkk9d7dh3k39sjv7\n
137131201\n
7d8f3eda\n
Lve95gjOVATpTVBEL5X4nxwjKHE=\n
POST\n
example.com\n

80\n

/request\n
a2=r%20b\n
a3=2%20qg\n

a3=a\n
b5=%3D%253D\n
Cc%40=\n

c2=\n

3.3.1.1. Parameters Normalization

T0C

The query component is parsed into a list of name/value parameter pairs

by treating it as an application/x-www-form-urlencoded string,
separating the names and values and decoding them as defined by

[W3C.REC-html401-19991224] (Hors, A., Raggett, D., and I. Jacobs, “HTML

4.01 Specification,” December 1999.) section 17.13.4. Form-encoded

parameters present in the entity-body are not included.
Once separated and decoded, the parameters are concatenated back
together as follows:

1.

First, the name and value of each parameter are escaped using
the [RFC3986] (Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”

January 2005.) percent-encoding (%XX) mechanism. Characters in

the unreserved character set as defined by [RFC3986] (Berners-

Lee, T., Fielding, R., and L. Masinter, “Uniform Resource
Identifier (URI): Generic Syntax,” January 2005.) section 2.3
(ALPHA, DIGIT, "-", ".,", "_", "~") MUST NOT be encoded. All
other characters MUST be encoded. The two hexadecimal
characters used to represent encoded characters MUST be upper

case.

2. The name of each parameter is concatenated to its corresponding
value using an = character (ASCII code 61) as separator, even
if the value 1is empty.

3. The name/value parameter pairs are sorted using ascending byte
value ordering.

4. The sorted parameters are concatenated together into a single
string by using an new line character (ASCII code 10) as
separator.

Note that the percent-encoding method described is different from the
encoding scheme used by the application/x-www-form-urlencoded content-
type (for example, it encodes space characters as %20 instead of the +
character). It MAY be different from the percent-encoding functions
provided by web development frameworks (e.g. encode different
characters, use lower case hexadecimal characters).

For example, the HTTP request URI:

/request?b5=%3D%253D&a3=a&c%40=8&a2=r%20b&c2&a3=2+q

Contains the following (fully decoded) parameters used in the
normalized request sting:

Name Value

b5 =%3D

a3 a

c@

a2 r b

c2

a3 2

Note that the value of b5 is =%3D and not ==. Both c@ and c2 have empty

values. While the encoding rules specified in this specification for
the purpose of constructing the normalized request string exclude the
use of a + character (ASCII code 43) to represent an encoded space
character (ASCII code 32), this practice is widely used in application/
x-www-form-urlencoded encoded values, and MUST be properly decoded, as

demonstrated by one of the a3 parameter instances (the a3 parameter is
used twice in this request).
The parsed parameters are normalized as follows:

Escaped:

Name Value
b5 %3D%253D

a3 a
C%40

a2 r%20b
c2

a3 2%20q

Concatenated Pairs:

Name=Value
b5=%3D%253D
a3=a
C%40=
a2=r%20b
c2=
a3=2%20q

Sorted:

Name=Value
a2=r%20b
a3=2%20q

a3=a
b5=%3D%253D
C%40=

c2=

And concatenated together into a single string (the new line separator
character is represented by \n for display purposes only):

a2=r%20b\n
a3=2%20g\n
a3=a\n
b5=%3D%253D\n
c%40=\n

c2=\n

3.3.2. hmac-sha-1 TOC

hmac-sha-1 uses the HMAC-SHA1l algorithm as defined in [RFC2104]
(Krawczyk, H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for
Message Authentication,” February 1997.):

digest = HMAC-SHA1l (key, text)

Where:

text 1is set to the value of the normalize request string as
described in Section 3.3.1 (Normalized Request String),

key 1is set to the access token shared-secret provided by the
authorization server, and

digest 1is used to set the value of the signature attribute, after
the result octet string is base64-encoded per [RFC2045] (Freed,
N. and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies,”
November 1996.) section 6.8.

3.3.3. hmac-sha-256 TOC

hmac-sha-1 uses the HMAC algorithm as defined in [RFC2104] (Krawczyk,
H., Bellare, M., and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication,” February 1997.) together with the SHA-256 hash
function defined in [NIST FIPS-180-3] (National Institute of Standards
and Technology, “Secure Hash Standard (SHS). FIPS PUB 180-3, October
2008,"” .):

digest = HMAC-SHA256 (key, text)

Where:

text 1is set to the value of the normalize request string as
described in Section 3.3.1 (Normalized Request String),

key 1is set to the access token shared-secret provided by the
authorization server, and

digest 1is used to set the value of the signature attribute, after
the result octet string is base64-encoded per [RFC2045] (Freed,
N. and N. Borenstein, “Multipurpose Internet Mail Extensions
(MIME) Part One: Format of Internet Message Bodies,”
November 1996.) section 6.8.

4. Verifying Requests TOC

A servers receiving an authenticated request validates it by performing
the following REQUIRED steps:

1. Recalculate the request body hash (if included in the request)
as described in Section 3.2 (Body Hash) and signature as
described in Section 3.3 (Signature) and compare the signature
to the value received from the client via the signature
attribute.

2. Ensure that the combination of nonce, timestamp, and access
token received from the client has not been used before in a
previous request (the server MAY reject requests with stale
timestamps; the determination of staleness is left up to the
server to define).

3. Verify the scope and status of the access token.

If the request fails verification, the server SHOULD respond with an
HTTP 401 (unauthorized) status code, and SHOULD include a token scheme
authentication challenge using the WwW-Authenticate header field. The
server MAY include further details about why the request was rejected
using the error attribute.

T0C

4.1. The "wWwW-Authenticate" Response Header Field

If the protected resource request does not include authentication
credentials, contains an invalid access token, or is malformed, the
resource server MUST include the HTTP WwWwW-Authenticate response header
field. The WwWwW-Authenticate header field uses the framework defined by
[REC2617] (Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
Leach, P., Luotonen, A., and L. Stewart, “HTTP Authentication: Basic
and Digest Access Authentication,” June 1999.) as follows:

challenge = "MAC" [RWS 1#param]
param = realm / error / auth-param
error = "error" "=" quoted-string

Each attribute MUST NOT appear more than once.

If the protected resource request included a MAC Authorization header
field and failed authentication, the resource server MAY include the
error attribute to provide the client with a human-readable explanation
why the access request was declined.

For example, in response to a protected resource request without
authentication:

HTTP/1.1 401 Unauthorized
WwWw-Authenticate: MAC realm="example"

And in response to a protected resource request with an authentication
attempt using an expired access token:

HTTP/1.1 401 Unauthorized
WwWwW-Authenticate: MAC realm="example"
error="The access token expired"

The resource server response SHOULD use the appropriate HTTP status
code as follows:

400 (Bad Request) The request is missing a required parameter,
includes an unsupported parameter or parameter value, repeats the

same parameter, uses more than one method for including an access
token, or is otherwise malformed.

401 (Unauthorized) The access token provided is expired, revoked,
malformed, or invalid. The body hash or signature provided do not
match the values calculated by the server.

403 (Forbidden) The request requires higher privileges than
provided by the access token.

5. Scheme Extensions TOC
[[TBD]]
6. Use with OAuth 2.0 TOC

OAuth 2.0 ([I-D.jetf-oauth-v2] (Hammer-Lahav, E., Recordon, D., and D.
Hardt, “The OAuth 2.0 Authorization Protocol,” January 2011.)) defines
a token-based authentication framework in which third-party
applications (clients) access protected resources using access tokens.
Access tokens are obtained via the resource owners' authorization from
an authorization server. This specification defines the OAuth 2.0 MAC
token type, as well as type-specific token attributes.

This specification does not define methods for the client to
specifically request a MAC-type token from the authorization server.
Additionally, it does not include any discovery facilities for
identifying which HMAC algorithms are supported by a resource server,
or how the client may go about obtaining MAC access tokens.

6.1. Issuing MAC-Type Access Tokens TOC

Authorization servers issuing MAC-type access tokens MUST include the
following parameters whenever a response includes the access_token
parameter:

secret REQUIRED. The token shared secret used as the MAC algorithm
key.

algorithm REQUIRED. The MAC algorithm used to calculate the request
signature. Value MUST be one of hmac-sha-1, hmac-sha-256, or a

registered extension algorithm name as described in Section 5
(Scheme Extensions).

7. Security Considerations TOC

As stated in [RFC2617] (Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, “HTTP
Authentication: Basic and Digest Access Authentication,” June 1999.),
the greatest sources of risks are usually found not in the core
protocol itself but in policies and procedures surrounding its use.
Implementers are strongly encouraged to assess how this protocol
addresses their security requirements.

7.1. Secrets Transmission TOC

This specification does not describe any mechanism for obtaining or
transmitting access token secrets. Methods used to obtain tokens should
ensure that these transmissions are protected using transport-layer
mechanisms such as TLS or SSL.

7.2. Confidentiality of Requests TOC

While this protocol provides a mechanism for verifying the integrity of
requests, it provides no guarantee of request confidentiality. Unless
further precautions are taken, eavesdroppers will have full access to
request content. Servers should carefully consider the kinds of data
likely to be sent as part of such requests, and should employ
transport-layer security mechanisms to protect sensitive resources.

7.3. Spoofing by Counterfeit Servers TOC

This protocol makes no attempt to verify the authenticity of the
resource server. A hostile party could take advantage of this by
intercepting the client's requests and returning misleading or
otherwise incorrect responses. Service providers should consider such
attacks when developing services using this protocol, and should
require transport-layer security for any requests where the

authenticity of the resource server or of request responses is an
issue.

7.4. Plaintext Storage of Credentials TOC

The access token shared-secret functions the same way passwords do in
traditional authentication systems. In order to compute the signature,
the server must have access to the secret in plaintext form. This is in
contrast, for example, to modern operating systems, which store only a
one-way hash of user credentials.

If an attacker were to gain access to these secrets - or worse, to the
server's database of all such secrets - he or she would be able to
perform any action on behalf of any resource owner. Accordingly, it is
critical that servers protect these secrets from unauthorized access.

7.5. Entropy of Secrets TOC

Unless a transport-layer security protocol is used, eavesdroppers will
have full access to authenticated requests and signatures, and will
thus be able to mount offline brute-force attacks to recover the secret
used. Authorization servers should be careful to assign shared-secrets
which are long enough, and random enough, to resist such attacks for at
least the length of time that the shared-secrets are valid.

For example, if shared-secrets are valid for two weeks, authorization
servers should ensure that it is not possible to mount a brute force
attack that recovers the shared-secret in less than two weeks. Of
course, authorization servers are urged to err on the side of caution,
and use the longest secrets reasonable.

It is equally important that the pseudo-random number generator (PRNG)
used to generate these secrets be of sufficiently high quality. Many
PRNG implementations generate number sequences that may appear to be
random, but which nevertheless exhibit patterns or other weaknesses
which make cryptanalysis or brute force attacks easier. Implementers
should be careful to use cryptographically secure PRNGs to avoid these
problems.

7.6. Denial of Service / Resource Exhaustion Attacks TOC

This specification includes a number of features which may make
resource exhaustion attacks against servers possible. For example, this
protocol requires servers to track used nonces. If an attacker is able

to use many nonces quickly, the resources required to track them may
exhaust available capacity. And again, this protocol can require
servers to perform potentially expensive computations in order to
verify the signature on incoming requests. An attacker may exploit this
to perform a denial of service attack by sending a large number of
invalid requests to the server.

Resource Exhaustion attacks are by no means specific to this
specification. However, implementers should be careful to consider the
additional avenues of attack that this protocol exposes, and design
their implementations accordingly. For example, entropy starvation
typically results in either a complete denial of service while the
system waits for new entropy or else in weak (easily guessable)
secrets. When implementing this protocol, servers should consider which
of these presents a more serious risk for their application and design
accordingly.

7.7. Coverage Limitations TOC

The normalized request string has been designed to support the
authentication methods defined in this specification. Those designing
additional methods, should evaluated the compatibility of the
normalized request string with their security requirements. Since the
normalized request string does not cover the entire HTTP request,
servers should employ additional mechanisms to protect such elements.
The signature does not cover entity-header fields which can often
affect how the request body is interpreted by the server (i.e. Content-
Type). If the server behavior is influenced by the presence or value of
such header fields, an attacker can manipulate the request header
without being detected. This will alter the request even when using the
body hash attribute.

8. IANA Considerations TOC

8.1. OAuth Access Token Type Registration TOC

This specification registers the following access token type in the
OAuth Access Token Type Registry.

8.1.1. The "mac" OAuth Access Token Type _TOC _
Type name: mac
Additional Token Endpoint Response Parameters: secret, algorithm
HTTP Authentication Scheme(s): MAC
Change controller: IETF

Specification document(s): [[this document]]

8.2. OAuth Parameters Registration TOC

This specification registers the following parameters in the OAuth
Parameters Registry established by [I-D.ietf-ocauth-v2] (Hammer-Lahav,
E., Recordon, D., and D. Hardt, “The OAuth 2.0 Authorization Protocol,”
January 2011.).

8.2.1. The "secret" OAuth Parameter _ToC _
Parameter name: secret
Parameter usage location: authorization response, token response
Change controller: TIETF
Specification document(s): |[[this document]]

Related information: None

8.2.2. The "algorithm" OAuth Parameter _ToC _
Parameter name: algorithm
Parameter usage location: authorization response, token response
Change controller: IETF

Specification document(s): [[this document]]

Related information:
None

9. Acknowledgments TOC

The author would like to thank James Manger for his suggestions,
feedback, and continued support.

Appendix A. Document History _TOC _

[[To be removed by the RFC editor before publication as an RFC.]]
-02

*Added body-hash support.

*Updated OAuth 2.0 reference and added token type registration
template.

*Removed error codes and error URI.
-01

*Changed parameters sorting to come after name=value string
construction.

*Added new line at the end of the normalized request string.
*Moved OAuth2 references to separate section.

*Added 'WwW-Authenticate' header definition.

*Fixed example header use of single quote.

*Restricted strings to ASCII subset (printable, no double-quotes
or back-slash).

-00

*Initial draft.

TOC

10. References

10.1. Normative References

[I-D.ietf-httpbis-
pl-messaging]

[I-D.ietf-oauth-

v2]

[NIST FIPS-180-3]

[RFC2045]

[RFC2104]

[RFC2119]

[RFC2617]

[RFC3986]

[W3C.REC-
htm1401-19991224]

TOC
Fielding, R., Gettys, J., Mogul, J., Nielsen,
H., Masinter, L., Leach, P., Berners-Lee, T.,
and J. Reschke, “HTTP/1.1, part 1: URIs,
Connections, and Message Parsing,” draft-ietf-
httpbis-pl-messaging-08 (work in progress),
October 2009 (TXT).
Hammer -Lahav, E., Recordon, D., and D. Hardt,
“The OAuth 2.0 Authorization Protocol,” draft-
ietf-oauth-v2-12 (work in progress),
January 2011 (TXT).
National Institute of Standards and Technology,
“Secure Hash Standard (SHS). FIPS PUB 180-3,
October 2008."
Freed, N. and N. Borenstein, “Multipurpose
Internet Mail Extensions (MIME) Part One: Format
of Internet Message Bodies,” RFC 2045,
November 1996 (TXT).
Krawczyk, H., Bellare, M., and R. Canetti,
“HMAC: Keyed-Hashing for Message
Authentication,” RFC 2104, February 1997 (TXT).
Bradner, S., “Key words for use in RFCs to
Indicate Requirement Levels,” BCP 14, RFC 2119,
March 1997 (TXT, HTML, XML).
Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999
(IXT, HTML, XML).
Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic
Syntax,” STD 66, RFC 3986, January 2005 (TXT,
HTML, XML).
Hors, A., Raggett, D., and I. Jacobs, “HTML 4.01
Specification,” World wWide Web Consortium
Recommendation REC-html401-19991224,
December 1999 (HTML).

10.2. Informative References

[RFC5849]

TOC

http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-httpbis-p1-messaging-08.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-12.txt
http://www.ietf.org/internet-drafts/draft-ietf-oauth-v2-12.txt
http://www.nist.gov/itl/upload/fips180-3_final.pdf
http://www.nist.gov/itl/upload/fips180-3_final.pdf
mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
http://www.rfc-editor.org/rfc/rfc2104.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/1999/REC-html401-19991224

Hammer-Lahav, E., “The OAuth 1.0 Protocol,” RFC 5849,
April 2010 (TXT).

Author's Address
TOC
Eran Hammer-Lahav
Yahoo!
Email: eran@hueniverse.com

URI: http://hueniverse.com

http://tools.ietf.org/html/rfc5849
http://www.rfc-editor.org/rfc/rfc5849.txt
mailto:eran@hueniverse.com
http://hueniverse.com

	HTTP Authentication: MAC Authenticationdraft-hammer-oauth-v2-mac-token-02
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Example
	1.2. Notational Conventions
	2. Issuing MAC Credentials
	3. Making Requests
	3.1. The "Authorization" Request Header
	3.2. Body Hash
	3.3. Signature
	3.3.1. Normalized Request String
	3.3.1.1. Parameters Normalization
	3.3.2. hmac-sha-1
	3.3.3. hmac-sha-256
	4. Verifying Requests
	4.1. The "WWW-Authenticate" Response Header Field
	5. Scheme Extensions
	6. Use with OAuth 2.0
	6.1. Issuing MAC-Type Access Tokens
	7. Security Considerations
	7.1. Secrets Transmission
	7.2. Confidentiality of Requests
	7.3. Spoofing by Counterfeit Servers
	7.4. Plaintext Storage of Credentials
	7.5. Entropy of Secrets
	7.6. Denial of Service / Resource Exhaustion Attacks
	7.7. Coverage Limitations
	8. IANA Considerations
	8.1. OAuth Access Token Type Registration
	8.1.1. The "mac" OAuth Access Token Type
	8.2. OAuth Parameters Registration
	8.2.1. The "secret" OAuth Parameter
	8.2.2. The "algorithm" OAuth Parameter
	9. Acknowledgments
	Appendix A. Document History
	10. References
	10.1. Normative References
	10.2. Informative References
	Author's Address

