
Network Working Group E. Hammer-Lahav

Internet-Draft Yahoo!

Intended status: Standards Track A. Barth

Expires: November 11, 2011 Google

B. Adida

Mozilla

May 10, 2011

HTTP Authentication: MAC Access Authentication

draft-hammer-oauth-v2-mac-token-05

Abstract

This document specifies the HTTP MAC access authentication scheme, an

HTTP authentication method using a message authentication code (MAC)

algorithm to provide cryptographic verification of portions of HTTP

requests. The document also defines an OAuth 2.0 binding for use as an

access-token type, as well as an extension attribute to the HTTP Set-

Cookie response header field.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on November 11, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Example

1.2. Notational Conventions

2. Issuing MAC Credentials

3. Making Requests

3.1. The "Authorization" Request Header

3.2. Body Hash

3.3. Request MAC

3.3.1. Normalized Request String

3.3.2. hmac-sha-1

3.3.3. hmac-sha-256

4. Verifying Requests

4.1. The "WWW-Authenticate" Response Header Field

5. Use with OAuth 2.0

5.1. Issuing MAC-Type Access Tokens

6. Use with Set-Cookie

6.1. User Agent Requirements

6.1.1. The Set-Cookie Header

6.1.1.1. The MAC-Key attribute

6.1.1.2. The MAC-Algorithm attribute

6.1.2. Storage Model

6.1.3. The Authorization Header

7. Security Considerations

7.1. MAC Keys Transmission

7.2. Confidentiality of Requests

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7.3. Spoofing by Counterfeit Servers

7.4. Plaintext Storage of Credentials

7.5. Entropy of MAC Keys

7.6. Denial of Service / Resource Exhaustion Attacks

7.7. Timing Attacks

7.8. CSRF Attacks

7.9. Coverage Limitations

7.10. Version Rollback Attack

8. IANA Considerations

8.1. The HTTP MAC Authentication Scheme Algorithm Registry

8.1.1. Registration Template

8.1.2. Initial Registry Contents

8.2. OAuth Access Token Type Registration

8.2.1. The "mac" OAuth Access Token Type

8.3. OAuth Parameters Registration

8.3.1. The "secret" OAuth Parameter

8.3.2. The "algorithm" OAuth Parameter

9. Acknowledgments

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Introduction

This specification defines the HTTP MAC access authentication scheme,

providing a method for making authenticated HTTP requests with partial

cryptographic verification of the request, covering the HTTP method,

request URI, host, and in some cases the request body.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

MAC key identifier:

MAC key:

Similar to the HTTP Basic access authentication scheme [RFC2617], the

MAC scheme utilizes a set of client credentials which include an

identifier and key. However, in contrast with the Basic scheme, the key

is never included in authenticated requests but is used to calculate

the request MAC value which is included instead.

[[Add note about design constraints (eg sign an HTTP request without

any interactivity with the server; suitable for shared secret keys, but

not for shared passwords)]]

The MAC scheme requires the establishment of a shared symmetric key

between the client and the server. This is often accomplished through a

manual process such as client registration. This specification offers

two methods for issuing a set of MAC credentials to the client using:

OAuth 2.0 in the form of a MAC-type access token, using any

supported OAuth grant type.

The HTTP Set-Cookie response header field via an extension

attribute.

[[Please discuss this draft on the apps-discuss@ietf.org mailing list.

]]

1.1. Example

The client attempts to access a protected resource without

authentication, making the following HTTP request to the resource

server:

 GET /resource/1?b=1&a=2 HTTP/1.1

 Host: example.com

The resource server returns the following authentication challenge:

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: MAC

The client has previously obtained a set of MAC credentials for

accessing resources on the http://example.com/ server. The MAC

credentials issued to the client include the following attributes:

h480djs93hd8

489dks293j39

*

*

https://www.ietf.org/mailman/listinfo/apps-discuss

MAC algorithm:

Issue time:

Age:

Random string:

Nonce:

hmac-sha-1

Thu, 02 Dec 2010 21:39:45 GMT

The client constructs the authentication header by calculating the

credentials' age (number of seconds since the credentials were issued)

and generating a random string used to construct a nonce:

264095

dj83hs9s

264095:dj83hs9s

The client constructs the normalized request string (the new line

separator character is represented by \n for display purposes only; the

two trailing new line separators signify that no body hash or extension

value are included with the request, explained below):

 264095:dj83hs9s\n

 GET\n

 /resource/1?b=1&a=2\n

 example.com\n

 80\n

 \n

 \n

The request MAC is calculated using the specified MAC algorithm hmac-

sha-1 and the MAC key over the normalized request string. The result is

base64-encoded to produce the request MAC:

 SLDJd4mg43cjQfElUs3Qub4L6xE=

The client includes the MAC key identifier, nonce, and request MAC with

the request using the Authorization request header field:

 GET /resource/1?b=1&a=2 HTTP/1.1

 Host: example.com

 Authorization: MAC id="h480djs93hd8",

 nonce="264095:dj83hs9s",

 mac="SLDJd4mg43cjQfElUs3Qub4L6xE="

MAC key identifier

MAC key

MAC algorithm

Issue time

The server validates the request by calculating the request MAC again

based on the request received and verifies the validity and scope of

the MAC credentials. If valid, the server responds with the requested

resource representation.

1.2. Notational Conventions

The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',

'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this

specification are to be interpreted as described in [RFC2119].

This specification uses the Augmented Backus-Naur Form (ABNF) notation

of [I-D.ietf-httpbis-p1-messaging]. Additionally, the following rules

are included from [RFC2617]: auth-param.

2. Issuing MAC Credentials

This specification defines two method for issuing MAC credentials using

OAuth 2.0 as described in Section 5 and using the HTTP Set-Cookie

response header field as described in Section 6.

This specification does not mandate servers to support any particular

method for issuing MAC credentials, and other methods MAY be defined

and used. Whenever MAC credentials are issued, the credentials MUST

include the following attributes:

A string identifying the MAC key used to calculate

the request MAC. The string is usually opaque to the client. The

server typically assigns a specific scope and lifetime to each set

of MAC credentials. The identifier MAY denote a unique value used to

retrieve the authorization information (e.g. from a database), or

self-contain the authorization information in a verifiable manner

(i.e. a string consisting of some data and a signature).

A shared symmetric secret used as the MAC algorithm key. The

server MUST NOT issue the same MAC key and MAC key identifier

combination.

A MAC algorithm used to calculate the request MAC. Value

MUST be one of hmac-sha-1, hmac-sha-256, or a registered extension

algorithm name as described in Section 8.1. Algorithm names are

case-sensitive. If the MAC algorithm is not understood by the

client, the client MUST NOT use the MAC credentials and continue as

if no MAC credentials were issued.

The time when the credentials were issued, used to

calculate the credentials age when making requests. If the MAC

id

nonce

credentials were obtained via an HTTP response, the time of issue is

the time the response was received by the client.

The MAC key identifier, MAC key, MAC algorithm strings MUST NOT include

characters other than:

 %x20-21 / %x23-5B / %x5D-7E

 ; Any printable ASCII character except for <"> and <\>

3. Making Requests

To make authenticated requests, the client must be in the possession of

a valid set of MAC credentials accepted by the server. The client

constructs the request by calculating a set of attributes, and adding

them to the HTTP request using the Authorization request header field

as described in Section 3.1.

3.1. The "Authorization" Request Header

The Authorization request header field uses the framework defined by

[RFC2617] as follows:

 credentials = "MAC" [RWS 1#param]

 param = id /

 nonce /

 body-hash /

 ext /

 mac

 id = "id" "=" <"> plain-string <">

 nonce = "nonce" "=" <"> 1*DIGIT ":" plain-string <">

 body-hash = "bodyhash" "=" <"> plain-string <">

 ext = "ext" "=" <"> plain-string <">

 mac = "mac" "=" <"> plain-string <">

 plain-string = 1*(%x20-21 / %x23-5B / %x5D-7E)

The header attributes are set as follows:

REQUIRED. The MAC key identifier.

REQUIRED. A unique string generated by the client to allow the

bodyhash

ext

mac

server to verify that a request has never been made before and helps

prevent replay attacks when requests are made over an insecure

channel. The nonce value MUST be unique across all requests with the

same MAC key identifier.

The nonce value MUST consist of the age of the MAC credentials

expressed as the number of seconds since the credentials were issued

to the client, a colon character (%x25), and a unique string

(typically random). The age value MUST be a positive integer and

MUST NOT include leading zeros (e.g. "000137131200"). For example:

"273156:di3hvdf8".

To avoid the need to retain an infinite number of nonce values for

future checks, the server MAY choose to restrict the time period

after which a request with an old age is rejected. If such a

restriction is enforced, the server SHOULD allow for a sufficiently

large window to accommodate network delays which will affect the

credentials issue time used by the client to calculate the

credentials' age.

OPTIONAL. The HTTP request payload body hash as described in

Section 3.2.

OPTIONAL. A string used to include additional information which is

covered by the request MAC. The content and format of the string is

beyond the scope of this specification.

REQUIRED. The HTTP request MAC as described in Section 3.3.

Attributes MUST NOT appear more than once. Attribute values are limited

to a subset of ASCII, which does not require escaping, as defined by

the plain-string ABNF.

3.2. Body Hash

[[Need to figure out exactly when body-hash is required]]

The body hash is used to provide integrity verification of the HTTP

request payload body. The body hash value is calculated using a hash

algorithm over the entire HTTP request payload body.

The client MAY include the body hash with any request. The server

SHOULD require the calculation and inclusion of the body hash with any

request containing an payload body, or when the presence (or lack of)

of an payload body is of significance.

The body hash algorithm is determined by the MAC algorithm. The SHA-1

hash algorithm as defined by [NIST FIPS-180-3] is used with the hmac-

sha-1 MAC algorithm. The SHA-256 hash algorithm as defined by [NIST

FIPS-180-3] is used with the hmac-sha-256 MAC algorithm. Additional MAC

algorithms MUST specify the corresponding body hash algorithm.

The body hash is calculated as follows:

HASH

text

BASE64

bodyhash

 bodyhash = BASE64 (HASH (text))

Where:

is the hash algorithm function,

is the HTTP request payload body,

is the base64-encoding function per [RFC2045] section 6.8,

applied to the hash result octet string, and

is the value used in the normalized request string and to set

the bodyhash attribute of the Authorization request header field.

The body hash is calculated before the normalized request string is

constructed and the request MAC is calculated.

For example, the HTTP request:

 POST /request HTTP/1.1

 Host: example.net

 Content-Type: application/x-www-form-urlencoded

 hello=world%21

using MAC key identifier jd93dh9dh39D, nonce 273156:di3hvdf8, MAC

algorithm hmac-sha-1, and MAC key 8yfrufh348h, is transmitted as (line

breaks are for display purposes only):

 POST /request HTTP/1.1

 Host: example.com

 Content-Type: application/x-www-form-urlencoded

 Authorization: MAC id="jd93dh9dh39D",

 nonce="273156:di3hvdf8",

 bodyhash="k9kbtCIy0CkI3/FEfpS/oIDjk6k=",

 mac="W7bdMZbv9UWOTadASIQHagZyirA="

 hello=world%21

3.3. Request MAC

The client uses the MAC algorithm and the MAC key to calculate the

request MAC. This specification defines two algorithms: hmac-sha-1 and

hmac-sha-256, and provides an extension registry for additional

algorithms.

3.3.1. Normalized Request String

The normalized request string is a consistent, reproducible

concatenation of several of the HTTP request elements into a single

string. By normalizing the request into a reproducible string, the

client and server can both calculate the request MAC over the exact

same value.

The string is constructed by concatenating together, in order, the

following HTTP request elements, each followed by a new line character

(%x0A):

The nonce value generated for the request.

The HTTP request method in upper case. For example: HEAD, GET,

POST, etc.

The HTTP request-URI as defined by [RFC2616] section 5.1.2.

The hostname included in the HTTP request using the Host

request header field in lower case.

The port as included in the HTTP request using the Host request

header field. If the header field does not include a port, the

default value for the scheme MUST be used (e.g. 80 for HTTP and

443 for HTTPS).

The request payload body hash as described in Section 3.2 if

one was calculated and included in the request, otherwise, an

empty string. Note that the body hash of an empty payload body

is not an empty string.

The value of the ext Authorization request header field

attribute if one was included in the request, otherwise, an

empty string.

Each element is followed by a new line character (%x0A) including the

last element and even when an element value is an empty string.

For example, the HTTP request:

1.

2.

3.

4.

5.

6.

7.

text

key

mac

 POST /request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=2+q HTTP/1.1

 Host: example.com

 Hello World!

using nonce 264095:7d8f3e4a, body hash Lve95gjOVATpfV8EL5X4nxwjKHE=,

and extension string a,b,c is normalized into the following string (the

new line separator character is represented by \n for display purposes

only):

 264095:7d8f3e4a\n

 POST\n

 /request?b5=%3D%253D&a3=a&c%40=&a2=r%20b&c2&a3=2+q\n

 example.com\n

 80\n

 Lve95gjOVATpfV8EL5X4nxwjKHE=\n

 a,b,c\n

3.3.2. hmac-sha-1

hmac-sha-1 uses the HMAC-SHA1 algorithm as defined in [RFC2104]:

 mac = HMAC-SHA1 (key, text)

Where:

is set to the value of the normalized request string as described

in Section 3.3.1,

is set to the MAC key provided by the server, and

is used to set the value of the mac attribute, after the result

octet string is base64-encoded per [RFC2045] section 6.8.

The SHA-1 hash algorithm as defined by [NIST FIPS-180-3] is used for

generating the body hash attribute described in Section 3.2 when using

MAC credentials with the hmac-sha-1 MAC algorithm.

text

key

mac

401 (Unauthorized)

3.3.3. hmac-sha-256

hmac-sha-256 uses the HMAC algorithm as defined in [RFC2104] together

with the SHA-256 hash function defined in [NIST FIPS-180-3]:

 mac = HMAC-SHA256 (key, text)

Where:

is set to the value of the normalize request string as described

in Section 3.3.1,

is set to the MAC key provided by the server, and

is used to set the value of the mac attribute, after the result

octet string is base64-encoded per [RFC2045] section 6.8.

The SHA-256 hash algorithm as defined by [NIST FIPS-180-3] is used for

generating the body hash attribute described in Section 3.2 when using

MAC credentials with the hmac-sha-256 MAC algorithm.

4. Verifying Requests

A server receiving an authenticated request validates it by performing

the following REQUIRED steps:

Recalculate the request body hash (if included in the request)

as described in Section 3.2 and request MAC as described in

Section 3.3 and compare the request MAC to the value received

from the client via the mac attribute.

Ensure that the combination of nonce and MAC key identifier

received from the client has not been used before in a previous

request (the server MAY reject requests with stale timestamps;

the determination of staleness is left up to the server to

define).

Verify the scope and validity of the MAC credentials.

If the request fails verification, the server response includes the

WWW-Authenticate response header field as described in Section 4.1 and

SHOULD include one of the following HTTP status codes:

The Authorization request header field is not

1.

2.

3.

307 (Temporary Redirect)

included, missing a required parameter, includes an unsupported

parameter or parameter value, repeats the same parameter, or is

otherwise malformed. The MAC credentials provided are expired,

revoked, malformed, or invalid. The body hash or request MAC

provided do not match the values calculated by the server, or a body

hash is required but missing.

Same as 401, with the exception that a human

intervention at the destination URI (identified by the Location

response header field) MAY resolve the issue (e.g. provide a login

page which upon a successful authentication will issue the user-

agent a new set of MAC credentials using the Set-Cookie response

header field as described in Section 6.

4.1. The "WWW-Authenticate" Response Header Field

If the protected resource request does not include authentication

credentials, contains an invalid MAC key identifier, or is malformed,

the server SHOULD include the HTTP WWW-Authenticate response header

field.

For example:

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: MAC

The WWW-Authenticate request header field uses the framework defined by

[RFC2617] as follows:

 challenge = "MAC" [RWS 1#param]

 param = error / auth-param

 error = "error" "=" quoted-string

Each attribute MUST NOT appear more than once.

If the protected resource request included a MAC Authorization request

header field and failed authentication, the server MAY include the

error attribute to provide the client with a human-readable explanation

why the access request was declined.

For example:

access_token

secret

algorithm

 HTTP/1.1 401 Unauthorized

 WWW-Authenticate: MAC error="The MAC credentials expired"

5. Use with OAuth 2.0

OAuth 2.0 ([I-D.ietf-oauth-v2]) defines a token-based authentication

framework in which third-party applications (clients) access protected

resources using access tokens. Access tokens are obtained via the

resource owners' authorization from an authorization server. This

specification defines the OAuth 2.0 MAC token type, as well as type-

specific token attributes.

This specification does not define methods for the client to

specifically request a MAC-type token from the authorization server.

Additionally, it does not include any discovery facilities for

identifying which HMAC algorithms are supported by a resource server,

or how the client may go about obtaining MAC access tokens for any

given protected resource.

The authorization server MUST require the use of a transport-layer

security mechanism when sending requests to the token endpoint to

obtain a MAC token.

5.1. Issuing MAC-Type Access Tokens

Authorization servers issuing MAC-type access tokens MUST include the

following parameters whenever a response includes the access_token

parameter:

REQUIRED. The MAC key identifier.

REQUIRED. The MAC key.

REQUIRED. The MAC algorithm used to calculate the request

MAC. Value MUST be one of hmac-sha-1, hmac-sha-256, or a registered

extension algorithm name as described in Section 8.1.

6. Use with Set-Cookie

The HTTP Set-Cookie response header field defined in [RFC6265] enables

the server to set persistent information which the client repeats back

on follow-up requests. Each cookie includes a name-value pair which is

sent back to the server, and a set of attributes which inform the

client when to include the cookie in follow-up requests. The attributes

are never sent back to the server.

This specification defines the MAC-Key and MAC-Algorithm cookie

attributes, which are used by the server, together with the cookie name

which includes the MAC key identifier, to issue the client a set of MAC

credentials.

The server MUST only include the MAC-Key attribute in response to

requests made using a transport-layer security mechanism such as TLS

1.2 as defined in [RFC5246]. Clients MUST discard any MAC credentials

received over an insecure channel.

For example, after a successful end-user authentication, the server

includes the following response header field (line breaks are for

display purposes only):

 Set-Cookie: SID=31d4d96e407aad42; Path=/; Domain=example.com;

 MAC-Key=8yfrufh348h; MAC-Algorithm=hmac-sha-1

which provides the client with the necessary MAC credentials. The

cookie name SID is used as the MAC key identifier together with the

other MAC-specific attributes. The user-agent uses the MAC credentials

for subsequent HTTP requests that match the scope of the cookie, in

this case for example.com and all subdomains.

6.1. User Agent Requirements

This section updates [RFC6265], adding the ability to issue MAC

credentials using the Set-Cookie response header field.

6.1.1. The Set-Cookie Header

Add the following two subsections to the end of Section 5.2 (The Set-

Cookie Header) in [RFC6265]. These sections instruct the user-agent how

to parse the MAC-Key attribute and MAC-Algorithm attribute,

respectively.

6.1.1.1. The MAC-Key attribute

If the attribute-name case-insensitively matches the string MAC-Key,

the user-agent MUST append an attribute to the cookie-attribute-list

with an attribute name of MAC-Key and a attribute-value equal to the

attribute-value.

6.1.1.2. The MAC-Algorithm attribute

If the attribute-name case-insensitively matches the string MAC-

Algorithm, and if the attribute-value is either hmac-sha-1, hmac-

sha-256, or a registered extension value, the user-agent MUST append an

attribute to the cookie-attribute-list with an attribute name of MAC-

Algorithm and an attribute-value equal to the attribute-value.

MAC key identifier

MAC key

MAC algorithm

6.1.2. Storage Model

The storage model for cookies is extended with two additional fields:

mac-key and mac-algorithm, all of which default to the empty string.

The user-agent MUST perform the follow steps after Step 10 of the

algorithm in Section 5.3 of [RFC6265]:

If the cookie-attribute-list contains an attribute with an

attribute-name of MAC-Key, set the cookie's mac-key field to

the attribute-value of the last such attribute.

If the cookie-attribute-list contains an attribute with an

attribute-name of Mac-Algorithm, set the cookie's mac-algorithm

field to the attribute-value of the last such attribute.

When the user agent removes excess cookies from the cookie store

because there are more than a predetermined number of cookies that

share a domain field, or the combined length of cookies sharing a

single domain field or being sent in a single request have exceeded a

predetermined length, the user agent MUST evict cookies with an empty

mac-key or an empty mac-algorithm field before cookies with both a non-

empty mac-key and a non-empty mac-algorithm field.

6.1.3. The Authorization Header

In addition to being sent to the server in the Cookie request header

field, cookies with MAC-Key and MAC-Algorithm attributes are also used

to compute the Authorization request header field as described in

Section 3.1.

The user-agent MAY ignore cookies for the purpose of generating the

Authorization request header field. For example, the user-agent might

wish to ignore cookies when issuing "third-party" requests or use MAC

credentials obtained via other means.

When issuing an HTTP request, let cookie-list be the set of cookies

defined in Section 5.4 of [RFC6265]. Further, let mac-cookie-list be

those cookies in the cookie-list that contain both a non-empty mac-key

and mac-algorithm fields.

Let the operative-cookie be the first cookie in the mac-cookie-list.

Include an Authorization request header field in the HTTP request as

described in Section 3.1 using the cookie's MAC credentials where:

is equal to the operative-cookie's name,

is equal to the operative-cookie's mac-key,

is equal to the operative-cookie's mac-algorithm, and

1.

2.

Issue time

is equal to the operative-cookie's creation-time.

7. Security Considerations

As stated in [RFC2617], the greatest sources of risks are usually found

not in the core protocol itself but in policies and procedures

surrounding its use. Implementers are strongly encouraged to assess how

this protocol addresses their security requirements.

7.1. MAC Keys Transmission

This specification describes two mechanism for obtaining or

transmitting MAC keys, both require the use of a transport-layer

security mechanism when sending MAC keys to the client. Additional

methods used to obtain MAC credentials must ensure that these

transmissions are protected using transport-layer mechanisms such as

TLS or SSL.

7.2. Confidentiality of Requests

While this protocol provides a mechanism for verifying the integrity of

requests, it provides no guarantee of request confidentiality. Unless

further precautions are taken, eavesdroppers will have full access to

request content. Servers should carefully consider the kinds of data

likely to be sent as part of such requests, and should employ

transport-layer security mechanisms to protect sensitive resources.

7.3. Spoofing by Counterfeit Servers

This protocol makes no attempt to verify the authenticity of the

server. A hostile party could take advantage of this by intercepting

the client's requests and returning misleading or otherwise incorrect

responses. Service providers should consider such attacks when

developing services using this protocol, and should require transport-

layer security for any requests where the authenticity of the resource

server or of request responses is an issue.

7.4. Plaintext Storage of Credentials

The MAC key functions the same way passwords do in traditional

authentication systems. In order to compute the request MAC, the server

must have access to the MAC key in plaintext form. This is in contrast,

for example, to modern operating systems, which store only a one-way

hash of user credentials.

If an attacker were to gain access to these MAC keys - or worse, to the

server's database of all such MAC keys - he or she would be able to

perform any action on behalf of any resource owner. Accordingly, it is

critical that servers protect these MAC keys from unauthorized access.

7.5. Entropy of MAC Keys

Unless a transport-layer security protocol is used, eavesdroppers will

have full access to authenticated requests and request MAC values, and

will thus be able to mount offline brute-force attacks to recover the

MAC key used. Servers should be careful to assign MAC keys which are

long enough, and random enough, to resist such attacks for at least the

length of time that the MAC credentials are valid.

For example, if the MAC credentials are valid for two weeks, servers

should ensure that it is not possible to mount a brute force attack

that recovers the MAC key in less than two weeks. Of course, servers

are urged to err on the side of caution, and use the longest MAC key

reasonable.

It is equally important that the pseudo-random number generator (PRNG)

used to generate these MAC keys be of sufficiently high quality. Many

PRNG implementations generate number sequences that may appear to be

random, but which nevertheless exhibit patterns or other weaknesses

which make cryptanalysis or brute force attacks easier. Implementers

should be careful to use cryptographically secure PRNGs to avoid these

problems.

7.6. Denial of Service / Resource Exhaustion Attacks

This specification includes a number of features which may make

resource exhaustion attacks against servers possible. For example, this

protocol requires servers to track used nonces. If an attacker is able

to use many nonces quickly, the resources required to track them may

exhaust available capacity. And again, this protocol can require

servers to perform potentially expensive computations in order to

verify the request MAC on incoming requests. An attacker may exploit

this to perform a denial of service attack by sending a large number of

invalid requests to the server.

Resource Exhaustion attacks are by no means specific to this

specification. However, implementers should be careful to consider the

additional avenues of attack that this protocol exposes, and design

their implementations accordingly. For example, entropy starvation

typically results in either a complete denial of service while the

system waits for new entropy or else in weak (easily guessable) MAC

keys. When implementing this protocol, servers should consider which of

these presents a more serious risk for their application and design

accordingly.

7.7. Timing Attacks

This specification makes use of HMACs, for which a signature

verification involves comparing the received MAC string to the expected

one. If the string comparison operator operates in observably different

times depending on inputs, e.g. because it compares the strings

character by character and returns a negative result as soon as two

characters fail to match, then it may be possible to use this timing

information to determine the expected MAC, character by character.

Service implementers are encouraged to use fixed-time string

comparators for MAC verification.

7.8. CSRF Attacks

A Cross-Site Request Forgery attack occurs when a site, evil.com,

initiates within the victim's browser the loading of a URL from or the

posting of a form to a web site where a side-effect will occur, e.g.

transfer of money, change of status message, etc. To prevent this kind

of attack, web sites may use various techniques to determine that the

originator of the request is indeed the site itself, rather than a

third party. The classic approach is to include, in the set of URL

parameters or form content, a nonce generated by the server and tied to

the user's session, which indicates that only the server could have

triggered the action.

Recently, the Origin HTTP header has been proposed and deployed in some

browsers. This header indicates the scheme, host, and port of the

originator of a request. Some web applications may use this Origin

header as a defense against CSRF.

To keep this specification simple, HTTP headers are not part of the

string to be MAC'ed. As a result, MAC authentication cannot defend

against header spoofing, and a web site that uses the Host header to

defend against CSRF attacks cannot use MAC authentication to defend

against active network attackers. Sites that want the full protection

of MAC Authentication should use traditional, cookie-tied CSRF

defenses.

7.9. Coverage Limitations

The normalized request string has been designed to support the

authentication methods defined in this specification. Those designing

additional methods, should evaluated the compatibility of the

normalized request string with their security requirements. Since the

normalized request string does not cover the entire HTTP request,

servers should employ additional mechanisms to protect such elements.

The request MAC does not cover entity-header fields which can often

affect how the request body is interpreted by the server (i.e. Content-

Type). If the server behavior is influenced by the presence or value of

such header fields, an attacker can manipulate the request header

without being detected. This will alter the request even when using the

body hash attribute.

7.10. Version Rollback Attack

[[TODO]]

Algorithm name:

Body hash algorithm:

Change controller:

Specification document(s):

8. IANA Considerations

8.1. The HTTP MAC Authentication Scheme Algorithm Registry

This specification establishes the HTTP MAC authentication scheme

algorithm registry.

Additional MAC algorithms are registered on the advice of one or more

Designated Experts (appointed by the IESG or their delegate), with a

Specification Required (using terminology from [RFC5226]). However, to

allow for the allocation of values prior to publication, the Designated

Expert(s) may approve registration once they are satisfied that such a

specification will be published.

Registration requests should be sent to the [TBD]@ietf.org mailing list

for review and comment, with an appropriate subject (e.g., "Request for

MAC Algorithm: example"). [[Note to RFC-EDITOR: The name of the

mailing list should be determined in consultation with the IESG and

IANA. Suggested name: http-mac-ext-review.]]

Within at most 14 days of the request, the Designated Expert(s) will

either approve or deny the registration request, communicating this

decision to the review list and IANA. Denials should include an

explanation and, if applicable, suggestions as to how to make the

request successful.

Decisions (or lack thereof) made by the Designated Expert can be first

appealed to Application Area Directors (contactable using app-

ads@tools.ietf.org email address or directly by looking up their email

addresses on http://www.iesg.org/ website) and, if the appellant is not

satisfied with the response, to the full IESG (using the iesg@iesg.org

mailing list).

IANA should only accept registry updates from the Designated Expert(s),

and should direct all requests for registration to the review mailing

list.

8.1.1. Registration Template

The name requested (e.g., "example").

The corresponding algorithm used to calculate the

payload body hash.

For standards-track RFCs, state "IETF". For others,

give the name of the responsible party. Other details (e.g., postal

address, e-mail address, home page URI) may also be included.

Reference to document that specifies the

algorithm, preferably including a URI that can be used to retrieve a

Type name:

Additional Token Endpoint Response Parameters:

HTTP Authentication Scheme(s):

Change controller:

Specification document(s):

copy of the document. An indication of the relevant sections may

also be included, but is not required.

8.1.2. Initial Registry Contents

The HTTP MAC authentication scheme algorithm registry's initial

contents are:

Algorithm name: hmac-sha-1

Body hash algorithm: sha-1

Change controller: IETF

Specification document(s): [[this document]]

Algorithm name: hmac-sha-256

Body hash algorithm: sha-256

Change controller: IETF

Specification document(s): [[this document]]

8.2. OAuth Access Token Type Registration

This specification registers the following access token type in the

OAuth Access Token Type Registry.

8.2.1. The "mac" OAuth Access Token Type

mac

secret, algorithm

MAC

IETF

[[this document]]

8.3. OAuth Parameters Registration

This specification registers the following parameters in the OAuth

Parameters Registry established by [I-D.ietf-oauth-v2].

*

*

*

*

*

*

*

*

Parameter name:

Parameter usage location:

Change controller:

Specification document(s):

Related information:

Parameter name:

Parameter usage location:

Change controller:

Specification document(s):

Related information:

8.3.1. The "secret" OAuth Parameter

secret

authorization response, token response

IETF

[[this document]]

None

8.3.2. The "algorithm" OAuth Parameter

algorithm

authorization response, token response

IETF

[[this document]]

None

9. Acknowledgments

The authors would like to thank Rasmus Lerdorf, James Manger, Scott

Renfro, Toby White, Peter Wolanin, and Skylar Woodward for their

suggestions and feedback.

10. References

10.1. Normative References

[RFC2045]

Freed, N. and N.S. Borenstein, "Multipurpose

Internet Mail Extensions (MIME) Part One:

Format of Internet Message Bodies", RFC 2045,

November 1996.

[RFC2104]

Krawczyk, H., Bellare, M. and R. Canetti,

"HMAC: Keyed-Hashing for Message

Authentication", RFC 2104, February 1997.

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC

2119, March 1997.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk,

H., Masinter, L., Leach, P. and T. Berners-

Lee, "Hypertext Transfer Protocol -- HTTP/

1.1", RFC 2616, June 1999.

[RFC2617]
Franks, J., Hallam-Baker, P.M., Hostetler,

J.L., Lawrence, S.D., Leach, P.J., Luotonen,

mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
mailto:hugo@watson.ibm.com
mailto:mihir@cs.ucsd.edu
mailto:canetti@watson.ibm.com
http://tools.ietf.org/html/rfc2104
http://tools.ietf.org/html/rfc2104
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com

A. and L. Stewart, "HTTP Authentication:

Basic and Digest Access Authentication", RFC

2617, June 1999.

[RFC3986]

Berners-Lee, T., Fielding, R. and L.

Masinter, "Uniform Resource Identifier (URI):

Generic Syntax", STD 66, RFC 3986, January

2005.

[RFC5226]

Narten, T. and H. Alvestrand, "Guidelines for

Writing an IANA Considerations Section in

RFCs", BCP 26, RFC 5226, May 2008.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport

Layer Security (TLS) Protocol Version 1.2",

RFC 5246, August 2008.

[RFC6265]
Barth, A., "HTTP State Management Mechanism",

RFC 6265, April 2011.

[I-D.ietf-httpbis-

p1-messaging]

Fielding, R, Gettys, J, Mogul, J, Nielsen, H,

Masinter, L, Leach, P, Berners-Lee, T and J

Reschke, "HTTP/1.1, part 1: URIs,

Connections, and Message Parsing", Internet-

Draft draft-ietf-httpbis-p1-messaging-13,

March 2011.

[I-D.ietf-oauth-

v2]

Hammer-Lahav, E, Recordon, D and D Hardt,

"The OAuth 2.0 Authorization Protocol",

Internet-Draft draft-ietf-oauth-v2-15, April

2011.

[W3C.REC-

html401-19991224]

Raggett, D., Hors, A. and I. Jacobs, "HTML

4.01 Specification", World Wide Web

Consortium Recommendation REC-

html401-19991224, December 1999.

[NIST FIPS-180-3]

National Institute of Standards and

Technology, "Secure Hash Standard (SHS). FIPS

PUB 180-3, October 2008", .

10.2. Informative References

[RFC5849]
Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,

April 2010.

Authors' Addresses

Eran Hammer-Lahav Hammer-Lahav Yahoo! EMail: eran@hueniverse.com

URI: http://hueniverse.com

Adam Barth Barth Google EMail: ietf@adambarth.com URI: http://

www.adambarth.com

Ben Adida Adida Mozilla EMail: ben@adida.net URI: http://

ben.adida.net

mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc6265
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-13
http://tools.ietf.org/html/draft-ietf-httpbis-p1-messaging-13
http://tools.ietf.org/html/draft-ietf-oauth-v2-15
http://tools.ietf.org/html/rfc5849
mailto:eran@hueniverse.com
http://hueniverse.com
mailto:ietf@adambarth.com
http://www.adambarth.com
http://www.adambarth.com
mailto:ben@adida.net
http://ben.adida.net
http://ben.adida.net

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Example
	1.2. Notational Conventions
	2. Issuing MAC Credentials
	3. Making Requests
	3.1. The "Authorization" Request Header
	3.2. Body Hash
	3.3. Request MAC
	3.3.1. Normalized Request String
	3.3.2. hmac-sha-1
	3.3.3. hmac-sha-256
	4. Verifying Requests
	4.1. The "WWW-Authenticate" Response Header Field
	5. Use with OAuth 2.0
	5.1. Issuing MAC-Type Access Tokens
	6. Use with Set-Cookie
	6.1. User Agent Requirements
	6.1.1. The Set-Cookie Header
	6.1.1.1. The MAC-Key attribute
	6.1.1.2. The MAC-Algorithm attribute
	6.1.2. Storage Model
	6.1.3. The Authorization Header
	7. Security Considerations
	7.1. MAC Keys Transmission
	7.2. Confidentiality of Requests
	7.3. Spoofing by Counterfeit Servers
	7.4. Plaintext Storage of Credentials
	7.5. Entropy of MAC Keys
	7.6. Denial of Service / Resource Exhaustion Attacks
	7.7. Timing Attacks
	7.8. CSRF Attacks
	7.9. Coverage Limitations
	7.10. Version Rollback Attack
	8. IANA Considerations
	8.1. The HTTP MAC Authentication Scheme Algorithm Registry
	8.1.1. Registration Template
	8.1.2. Initial Registry Contents
	8.2. OAuth Access Token Type Registration
	8.2.1. The "mac" OAuth Access Token Type
	8.3. OAuth Parameters Registration
	8.3.1. The "secret" OAuth Parameter
	8.3.2. The "algorithm" OAuth Parameter
	9. Acknowledgments
	10. References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses

