
Internet Engineering A. Brashears
Task Force M. Hamrick, Ed.
Internet-Draft M. Lentczner
Intended status: Informational Linden Research, Inc.
Expires: August 8, 2009 February 4, 2009

Linden Lab Structured Data
draft-hamrick-llsd-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 8, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Abstract

 This document describes the Linden Lab Structured Data (LLSD)

Brashears, et al. Expires August 8, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Linden Lab Structured Data February 2009

 abstract type system, interface description and serialization
 formats. LLSD is a language-neutral facility for maintaining and
 transporting structured data. It provides dynamic data features for
 loosely-coupled collections of software components, even in
 statically-typed languages. LLSD includes an abstract type system,
 an interface description language (LLIDL) and three canonical
 serialization schemes (XML, JSON and Binary).

Table of Contents

1. Introduction . 4
1.1. Requirements Language 4

2. Abstract Type System . 4
2.1. Simple Types . 5
2.1.1. Undefined . 5
2.1.2. Boolean . 5
2.1.3. Integer . 6
2.1.4. Real . 6
2.1.5. String . 6
2.1.6. UUID (Universally Unique ID) 7
2.1.7. Date . 8
2.1.8. URI (Uniform Resource Identifier) 8
2.1.9. Binary . 8

2.2. Composite Types . 8
2.2.1. Array . 8
2.2.2. Map . 9

2.3. Converting Between Real and String Types 9
2.4. Converting Between Date and String Types 9

3. Serialization . 10
3.1. XML Serialization . 10
3.1.1. Serializing Simple Types 10
3.1.2. Serializing Composite Types 11
3.1.3. Example of XML LLSD Serialization 11

3.2. JSON Serialization . 12
3.2.1. Examples of JSON LLSD Serialization 13

3.3. Binary Serialization 13
3.3.1. Example of BINARY LLSD Serialization 15

4. Interface Description Language 18
4.1. Abstract Data Types and Names 18
4.2. Abstract Data Structures 18
4.3. Variant Data Structures 19
4.4. Variant Discriminators 20
4.5. Resource Description 20

5. IANA Considerations . 20
6. MIME Type Registrations 21
6.1. MIME Type Registration for application/llsd+xml 21
6.2. MIME Type Registration for application/llsd+json 22

Brashears, et al. Expires August 8, 2009 [Page 2]

Internet-Draft Linden Lab Structured Data February 2009

6.3. MIME Type Registration for application/llsd+binary 23
7. Security Considerations 25
8. References . 25
8.1. Normative References 25
8.2. Informative References 26

Appendix A. ABNF of Real Values 27
Appendix B. XML Serialization DTD 28
Appendix C. ABNF of LLIDL . 28

 Authors' Addresses . 30

Brashears, et al. Expires August 8, 2009 [Page 3]

Internet-Draft Linden Lab Structured Data February 2009

1. Introduction

 Linden Lab Structured Data (LLSD) is an abstract type system intended
 to provide a language-neutral facility for the representation of
 structured data. It provides a type system, a serialization system
 and an interface description language.

 The type system of LLSD defines nine simple types (Undefined,
 Boolean, Integer, Real, String, UUID, Date, URI and Binary) and two
 composite types (Array and Map.) It is used to represent an ideal
 dynamic type system in programming languages that may not exhibit
 dynamic type behaviors. This type system is advantageous in
 computing environments that make use of loosely-coupled components,
 each of which may be implemented in a different programming language.

 When loosely-coupled systems need to communicate structured data,
 LLSD instances are serialized into a neutral format for transmission
 across a process or system boundary. LLSD instances may be
 serialized into one of three defined formats: XML, JSON and binary.

 When meta-information regarding LLSD instances is required, an
 interface description language (LLIDL) may be used to define the
 structure of LLSD instances. LLIDL is especially suited to
 describing the structure of requests and responses in distributed
 systems using representational state transfer (RESTful) semantics.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Abstract Type System

 The abstract type system describes the semantics of LLSD data passed
 between two systems. These types characterize the data when
 serialized for transport, when stored in memory, and when accessed by
 applications.

 The types are designed to be common enough that native types in
 existing serializations and programming languages will be usable
 directly. It is anticpiated that LLSD data may be serialized in
 systems with fewer types or stored in native programming language
 structures with less precise types, and still interoperate in a
 predictable, reliable manner. To support this, conversions are
 defined to govern how data received or stored as one type may be read
 as another.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Brashears, et al. Expires August 8, 2009 [Page 4]

Internet-Draft Linden Lab Structured Data February 2009

 For example: If an application expects to read an LLSD value as an
 Integer, but the serialization used to transport the value only
 supported Reals, then a conversion governs how the application will
 see the transported value. Another case would be where an
 application wants to read an LLSD value as a URL, but the programing
 language only supports String as a data type. Again, there is a
 defined conversion for this case.

 The intention is that applications will interact with LLSD data via
 interfaces in terms of these types, even if the underlying language
 or transports do not directly support them, while retaining as much
 direct compatibility with those native types as possible.

 An LLSD value is either a simple datum or a composite structure. A
 simple data value can have one of nine simple types: Undefined,
 Boolean, Integer, Real, String, UUID, Date, URI or Binary. Composite
 structures can be either of the types Array or Map.

2.1. Simple Types

 For each type, conversions are defined to that type. That is, if a
 process is accessing a particular LLSD value, and treating it as a
 particular type, but the underlying type (as transmitted, or stored
 in memory) is different, then the indicated conversion, if defined,
 is applied. If a conversion is not specified from a particular type,
 then if a value of that type is accessed, the result is the default
 value for the expected type. For example: When reading a value as an
 integer, if the underlying value is binary, then the value read is
 zero.

2.1.1. Undefined

 Data of type Undefined has only one value, called undef. The default
 value is undef. There are no defined conversions to Undefined.

 The Undefined type is a placeholder for a value.

2.1.2. Boolean

 Data of type Boolean can have one of only two values: true or false.
 The default value is false.

 Conversions:

 Integer A zero value (0) is converted to false. All other values
 are converted to true.

Brashears, et al. Expires August 8, 2009 [Page 5]

Internet-Draft Linden Lab Structured Data February 2009

 Real A zero value (0.0) and invalid floating point values (NaNs) are
 converted to false. All other values are converted to true.

 String An empty String is converted to false. Anything else is
 converted to true.

2.1.3. Integer

 Data of type Integer can have the values of natural numbers between
 -2147483648 and 2147483647 inclusive. The default value for Integer
 is zero (0).

 Conversions:

 Boolean The value true is converted to the Integer 1. The value
 false is converted to the Integer 0.

 Real Real are rounded to the nearest representable Integer, with
 ties being rounded to the nearest even number. Invalid floating
 point values (NaNs) are converted to the Integer 0.

 String The string is first converted to type Real, see Section 2.3.
 Then the resulting Real is converted to Integer as specified
 above.

2.1.4. Real

 Data of type contain signed floating precision numeric values from
 the range available with IEEE 754-1985 64-bit double precision
 values, as well as the special non-numeric values (NaNs and Infs)
 available with that format. The default value for Real is zero
 (0.0).

 Conversions:

 Boolean The value true is converted to the floating point value 1.0.
 The value false is converted to the floating point value 0.0.

 Integer Integers promoted to floating point values are converted to
 the nearest representable number.

 String See Section 2.3.

2.1.5. String

 Data of type String contain a sequence of zero or more Unicode code
 points. The default value for String is a sequence of zero code
 points, the empty string ("").

Brashears, et al. Expires August 8, 2009 [Page 6]

Internet-Draft Linden Lab Structured Data February 2009

 The characters are restricted to the following code points:

 U+0009, U+000A, U+000D

 U+0020 through U+D7FF

 U+E000 through U+FFFD

 U+10000 through U+10FFFF

 Strings may be normalized during transport, storage or processing.
 When an implementation does normalize, it should use Normalization
 Form C (NFC) described in Unicode Standard Annex #15 [TR15]. Line
 endings may be normalized to U+000A.

 Conversions:

 Boolean The value true is represented as the string "true". The
 value false is represented as the empty string ("").

 Integer Integers converted to Strings are represented as signed
 decimal representation.

 Real See Section 2.3.

 UUID UUIDs converted to Strings are represented in the 36 character,
 8-4-4-4-12 format defined in RFC 4122 [RFC4122].

 Date See Section 2.4.

 URI URIs converted to Strings are simply Unicode representations of
 the URI.

2.1.6. UUID (Universally Unique ID)

 UUIDs represent a universally unique identifier. Data of type UUID
 is a 128 bit identifier with a structure defined in RFC 4122
 [RFC4122]. The default UUID value is the null UUID, (00000000-0000-
 0000-0000-000000000000).

 Conversions:

 String A valid 8-4-4-4-12 string representation of a UUID is
 converted to the UUID it represents. All other values are
 converted to the null UUID (00000000-0000-0000-0000-
 000000000000).

https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122

Brashears, et al. Expires August 8, 2009 [Page 7]

Internet-Draft Linden Lab Structured Data February 2009

2.1.7. Date

 Dates represent a moment in time. Data of type Date may have the
 value of any time in the from January 1, 1970 though at least January
 1, 2038, to at least second accuracy. The default date is defined as
 the beginning of the Unix(tm) epoch, midnight, January 1, 1970 in the
 UTC time zone.

 Conversions:

 String See Section 2.4.

2.1.8. URI (Uniform Resource Identifier)

 Data of type URI has the value of a Uniform Resource Identifier as
 defined in RFC 3986 [RFC3986]. The default URI is an empty URI

 Conversions:

 String The characters of the String data are interpreted as a URI,
 if legal. Other Strings results in the default URI.

2.1.9. Binary

 Data of type Binary contains a sequence of zero or more octets. The
 default Binary is a sequence of zero octets.

 There are no defined conversions for Binary.

2.2. Composite Types

 LLSD values can be composed of other LLSD values in two ways: Arrays
 or Maps. In either case, the values with the composite can be any
 heterogeneous mix of other LLSD types, both simple and composite.

2.2.1. Array

 An Array is an ordered collection of zero or more values. The values
 are considered consecutive, with no gaps. The value undef (of type
 Undefined) may be used to indicate, within an Array, an intentionally
 left out value.

 Arrays are considered to have a definite length, including any
 leading or trailing undef values in the sequence. This length can be
 viewed by an application. Accessing beyond the end of an array acts
 as if the value undef were stored at the accessed location.
 Nonetheless, systems that transmit or store Arrays SHOULD NOT add or
 remove undef values at the end of an Array value, so as to make a

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Brashears, et al. Expires August 8, 2009 [Page 8]

Internet-Draft Linden Lab Structured Data February 2009

 best effort to retain the definite length as originally created.

2.2.2. Map

 A Map is an unordered collection of associations between keys and
 values. Within a given Map value, each key must be unique, each with
 one value. Keys are String values. The associated values can be of
 any LLSD type.

 Maps are considered to have a definite set of keys, including keys
 whose associated value is undef. The number of such keys, and set of
 keys can be accessed by an application. Accessing a value for a key
 that is not in a Map value's key set acts as if the value under were
 stored at that key. Nontheless, systems that transmite or store Maps
 SHOULD NOT add or remove keys associated with undef to a Map value,
 so as to make a best effort to retain the key set as originally
 coreated.

 Note on key equality: Two keys are considered equal if they contain
 the same number and sequence of Unicode codepoints. Since keys are
 String values, and String values may be normalized on transport or
 storage, it follows that only String values that are already
 normalized as allowed by the String type are reliable as Map keys.
 Since the Maps are intended to be primarily used with keys set forth
 in protocol descriptions, this not a particular problem. However, if
 arbitray user supplied data is to be used as key values in some
 application, then the possibility of normalization and perhaps key
 collision during transport must be considered.

2.3. Converting Between Real and String Types

 Real values are represented using the ABNF provided in Appendix A

2.4. Converting Between Date and String Types

 The textual representation of Date values is based on ISO 8601
 [ISO8601], and further specified in RFC 3339 [RFC3339]. When Date
 values are converted to or from String values, the character sequence
 of the string must conform to the following production based on the
 ABNF in RFC 3339 [RFC3339]:
 full-date "T" partial-time "Z"
 When converting from String values, if the sequence of characters
 does not exactly match this production, then the result is the
 default Date value.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339

Brashears, et al. Expires August 8, 2009 [Page 9]

Internet-Draft Linden Lab Structured Data February 2009

3. Serialization

 When used as part of a protocol, LLSD is serialized into a common
 form. Three serialization schemes are currently defined: XML, JSON
 and Binary.

3.1. XML Serialization

 XML serialization of LLSD data is in common use in protocols
 implementing virtual worlds. When used to communicate protocol data
 with a transport that requires the use of a Type, the type
 'application/llsd+xml' is used.

 When serializing an instance of LLSD structured data into an XML
 document, the DTD given in Appendix B is used. This DTD defines
 elements for each of the defined LLSD types. Immediately subordinate
 to the root LLSD element, XML documents representing LLSD serialized
 data include either a single instance of an simple type (Undefined,
 Boolean, Integer, Real, UUID, String, Date, URI or Binary) or a
 single composite type (Array or Map).

3.1.1. Serializing Simple Types

 Most simple types are serialized by placing the string representation
 of the data between beginning and ending tags associated with the
 value's type. This is true for undefined, boolean, integer, real,
 UUID, string, date and URI typed values. Values of type binary are
 serialized by placing the BASE64 encoding (defined in RFC 4648
 [RFC4648]) of the binary data within beginning and ending 'binary'
 tags. It is expected that future versions of this specification may
 allow encodings other than BASE64, so the mandatory attribute
 'encoding' is used to identify the method used to encode the binary
 data.

 The following example shows an XML document representing the
 serialization of the integer -559038737.

 <?xml version="1.0" encoding="UTF-8"?>
 <llsd>
 <integer>-559038737</integer>
 </llsd>

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Brashears, et al. Expires August 8, 2009 [Page 10]

Internet-Draft Linden Lab Structured Data February 2009

 While this example shows the serialization of a binary array of
 octets containing the values 222, 173, 190 and 239.

 <?xml version="1.0" encoding="UTF-8"?>
 <llsd>
 <binary encoding="base64">3q2+7w==</binary>
 </llsd>

3.1.2. Serializing Composite Types

 Composite types in the XML serialization scheme are represented with
 'array' and 'map' elements. Both of these elements may contain
 elements enclosing simple types or other composite types. Array
 elements, which represent a collection of values indexed by position,
 contain a simple list of typed values. Map elements represent a
 collection of values indexed by a string identifier. They contain a
 list of key-value pairs where the 'key' element describes the
 indexing identifier while the value (which follows the 'key' element)
 is its XML representation.

 Note that elements of an array may be of differing types. Also note
 that composite types may contain other composite types; it is not an
 error for an array or map to contain another array, map or simple
 type.

3.1.3. Example of XML LLSD Serialization

 This example shows the XML serialization of an array which contains
 an integer, a UUID and a map.

<?xml version="1.0" encoding="UTF-8"?>
<llsd>
 <array>
 <integer>42</integer>
 <uuid>6bad258e-06f0-4a87-a659-493117c9c162</uuid>
 <map>
 <key>hot</key>
 <string>cold</string>
 <key>higgs_boson_rest_mass</key>
 <undef/>
 <key>info_page</key>
 <uri>https://example.org/r/6bad258e-06f0-4a87-a659-493117c9c162</uri>
 <key>status_report_due_by</key>
 <date>2008-10-13T19:00.00Z</date>
 </map>
 </array>
</llsd>

Brashears, et al. Expires August 8, 2009 [Page 11]

Internet-Draft Linden Lab Structured Data February 2009

3.2. JSON Serialization

 LLSD may also be serialized using the JSON [RFC4627] subset of the
 JavaScript programming language. When serializing LLSD data using
 JSON, the 'application/llsd+json' media type is used. This
 specification REQUIRES that LLSD data serialized into a JSON document
 use UTF-8 character encoding. To allow the serialization of non-
 composite elements, this specification defines the contents of a
 JSON-serialized LLSD message in terms of the 'value' non-terminal
 from RFC 4627 instead of the commonly used 'JSON-text' non-terminal.

 The following table lists type conversions between LLSD and JSON:

 Undefined LLSD 'Undefined' values are represented by the JSON
 terminal 'null'.

 Boolean LLSD 'Boolean' values are represented by the JSON terminals
 'true' and 'false'.

 Integer LLSD 'Integer' values are represented by the JSON non-
 terminal 'number'.

 Real LLSD 'Real' values are represented by the JSON non-terminal
 'number'.

 String LLSD 'String' values are represented by the JSON 'string'
 non-terminal. Note that this specification inherits JSON's
 behavior of requiring control characters, reverse solidus and
 quotation mark characters to be escaped.

 UUID LLSD 'UUID' values are represented by a JSON string, and are
 rendered in the common 8-4-4-4-12 format defined by the 'UUID'
 non-terminal in RFC 4122 [RFC4122].

 Date LLSD 'Date' values are represented by the JSON 'string' non-
 terminal, the contents of which is a valid ISO 8601 value with
 years, months, days, hours, seconds and time zone indicator.

 URI LLSD 'URI' values are represented by the JSON 'string' non-
 terminal, the contents of which is a valid URI as defined by RFC

3986 [RFC3986].

 Binary LLSD 'Binary' values are represented as a JSON 'array'. That
 is, they follow the RFC 4627 [RFC4627] 'array' non-terminal whose
 members are integer numbers representing each octet of the binary
 array.

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Brashears, et al. Expires August 8, 2009 [Page 12]

Internet-Draft Linden Lab Structured Data February 2009

 Array LLSD 'Array' values are represented by the JSON 'array' non-
 terminal.

 Map LLSD 'Map' values are represented by the JSON 'object' non-
 terminal. Each key-value pair of the map is represented by the
 JSON 'member' non-terminal where the LLSD map key is the 'string'
 prior to the 'name-separator' terminal and the LLSD map value is
 the 'value' after the 'name-separator' terminal.

 LLSD defines additional types over those defined by JSON. The LLSD
 types UUID, Date and URI are serialized as JSON strings whose
 contents are generated using the <Type> to String converstion defined
 in Abstract Type System section above.

3.2.1. Examples of JSON LLSD Serialization

 Example 1. The following example shows the JSON encoding of the
 integer 42. Note that while this serialization does not conform to
 the 'JSON-text' non-terminal defined in RFC 4627, it does conform to
 the 'value' non-literal.

 42

 Example 2. The following example shows the JSON encoding of the
 example given in the section above on XML serialization
 (Section 3.1.2).

 [
 42,
 "6bad258e-06f0-4a87-a659-493117c9c162",
 {
 "hot": "cold",
 "higgs_boson_rest_mass": null,
 "info_page":
 "https://example.org/r/6bad258e-06f0-4a87-a659-493117c9c162",
 "status_report_due_by": "2008-10-13T19:00.00Z"
 }
]

3.3. Binary Serialization

 The LLSD Binary Serialization is an encoding syntax appropriate for
 situations where high message entropy is required or limiting
 processing power for parsing messages is available.

 Encoding LLSD structured data using the binary serialization scheme
 involves generating tag, (optional) size values, and serialization of
 simple values. Composite types are serialized by iterating across

https://datatracker.ietf.org/doc/html/rfc4627

Brashears, et al. Expires August 8, 2009 [Page 13]

Internet-Draft Linden Lab Structured Data February 2009

 all members of the collection, serializing each simple or composite
 member in turn. For each element in an LLSD structured data object,
 the following process is used to generate a binary output stream of
 serialized data:

 o A one octet type tag is emitted to the output stream. See the
 table below for tag octets.

 o If the size of the element being serialized is variable (as it
 will be for strings, URIs, arrays and maps), the size or length of
 the element is output to the stream as a network-order 32 bit
 value. Elements of types with fixed lengths such as undefined
 values, booleans, integers, reals, uuids and dates will not
 include size information in the output stream.

 o Finally, the binary representation of the element is appended to
 the output stream.

 Undefined Undefined values are serialized with a single exclamation
 point character ('!'). Undefined values append neither size
 information or data to the output stream.

 Boolean True values are serialized with a single '1' character.
 False values are serialized with a single '0' character.
 Booleans append neither size information or data to the output
 stream.

 Integer Integer values are serialized by emitting the 'i' character
 to the output stream followed by the four octets representing the
 integer's 32 bits in network order.

 Real Real values are serialized by emitting the 'r' character to the
 output stream followed by the eight octets representing the real
 value's 64 bits in network order.

 String String values are serialized by emitting the 's' character to
 the output stream followed by the string's length in octets
 represented as a network-order 32 bit integer, followed by the
 string's UTF-8 encoding.

 UUID UUID values are serialized by emitting the 'u' character to the
 output stream followed by the sixteen octets representing the
 UUID's 128 bits, with the most significant byte coming first.

 Date Date values are serialized by emitting the 'd' character to the
 output stream followed by the number of seconds since the start
 of the epoch, represented as a 64-bit real value.

Brashears, et al. Expires August 8, 2009 [Page 14]

Internet-Draft Linden Lab Structured Data February 2009

 URI URI values are serialized by emitting the 'l' character to the
 output stream followed by the uri's length in octets represented
 as a network-order 32 bit integer, followed by the binary
 representation of the URI.

 Binary Binary values are serialized by emitting the 'b' character to
 the output stream followed by the binary array's length in octets
 represented as a network-order 32 bit integer, followed by the
 octets of the binary array.

 Array Arrays are serialized by emitting the left square bracket
 ('[') character, followed by the count of objects in the array
 represented as a network-order 32 bit integer, followed by each
 array element in order. Note that compliant implementations MUST
 preserve the order of array elements.

 Map Maps are serialized by emitting the left curly brace ('{')
 character, followed by the count of objects in the map
 represented as a network-order 32 bit integer, followed by each
 key-value element. Map keys are represented as strings except
 that they use the character 'k' instead of the character 's' as a
 tag. Note that preserving the order of maps is not REQUIRED.

3.3.1. Example of BINARY LLSD Serialization

Brashears, et al. Expires August 8, 2009 [Page 15]

Internet-Draft Linden Lab Structured Data February 2009

 The LLSD object given as an example in the section above on XML
 serialization (Section 3.1.2) would look as follows would it have
 been serialized using the binary scheme. The following example
 encodes octets as hexadecimal values.

Brashears, et al. Expires August 8, 2009 [Page 16]

Internet-Draft Linden Lab Structured Data February 2009

 Offset Hex Data Char Data
 -------- ------------------------- -----------
 00000000 5B '['
 00000001 00 00 00 03 '....'
 00000005 69 'i'
 00000006 00 00 00 2A '...*'
 0000000A 75 'u'
 0000000B 6B AD 25 8E 06 F0 4A 87 'k.%...J.'
 00000013 A6 59 49 31 17 C9 C1 62 '.YI1...b'
 0000001B 7B '{'
 0000001C 00 00 00 04 '....'
 00000020 6B 'k'
 00000021 00 00 00 03 '....'
 00000025 68 6F 74 'hot'
 00000028 73 's'
 00000029 00 00 00 04 '....'
 0000002D 63 6F 6C 64 'cold'
 00000031 6B 'k'
 00000032 00 00 00 13 '....'
 00000036 68 69 67 67 73 5F 62 6F 'higgs_bo'
 0000003E 73 6F 6E 5F 72 65 73 74 'son_rest'
 00000046 5f 6d 61 73 73 '_mass'
 0000004B 21 '!'
 0000004C 68 'k'
 0000004D 00 00 00 09 '....'
 00000051 69 6E 66 6F 5F 70 61 67 'info_pag'
 00000059 65 'e'
 0000005A 6C 'l'
 0000005B 00 00 00 3A '...:'
 0000005F 68 74 74 70 73 3A 2f 2F 'https://'
 00000067 65 78 61 6D 70 6C 65 2E 'example.'
 0000006F 6F 72 67 2F 72 2F 36 62 'org/r/6b'
 00000077 61 64 32 35 38 65 2D 30 'ad258e-0'
 0000007F 36 66 30 2D 34 61 38 37 '6f0-4a87'
 00000087 2D 61 36 35 39 2D 34 39 '-a659-49'
 0000008F 33 31 31 37 63 39 63 31 '3117c9c1'
 00000097 36 32 '62'
 00000099 68 'k'
 0000009A 00 00 00 14 '....'
 0000009E 73 74 61 74 75 73 5F 72 'status_r'
 000000A7 65 70 6F 72 74 5F 64 75 'eport_du'
 000000AF 65 5F 62 79 'e_by'
 000000B3 00 00 00 08 '....'
 000000B7 64 'd'
 000000B8 41 D2 3C E6 AC 00 00 00 'A.<.....'

Brashears, et al. Expires August 8, 2009 [Page 17]

Internet-Draft Linden Lab Structured Data February 2009

4. Interface Description Language

 The Linden Lab Interface Description Language (LLIDL) is the used to
 describe a RESTful interface to remote resources. LLIDL
 unambiguously defines interfaces independent of serialization
 schemes. Rather than defining independent XML, JSON and Binary
 interfaces, resource interfaces are described in terms of in terms of
 LLIDL. Network entities generating or parsing LLSD messages may use
 the LLIDL interface descriptions to mechanically generate
 serialization specific software to manipulate LLSD data. Despite the
 emphasis on automated parsing, LLIDL has been designed as BOTH human
 and machine readable.

4.1. Abstract Data Types and Names

 LLIDL describes data structures in terms of name-type pairs. LLIDL
 data structure members are defined by providing the member name, a
 colon and an simple LLSD type:
 name : simple_type

4.2. Abstract Data Structures

 Data structures may be composed using arrays and maps. Arrays are
 collections of members, accessed with numeric indices. Simple array
 descriptions are described in LLIDL using the open brace character
 ('['), one or more simple LLSD types, and a close brace character
 (']'). Maps are collections of members, accessed by string keys.
 Map descriptions begin with an open curly brace character ('{'), on
 or more name-type pairs and a close curly brace character ('}').
 Name-Type pairs in map descriptions are separated by commas (',').
 The first example below defines an array with three real values. The
 second defines a map with two string members whose names are
 'first_name' and 'last_name'.

 [real, real, real]

 { first_name: string, last_name: string }

 The form above defines only fixed-length arrays. To define an array
 of arbitrary length, the ellipsis ("...") is used. The following
 example defines a list of one or more string values.

 [string ...]

Brashears, et al. Expires August 8, 2009 [Page 18]

Internet-Draft Linden Lab Structured Data February 2009

 Using an ellipsis in an array definition with more than one member
 describes an arbitrary length array whose members' types are defined
 by the listed type, each in turn. In the first example below, the
 first element of the array is an integer while the second is a
 string. If there are more than two elements in the array, even
 elements (assuming that array indexes begin with zero (0)) will be
 integers while odd elements will be strings. Also note that such an
 array will always contain an even number of members. In the second
 example, the first element would be a string, the second would be a
 UUID and the third would be a floating point value. If the array
 contained more than three elements, starting from the beginning,
 every third element would be a string; the next would be a UUID while
 the one following would be a real. An array defined in the second
 example would always be an multiple of three.

 [integer, string ...]

 [string, uuid, real ...]

4.3. Variant Data Structures

 It is often advantageous to represent several different variants of a
 message. LLIDL defines variants with repeated assignments to the
 same variant name. In the example below, two variants are defined,
 the first with two strings, and the second with a number and a
 string.

 &exception = {
 class : string ,
 description : string
 }

 &exception = {
 class : int ,
 description : string
 }

Brashears, et al. Expires August 8, 2009 [Page 19]

Internet-Draft Linden Lab Structured Data February 2009

4.4. Variant Discriminators

 In the example above, two variants of a structure differ by the type
 defined for the "class" structure member. Because it is possible for
 name-value pairs to be absent from the serialization of an LLIDL
 object, it is often useful to use boolean or string literals to
 distinguish variants of an object. In the example below the success
 member is used to identify which variant is being used. When
 serialized, if the value associated with the success member was true,
 a compliant parser would know it was not an encoding error for the
 err_num member to not be present. In other words, it signals that
 the second variant is in use.

 &response = {
 success : false ,
 description : string ,
 err_num : integer
 }

 &response = {
 success : true,
 description : string
 }

4.5. Resource Description

 Defining interfaces is the underlying purpose of LLIDL. Each
 interface has a name, an input definition and an output definition.
 They are specified using the following format:

 %% resource name -> request <- response

5. IANA Considerations

 In accordance with [RFC5226], this document registers the following
 mime types:

 application/llsd+xml

 application/llsd+json

 application/llsd+binary

 See the MIME Type Registrations section (Section 6) below for
 detailed information on MIME Type registrations.

https://datatracker.ietf.org/doc/html/rfc5226

Brashears, et al. Expires August 8, 2009 [Page 20]

Internet-Draft Linden Lab Structured Data February 2009

6. MIME Type Registrations

 This section provides media-type registration applications (as per
RFC 4288 [RFC4288].)

6.1. MIME Type Registration for application/llsd+xml

 To: ietf-types@iana.org

 Subject: Registration of media type application/llsd+xml

 Type name: application

 Subtype name: llsd+xml

 Required Parameters: none

 Optional Parameters: none

 Encoding Considerations: The Extensible Markup Language (XML)
 specification allows for the use of multiple character sets. The
 character set used to encode the body of the message is defined
 as part of the XML header. If no character set is indicated in
 the XML header, compliant systems MUST assume UTF-8.

 Security Considerations: LLSD XML serialized data contains "plain"
 text and generally poses no immediate risk to system security of
 either the sender or the receiver. Still, it is possible for a
 malicious adversary to include arbitrary binary data in an
 attempt to exploit specific vulnerabilities (if they exist.) It
 is the obligation of the receiver of LLSD XML serialized messages
 to ensure such vulnerabilities are mitigated in a timely fashion.

 If sensitive information is to be encoded into a LLSD XML
 serialized message, it is the responsibility of the transport,
 network or link layers to ensure the confidentiality, message
 integrity and origin integrity of the message.

 Interoperability Considerations: While it is possible for compliant
 implementations to specify the use of character sets other than
 UTF-8, such systems MUST accept UTF-8 input and SHOULD generate
 UTF-8 output.

 Published specification: Linden Lab Structured Data (LLSD) is
 defined in the internet draft draft-hamrick-llsd-01
 [I-D.hamrick-llsd].

https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/draft-hamrick-llsd-01

Brashears, et al. Expires August 8, 2009 [Page 21]

Internet-Draft Linden Lab Structured Data February 2009

 Applications that use this media type: Virtual world, tele-presence
 and content management systems related to "virtual reality"
 systems.

 Additional Information:

 Magic Number(s): none

 File Extension: lsdx

 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information: Meadhbh
 Hamrick <infinity@lindenlab.com>

 Intended Usage: COMMON

 Author: IESG

 Change Controller: IESG

6.2. MIME Type Registration for application/llsd+json

 To: ietf-types@iana.org

 Subject: Registration of media type application/llsd+json

 Type name: application

 Subtype name: llsd+json

 Required Parameters: none

 Optional Parameters: none

 Encoding Considerations: Use of UTF-8 is Mandatory RFC 4627 : The
 application/json Media Type for JavaScript Object Notation (JSON)
 [RFC4627] allows the use of UTF-8, UTF-16 and UTF-32. This
 specification REQUIRES the use of UTF-8.

 Security Considerations: Like the application/json media type
 defined in RFC 4627 [RFC4627], the contents of messages
 identified with this media type are expected to be passed into
 ECMAScript's 'eval()' function. RFC 4627 provides a regular
 expression to ensure that only "safe" characters (i.e. -
 characters used to describe JSON tokens) are included outside
 string literal definitions. Users of the application/llsd+json
 media type are strongly encouraged to use this (or similar) tests

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Brashears, et al. Expires August 8, 2009 [Page 22]

Internet-Draft Linden Lab Structured Data February 2009

 to ensure message safety.

 If sensitive information is to be encoded into a LLSD JSON
 serialized message, it is the responsibility of the transport,
 network or link layers to ensure the confidentiality, message
 integrity and origin integrity of the message.

 Interoperability Considerations: Note that unlike RFC 4627, this
 specification REQUIRES the use of UTF-8.

 Published specification: This specification.

 Applications that use this media type: Virtual world, tele-presence
 and content management systems related to "virtual reality"
 systems.

 Additional Information:

 Magic Number(s): none

 File Extension: lsdj

 Macintosh File Type Code(s): TEXT

 Person & email address to contact for further information: Meadhbh
 Hamrick <infinity@lindenlab.com>

 Intended Usage: COMMON

 Author: IESG

 Change Controller: IESG

6.3. MIME Type Registration for application/llsd+binary

 To: ietf-types@iana.org

 Subject: Registration of media type application/llsd+binary

 Type name: application

 Subtype name: llsd+binary

 Required Parameters: none

https://datatracker.ietf.org/doc/html/rfc4627

Brashears, et al. Expires August 8, 2009 [Page 23]

Internet-Draft Linden Lab Structured Data February 2009

 Optional Parameters: none

 Encoding Considerations: LLSD Binary Serialization REQUIRES the use
 of binary content-transfer-encoding Section 5 of RFC 2045 [RFC2045]
 describes the binary Content-Transfer-Encoding header field.
 This specification REQUIRES the use of this header to alert
 intermediary systems that information being included in the
 message should be interpreted as binary data with no end-of-line
 semantics which could be considerably longer than allowed in an

RFC 821 transport.

 Security Considerations: This serialization format defines the use
 of tagged binary fields with embedded length information. In the
 past, similar binary encoding systems have fallen prey to
 exploits when parsing implementations fail to check for non-
 sensical lengths. Implementers are therefore strongly encouraged
 to consider all failure modes of such a system.

 If sensitive information is to be encoded into a LLSD JSON
 serialized message, it is the responsibility of the transport,
 network or link layers to ensure the confidentiality, message
 integrity and origin integrity of the message.

 Interoperability Considerations: none

 Published specification: Linden Lab Structured Data (LLSD) is
 defined in the internet draft draft-hamrick-llsd-01
 [I-D.hamrick-llsd].

 Applications that use this media type: Virtual world, tele-presence
 and content management systems related to "virtual reality"
 systems.

 Additional Information:

 Magic Number(s): none

 File Extension: lsdb

 Macintosh File Type Code(s): LSDB

 Person & email address to contact for further information: Meadhbh
 Hamrick <infinity@lindenlab.com>

 Intended Usage: COMMON

https://datatracker.ietf.org/doc/html/rfc2045#section-5
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/draft-hamrick-llsd-01

Brashears, et al. Expires August 8, 2009 [Page 24]

Internet-Draft Linden Lab Structured Data February 2009

 Author: IESG

 Change Controller: IESG

7. Security Considerations

 Security considerations for this specification are, fortunately,
 either simple or beyond the scope of this document. RFC 3552
 [RFC3552] describes several aspects to use when evaluating the
 security of a specification or implementation. We believe most
 common security concerns users of this specification will encounter
 are more appropriately considered as transport, network or link layer
 issues. Or, as higher level "application security" issues.

 This document specifies the content, media type identifiers and
 content encoding requirements for LLSD. It does not specify
 mechanisms to transmit LLSD messages between network peers. We
 believe that many communication security considerations such as
 confidentiality, data integrity and peer entity authentication are
 more appropriately the domain of message, transport, network or link
 layer protocols. Users of this protocol should seriously consider
 the use Secure MIME, Transport Layer Security (TLS), IPSec or related
 technologies.

8. References

8.1. Normative References

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, November 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3339] Klyne, G., Ed. and C. Newman, "Date and Time on the
 Internet: Timestamps", RFC 3339, July 2002.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 July 2005.

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4122

Brashears, et al. Expires August 8, 2009 [Page 25]

Internet-Draft Linden Lab Structured Data February 2009

 [RFC4288] Freed, N. and J. Klensin, "Media Type Specifications and
 Registration Procedures", BCP 13, RFC 4288, December 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [TR15] Davis, M. and M. Durst, "Unicode Standard Annex #15 :
 UNICODE NORMALIZATION FORMS", 2008,
 <http://unicode.org/reports/tr15/>.

 [XML2006] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and
 F. Yergeau, "Extensible Markup Language (XML) 1.0 (Fourth
 Edition)", 2006.

8.2. Informative References

 [I-D.hamrick-llsd]
 Brashears, A., Hamrick, M., and M. Lentczner, "Linden Lab
 Structured Data", 2008.

 [ISO8601] "ISO 8601 - Date and Time Formats".

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 July 2003.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc4288
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
http://unicode.org/reports/tr15/
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226

Brashears, et al. Expires August 8, 2009 [Page 26]

Internet-Draft Linden Lab Structured Data February 2009

Appendix A. ABNF of Real Values

 The following is the Augmented Backus-Naur Form (ABNF) of valid Real
 values for the purposes of converting strings into real values. ABNF
 is described in RFC 5234 [RFC5234].
 real = zero
 real =/ negative-infinity
 real =/ negative-zero
 real =/ positive-zero
 real =/ positive-infinity
 real =/ signaling-nan
 real =/ quiet-nan
 real =/ realnumber

 negative-infinity = %x2D.49.6E.66.69,6E.69.74.79 ; "-Infinity"
 negative-zero = %x2D.5A.65.72.6F ; "-Zero"
 zero = %x30.2E.30 ; "0.0"
 positive-zero = %x2B.5A.65.72.6F ; "+Zero"
 positive-infinity = %x2B.49.6E.66.69,6E.69.74.79 ; "+Infinity"
 signaling-nan = %4E.61.4E.53 ; "NaNS"
 quiet-nan = %4E.61.4E.51 ; "NaNQ"

 realnumber = mantissa exponent

 mantissa = (positive-number ["." *decimal-digit])
 mantissa =/ ("0." *("0") positive-number)

 exponent = "E" ("0" / (["-"] positive-number))

 positive-number = non-zero-digit *decimal-digit

 decimal-digit = %x30-39
 non-zero-digit = %x31-39

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

Brashears, et al. Expires August 8, 2009 [Page 27]

Internet-Draft Linden Lab Structured Data February 2009

Appendix B. XML Serialization DTD

 The following Document Type Definition (DTD) describes the format of
 LLSD XML Serialization. DTDs are described in the Extensible Markup
 Language (XML) 1.0 (Fourth Edition) [XML2006] specification.

 <!DOCTYPE llsd [
 <!ELEMENT llsd (DATA)>
 <!ELEMENT DATA (SIMPLE|map|array)>
 <!ELEMENT
 SIMPLE (undef|boolean|integer|real|uuid|string|date|uri|binary)>
 <!ELEMENT KEYDATA (key,DATA)>
 <!ELEMENT key (#PCDATA)>
 <!ELEMENT map (KEYDATA*)>
 <!ELEMENT array (DATA*)>
 <!ELEMENT undef (EMPTY)>
 <!ELEMENT boolean (#PCDATA)>
 <!ELEMENT integer (#PCDATA)>
 <!ELEMENT real (#PCDATA)>
 <!ELEMENT uuid (#PCDATA)>
 <!ELEMENT string (#PCDATA)>
 <!ELEMENT date (#PCDATA)>
 <!ELEMENT uri (#PCDATA)>
 <!ELEMENT binary (#PCDATA)>

 <!ATTLIST string xml:space (default|preserve) 'preserve'>
 <!ATTLIST binary encoding CDATA "base64">
]>

Appendix C. ABNF of LLIDL

 The following is the Augmented Backus-Naur Form (ABNF) of the Linden
 Lab Interface Description Language (LLIDL). ABNF is described in RFC

5234 [RFC5234].

 value = type / array / map / selector / variant

 type = "undef"
 type =/ "string"
 type =/ "bool"
 type =/ "int"
 type =/ "real"
 type =/ "date"
 type =/ "uri"
 type =/ "uuid"
 type =/ "binary"

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234

Brashears, et al. Expires August 8, 2009 [Page 28]

Internet-Draft Linden Lab Structured Data February 2009

 array = "[" s value-list s "]"
 array =/ "[" s value-list s "..." s "]"

 map = "{" s member-list s "}"
 map =/ "{" s "$" s ":" s value s "}"

 value-list = value [s "," [s value-list]]

 member-list = member [s "," [s member-list]]
 member = name s ":" s value

 selector = quote name quote
 selector =/ "true" / "false"
 selector =/ 1*digit

 variant = "&" name

 definitions = *(s / variant-def / resource-def)

 variant-def = "&" name s "=" s value

 resource-def = res-name s res-request s res-response
 res-name = "%%" s name
 res-request = "->" s value
 res-response = "<-" s value

 s = *(tab / newline / sp / comment)
 comment = ";" *char newline
 newline = lf / cr / (cr lf)

 tab = %x0009
 lf = %x000A
 cr = %x000D
 sp = %x0020
 quote = %x0022
 digit = %x0030-0039
 char = %x09 / %x20-D7FF / %xE000-FFFD / %x10000-10FFFF

 name = name_start *name_continue
 name_start = id_start / "_"
 name_continue = id_continue / "_" / "/"
 id_start = %x0041-005A / %x0061-007A ; ALPHA
 id_continue = id_start / %x0030-0039 ; DIGIT

Brashears, et al. Expires August 8, 2009 [Page 29]

Internet-Draft Linden Lab Structured Data February 2009

Authors' Addresses

 Aaron Brashears
 Linden Research, Inc.
 945 Battery St.
 San Francisco, CA 94111
 US

 Phone: +1 415 243 9000
 Email: aaronb@lindenlab.com

 Meadhbh Siobhan Hamrick (editor)
 Linden Research, Inc.
 945 Battery St.
 San Francisco, CA 94111
 US

 Phone: +1 650 283 0344
 Email: infinity@lindenlab.com

 Mark Lentczner
 Linden Research, Inc.
 945 Battery St.
 San Francisco, CA 94111
 US

 Phone: +1 415 243 9000
 Email: zero@lindenlab.com

Brashears, et al. Expires August 8, 2009 [Page 30]

