virtual World Region Agent A. Brashears ToC

Protocol M. Hamrick, Ed.
Internet-Draft M. Lentczner

Intended status: Standards Linden Research,
Track Inc.

Expires: August 16, 2010 February 12, 2010

VWRAP : Abstract Type System for the Transmission of Dynamic Structured
Data
draft-hamrick-vwrap-type-system-00

Abstract

This document describes the LLIDL interface description language, the
related LLSD abstract type system and three serialization formats for
LLIDL messages. LLIDL (pronounced "little") is a language-neutral
facility for describing transport independent message flows for RESTful
resource access. LLIDL itself is an abstract meta-grammar for producing
and recognizing valid request / response messages affecting state
change in application layer objects by way of RESTful resource access.
It may be used by protocol developers and system deployers to describe
the composition of application layer protocol exchanges without
adopting transport specific message semantics or programming language
specific type semantics. The type behavior of individual message
elements is described by the LLSD abstract type system. Abstract LLIDL
messages are concretized using one of three defined LLSD serialization
schemes. Serialization / deserialization rules are provided in this
document for XML, JSON and Binary schemes. This abstract messaging and
type system is intended to be used by other specifications to describe
application layer protocol exchanges, independent of implementation
language or message transport protocol.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The 1list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.
This Internet-Draft will expire on August 16, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the BSD License.

Table of Contents

1. Introduction
1.1. Requirements Language
2. The LLSD Abstract Type System
2.1. Simple Types
2.1.1. Undefined
2.1.2. Boolean
2.1.3. Integer
2.1.4. Real
2.1.5. String
2.1.6. UUID (Universally Unique ID)
2.1.7. Date
2.1.8. URI (Uniform Resource Identifier)
2.1.9. Binary
2.2. Composite Types
2.2.1. Array
2.2.2. Map
2.3. Converting Between Real and String Types
2.4. Converting Between Date and String Types
3. The LLIDL Interface Description Language
3.1. Interfaces and Resources
3.2. Simple Types
3.3. Composite Types
3.3.1. Arrays
3.3.2. Maps
3.4. Named Types
3.5. Variant Type Definitions
4. Serialization

4,1. XML Serialization

http://www.ietf.org/shadow.html

4.1.2. Serializing Composite Types

4.1.3. Example of XML LLSD Serialization
4.2. JSON Serialization
4.2.1. Examples of JSON LLSD Serialization
4.3. Binary Serialization
4.3.1. Example of BINARY LLSD Serialization
IANA Considerations
MIME Type Registrations
6.1. MIME Type Registration for application/1lidl
6.2. MIME Type Registration for application/llsd+xml
6.3. MIME Type Registration for application/llsd+json
6.4. MIME Type Registration for application/llsd+binary
Security Considerations
References
8.1. Normative References
8.2. Informative References
Appendix A. ABNF of Real Values
Appendix B. XML Serialization DTD
Appendix C. ABNF of LLIDL
Appendix D. Glossary
Appendix E. Acknowledgements

§ Authors' Addresses

4.1.1. Serializing Simple Types

[

[

1. Introduction TOC

It is characteristic of modern network services that they are deployed
across multiple network hosts. For performance, fault tolerance, ease
of deployment or organizational reasons, software and systems
implementing network services must now work well in a distributed
environment. It is generally believed that such distributed services
may be made more robust by making their components "loosely
coupled."[Kaye2003] (The Conversations Network, “Loosely Coupled : The
Missing Pieces of Web Services,” 2003.) This document describes an
interface description language and a related abstract type system used
to define interfaces to loosely coupled network services in a
programming language, network transport and message serialization
independent manner.

The LLIDL interface description language may be used to define protocol
exchanges for accessing resources exhibiting characteristics of the
Representational State Transfer (REST) architecture style.
[Fielding2000] (University of California, Irvine, “Architectural Styles
and the Design of Network-based Software Architectures,” 2000.) LLIDL
describes abstract interfaces intended to be reified over HTTP
[RFC2616] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,

L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol --
HTTP/1.41,"” June 1999.) or HTTPS [RFC2817] (Khare, R. and S. Lawrence,
“Upgrading to TLS Within HTTP/1.1,” May 2000.). LLIDL resource
definitions describe the structure of data provided in an access
request, the structure of the data in the access' response and the HTTP
verbs which may be used to access the resource.

The LLSD abstract type system defines nine simple types (Undefined,
Boolean, Integer, Real, String, UUID, Date, URI and Binary) and two
composite types (Array and Map.) This system provides a programming
language independent framework for describing type semantics of
elements in LLIDL messages. Three serialization schemes are defined by
this document: XML, JSON and Binary. These schemes are used to
concretize LLSD data into octet streams for transmission over a data
network. Each serialization scheme has a related MIME content type
definition, allowing compliant applications to identify the specific
serialization scheme used.

LLIDL and LLSD form an abstract system for reasoning about application
layer exchanges without having to repeatedly reference the details of
the transport used to deliver messages. Other specifications use LLIDL
and LLSD to describe the content of RESTful resource access. This
document describes how resource accesses are reified as HTTP(S)
protocol exchanges. LLIDL is intended to separate the semantics of
application messages from the details of the protocol that carries
them. It gives system deployers a tool for succinctly defining
application layer exchanges.

The LLSD serialization schemes describe how simple and composite types
are converted into an octet stream and provides guidelines for
transmission across a network. It does not describe the concretization
of abstract LLSD messages into programming language constructs.

1.1. Requirements Language TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.) [RFC2119].

2. The LLSD Abstract Type System TOC

The LLSD abstract type system describes the semantics of data passed
between two network hosts. These types characterize the data when
serialized for transport, when stored in memory, and when accessed by
applications.

The types are designed to be common enough that native types in
existing serializations and programming languages will be usable
directly. It is anticipated that LLSD data may be serialized in systems
with fewer types or stored in native programming language structures
with less precise types, and still interoperate in a predictable,
reliable manner. To support this, conversions are defined to govern how
data received or stored as one type may be read as another.

For example, if an application expects to read an LLSD value as an
Integer, but the serialization used to transport the value only
supported Reals, then a conversion governs how the application will see
the transported value. Another case would be where an application wants
to read an LLSD value as a URL, but the programing language only
supports String as a data type. Again, there is a defined conversion
for this case.

The intention is that applications will interact with LLSD data via
interfaces in terms of these types, even if the underlying language or
transports do not directly support them, while retaining as much direct
compatibility with those native types as possible.

An LLSD value is either a simple datum or a composite structure. A
simple data value can have one of nine simple types: Undefined,
Boolean, Integer, Real, String, UUID, Date, URI or Binary. Composite
structures can be either of the types Array or Map.

2.1. Simple Types TOC

For each type, conversions are defined to that type. That is, if a
process is accessing a particular LLSD value, and treating it as a
particular type, but the underlying type (as transmitted, or stored in
memory) is different, then the indicated conversion, if defined, is
applied. If a conversion is not specified from a particular type, then
if a value of that type is accessed, the result is the default value
for the expected type. For example: When reading a value as an integer,
if the underlying value is binary, then the value read is zero.

2.1.1. Undefined TOC

Data of type Undefined has only one value, called undef. The default
value is undef. There are no defined conversions to Undefined.
The Undefined type is a placeholder for a value.

2.1.2. Boolean

Data of type Boolean can have one of only two values: true or false.
The default value is false.
Conversions:

Integer A zero value (0) is converted to false. All other values
are converted to true.

Real A zero value (0.0) and invalid floating point values (NaNs)
are converted to false. All other values are converted to true.

String An empty String is converted to false. Anything else is
converted to true.

2.1.3. Integer TOC

Data of type Integer can have the values of natural numbers between
-2147483648 and 2147483647 inclusive. The default value for Integer is
zero (0).

Conversions:

Boolean The value true is converted to the Integer 1. The value
false is converted to the Integer 0.

Real Real are rounded to the nearest representable Integer, with
ties being rounded to the nearest even number. Invalid floating
point values (NaNs) are converted to the Integer 0.

String The string is first converted to type Real, see Section 2.3
(Converting Between Real and String Types). Then the resulting
Real is converted to Integer as specified above.

2.1.4. Real TOC

Data of type contain signed floating precision numeric values from the
range available with IEEE 754-1985 64-bit double precision values, as
well as the special non-numeric values (NaNs and Infs) available with
that format. The default value for Real is zero (0.0).

Conversions:

Boolean

The value true is converted to the floating point value 1.0. The
value false is converted to the floating point value 0.0.

Integer 1Integers promoted to floating point values are converted to
the nearest representable number.

String See Section 2.3 (Converting Between Real and String Types).

2.1.5. String TOC
Data of type String contain a sequence of zero or more Unicode code

points. The default value for String is a sequence of zero code points,
the empty string ("").

The characters are restricted to the following code points:
U+0009, U+000A, U+000D
U+0020 through U+D7FF
U+EOOO through U+FFFD

U+10000 through U+10FFFF

Strings may be normalized during transport, storage or processing. When
an implementation does normalize, it should use Normalization Form C
(NFC) described in Unicode Standard Annex #15 (Davis, M. and M. Durst,
“Unicode Standard Annex #15 : UNICODE NORMALIZATION FORMS,"” 2008.)
[TR15]. Line endings may be normalized to U+000A.

Conversions:

Boolean The value true is represented as the string "true". The
value false is represented as the empty string ("").

Integer 1Integers converted to Strings are represented as signed
decimal representation.

Real See Section 2.3 (Converting Between Real and String Types).

UUID UUIDs converted to Strings are represented in the 36
character, 8-4-4-4-12 format defined in RFC 4122 (Leach, P.,
Mealling, M., and R. Salz, “A Universally Unique IDentifier
(UUID) URN Namespace,” July 2005.) [RFC4122].

Date See Section 2.4 (Converting Between Date and String Types).

URI URIs converted to Strings are simply Unicode representations of
the URI.

2.1.6. UUID (Universally Unique ID) TOC

UUIDs represent a universally unique identifier. Data of type UUID is a
128 bit identifier with a structure defined in RFC 4122 (Leach, P.,
Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN
Namespace,” July 2005.) [RFC4122]. The default UUID value is the null
UUID, (00000000-0000-0000-0000-000000000000).

Conversions:

String A valid 8-4-4-4-12 string representation of a UUID is
converted to the UUID it represents. All other values are
converted to the null UUID
(00000000-0000-0000-0000-0000000CCC0) .

2.1.7. Date T0C

Dates represent a moment in time. Data of type Date may have the value
of any time in the from January 1, 1970 though at least January 1,
2038, to at least second accuracy. The default date is defined as the
beginning of the Unix(tm) epoch, midnight, January 1, 1970 in the UTC
time zone.

Conversions:

String See Section 2.4 (Converting Between Date and String Types).

2.1.8. URI (Uniform Resource Identifier) TOC

Data of type URI has the value of a Uniform Resource Identifier as
defined in RFC 3986 (Berners-Lee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,” January 2005.)
[RFC3986]. The default URI is an empty URI

Conversions:

String The characters of the String data are interpreted as a URI,
if legal. Other Strings results in the default URI.

2.1.9. Binary TOC
Data of type Binary contains a sequence of zero or more octets. The

default Binary is a sequence of zero octets.
There are no defined conversions for Binary.

2.2. Composite Types TOC

LLSD values can be composed of other LLSD values in two ways: Arrays or
Maps. In either case, the values with the composite can be any
heterogeneous mix of other LLSD types, both simple and composite.

2.2.1. Array TOC

An Array is an ordered collection of zero or more values. The values
are considered consecutive, with no gaps. The value undef (of type
Undefined) may be used to indicate, within an Array, an intentionally
left out value.

Arrays are considered to have a definite length, including any leading
or trailing undef values in the sequence. This length can be viewed by
an application. Accessing beyond the end of an array acts as if the
value undef were stored at the accessed location. Nonetheless, systems
that transmit or store Arrays SHOULD NOT add or remove undef values at
the end of an Array value, so as to make a best effort to retain the
definite length as originally created.

2.2.2. Map TOC

A Map is an unordered collection of associations between keys and
values. Within a given Map value, each key must be unique, each with
one value. Keys are String values. The associated values can be of any
LLSD type.

Maps are considered to have a definite set of keys, including keys
whose associated value is undef. The number of such keys, and set of
keys can be accessed by an application. Accessing a value for a key
that is not in a Map value's key set acts as if the value under were
stored at that key. Nonetheless, systems that transmit or store Maps
SHOULD NOT add or remove keys associated with undef to a Map value, so
as to make a best effort to retain the key set as originally created.

Note on key equality: Two keys are considered equal if they contain the
same number and sequence of Unicode codepoints. Since keys are String
values, and String values may be normalized on transport or storage, it
follows that only String values that are already normalized as allowed
by the String type are reliable as Map keys. Since the Maps are
intended to be primarily used with keys set forth in protocol
descriptions, this not a particular problem. However, if arbitrary user
supplied data is to be used as key values in some application, then the
possibility of normalization and perhaps key collision during transport
must be considered.

2.3. Converting Between Real and String Types TOC

Real values are represented using the ABNF provided in Appendix A (ABNF

of Real Values)

2.4. Converting Between Date and String Types TOC

The textual representation of Date values is based on IS0 8601 (, “ISO
8601 - Date and Time Formats,” .) [IS08601], and further specified in
RFC 3339 (Klyne, G., Ed. and C. Newman, “Date and Time on the Internet:
Timestamps,” July 2002.) [RFC3339]. When Date values are converted to
or from String values, the character sequence of the string must
conform to the following production based on the ABNF in RFC 3339
(Klyne, G., Ed. and C. Newman, “Date and Time on the Internet:
Timestamps,” July 2002.) [RFC3339]:

full-date "T" partial-time "Z"

When converting from String values, if the sequence of characters does
not exactly match this production, then the result is the default Date
value.

3. The LLIDL Interface Description Language TOC

TOC

3.1. Interfaces and Resources

A LLIDL "Interface" is comprised conceptually of collection of zero or
more related resources and named type definitions. The LLIDL grammar
defines an "Interface Definition" as being zero or more comments, named
type definitions or resource definitions.

A LLIDL "Resource" represents information or state maintained by a
remote system, accessed via HTTP(S). A "Resource Definition" is the
grammatical construction used to represent a resource. Resources are
partitioned into "method access classes" based on the HTTP verbs used
to access them. Method access classes include: "GET", "GET/PUT", "GET/
PUT/DELETE" and "POST". Method access classes are notated in the LLIDL
grammar using "Method Access Delimeters": "<<" for GET, "<>" for GET/
PUT, "<x>" for GET/PUT/DELETE and POST is notated with the pair of
strings "->" and "<-".

Resource definitions also include a message body defining the structure
of requests and responses. GET, GET/PUT and GET/PUT/DELETE resources
define a single message body following the method access delimiter.
POST resources define two message bodies. The first follows the "->"
delimiter and represents the request. The second follows the "<-"
delimiter and represents the response.

A single simple type definition or "flat" map may be defined in
conjunction with the resource that describes the contents of arguments
to be placed in the query string of the request. A flat map is a map
containing only simple types (i.e. - it does not contain arrays or
maps.)

A resource definition has the format:

'%%' <resource-name> ['??' <query-body>]
<resource-delimeter> <message-body> [<- <message-body>]

The resource-name identifies the resource (not the URL at which it is
located.) Resource-names are strings that may contain alphabetic
characters, numbers, the slash character ('/') and the underbar
character ('_').

3.2. Simple Types TOC

LLIDL uses the nine simple types from LLSD to define the type behavior
of scalar elements in a resource. These types are undefined, boolean,
integer, real, string, UUID, URI, date and binary. They are declared in
LLIDL with different identifiers that are (respectively): undef, bool,
int, real, string, uuid, uri, date and binary. Note that the undefined,
boolean and integer types are declared using a more compact textual
description of the type.

3.3. Composite Types TOC

Composite Types are resource elements that contain more than one value.
LLIDL uses the two composite types from LLSD: array and map.

3.3.1. Arrays T0C

Arrays represent a sequence of simple types. Each element in an array
is accessed by an ordinal value. An array declaration begins with the
open bracket character ('[') and ends with the close bracket character
(']"). within the definition of an array, comma delimited type
declarations describing the type of each element are given.

The format for an array declaration is:

"[' <type> ['," <type>] ... ']’

The following example declares a five element array whose elements'
types are three integers, a string and a URI:

[int , int , int , string , uri]

LLIDL arrays may also be of indeterminate length. The ellipsis trigraph
("...") appended to the end of a sequence of types in an array
declaration indicates the previously defined sequence of types is
repeated indefinitely.

The following examples describe (first) an arbitrary lengthed array
comprising of strings and (second) an arbitrary lengthed array
comprising of three real values followed by a string:

[string , ...]
[real , real , real , string , ...]

Note that the ellipsis trigraph indicates that the entire sequence is
repeated, not only the last element.

It is acceptable for an array to contain composite types like arrays or
maps. The following example describes an array whose elements are an
array of three real values and a string:

[[real , real , real] , string, ...]

3.3.2. Maps

Maps are collections of simple types whose elements are accessed via
alphanumeric strings. Maps declarations begin with the open brace
character ('{') and end with the close brace character ('}'). Within
the map declaration are a sequence of comma delimited map entries. Map
entries are comprised of a map entry name and a map entry type,
separated by a colon character (':'). Map entry names are alphanumeric
strings intended to be indicative of their function in the resource
definition.

The format of a map definition is:

'"{' <map-entry-name> ':' <map-entry-type>
[',' <map-entry-name> ':' <map-entry-type>] ... '}'

The following example describes a map with three elements named: name,
position and current_balance. The name entry is declared as a string,
the position entry is declared as an array with a string and three real
values, and the current_balance entry is declared as an integer.

name : string,
position : [string , real , real , real],
current_balance : int

As implied by the previous example, it is perfectly acceptable for a
map to contain entries whose types are maps and arrays.

It is also possible to define a map in which map entry names that are
explicitly unknown at the time a resource is defined. For example, a
service may wish to produce or consume a map whose keys come from user
data such as stock ticker symbols, avatar names or the names of regions
in a virtual world. It is impractical to attempt to define the complete
set of possibilities in these cases, so LLIDL allows the resource
developer to specify that map names may come from data known only at
the time the resource is accessed.

The dollar character ('$') is used to specify a map whose entries'
names are determined after the resource is defined and deployed. A map
with "deferred entry names" is one in which this situation occurs. Such
maps are defined with a single entry whose name is the dollar character
and a single type.

The following example shows a map with "deferred entry names" whose map
entry types are all URIs.

{$:uri}

At most one deferred entry name specifier (i.e. - one dollar sign) is
allowed in a map. A map defined with a deferred entry name specifier
may contain no other defined entries.

Deferred entry names do not signify that a later specification will
complete the definition of the resource, but that the map's entries'
names cannot be determined before the resource is accessed.

3.4. Named Types TOC

LLIDL defines a named type feature. This feature allows a resource
developer to define a single alphanumeric symbol that represents a
complete type definition. The ampersand ('&') character is used in both
the definition and reference of a named type. To define a named type,
the following format is used:

'&"' <named-type-symbol> '=' <named-type-value>

The named type symbol must be a valid alphanumeric symbol consisting of
upper and lower case letters, numbers, the slash character ('/') or the
underbar ('_'). The named type value must be a valid type definition.
The following examples are all valid named type definitions:

&example string

&info { name : string, id : uuid }

&position = [real, real, real]

Named types are referenced using only the ampersand and a symbol. The
following example describes two resources whose response bodies are
defined using a named type:

&error = { errno : int, desc : string, more : uri }
%% session/search -> string <- &error

%% session/continue -> uuid <- &error

3.5. Variant Type Definitions TOC

It may be advantageous for a resource to accept more than one form. In
this case, a variant type definition may be used. Variant type
definitions are defined using the named type feature to define a named
type using the same named type symbol for multiple named type
definitions.

For example, the following resource defines a response with two forms.
The first describes a success condition while the second an error.

&request = {
name : string,
secret : binary

}

&response = {
success . true,
session_id : uuid

}

&response = {
success . false,
error : int,
next ouri

%% session/establish -> &request <- &response

In this example, the first named type (whose named type symbol is
'request') is a simple named type. It is later used in a resource
definition to represent the contents of a request to the resource. The
second and third named types define a variant. That is, the named type
symbol is used more than once. The 'response' variant defined in this
example indicates that the response from the resource access will be
one of the two 'response' forms.

A "selector" may be used to help determine which variant should be
used. A selector is a literal value included in a map entry that
appears in each variant. In the example above, the map entry named
'success' has two literal values in the two variants in which it is
defined. It is possible to have multiple selectors in a map variant,
and the same literal value may be reused.

4. Serialization TOC

When used as part of a protocol, LLSD is serialized into a common form.
Three serialization schemes are currently defined: XML, JSON and
Binary.

4.1. XML Serialization TOC

XML serialization of LLSD data is in common use in protocols
implementing virtual worlds. When used to communicate protocol data

with a transport that requires the use of a Type, the type
'application/llsd+xml' is used.

When serializing an instance of LLSD structured data into an XML
document, the DTD given in Appendix B (XML Serialization DTD) is used.
This DTD defines elements for each of the defined LLSD types.
Immediately subordinate to the root LLSD element, XML documents
representing LLSD serialized data include either a single instance of
an simple type (Undefined, Boolean, Integer, Real, UUID, String, Date,
URI or Binary) or a single composite type (Array or Map).

When encoding binary data using RFC 4648 (Josefsson, S., “The Basel6,
Base32, and Base64 Data Encodings,” October 2006.) [RFC4648],
characters outside the base alphabet are explicitly allowable and
should be ignored.

4.1.1. Serializing Simple Types TOC

Most simple types are serialized by placing the string representation
of the data between beginning and ending tags associated with the
value's type. This is true for undefined, boolean, integer, real, UUID,
string, date and URI typed values. Values of type binary are serialized
by placing the BASE64 encoding (defined in RFC 4648 (Josefsson, S.,
“The Basel6, Base32, and Base64 Data Encodings,” October 2006.)
[RFC4648]) of the binary data within beginning and ending 'binary'
tags. It is expected that future versions of this specification may
allow encodings other than BASE64, so the mandatory attribute
'encoding' is used to identify the method used to encode the binary
data.

The following example shows an XML document representing the
serialization of the integer -559038737.

<?xml version="1.0" encoding="UTF-8"?>
<llsd>

<integer>-559038737</integer>
</1lsd>

While this example shows the serialization of a binary array of octets
containing the values 222, 173, 190 and 239.

<?xml version="1.0" encoding="UTF-8"?>
<llsd>

<binary encoding="base64">3q2+7w==</binary>
</1lsd>

TOC

4.1.2. Serializing Composite Types

Composite types in the XML serialization scheme are represented with
'array' and 'map' elements. Both of these elements may contain elements
enclosing simple types or other composite types. Array elements, which
represent a collection of values indexed by position, contain a simple
list of typed values. Map elements represent a collection of values
indexed by a string identifier. They contain a list of key-value pairs
where the 'key' element describes the indexing identifier while the
value (which follows the 'key' element) is its XML representation.

Note that elements of an array may be of differing types. Also note
that composite types may contain other composite types; it is not an
error for an array or map to contain another array, map or simple type.

4.1.3. Example of XML LLSD Serialization TOC

This example shows the XML serialization of an array which contains an
integer, a UUID and a map.

<?xml version="1.0" encoding="UTF-8"?>
<1llsd>
<array>
<integer>42</integer>
<uuid>6bad258e-06f0-4a87-a659-493117c9c162</uuid>
<map>
<key>hot</key>
<string>cold</string>
<key>higgs_boson_rest_mass</key>
<undef/>
<key>info_page</key>
<uri>https://example.org/r/6bad258e-06f0-4a87-a659-493117¢c9c162</uri>
<key>status_report_due_by</key>
<date>2008-10-13T19:00.00Z</date>
</map>
</array>
</11lsd>

4.2. JSON Serialization TOC

LLSD may also be serialized using the JSON (ECMA International,
“Standard ECMA-262, 5th Edition : ECMAScript Language Specification,”
December 2009.) [ECMA262r5] subset of the JavaScript programming
language. When serializing LLSD data using JSON, the 'application/

11sd+json' media type is used. The grammar of LLSD objects serialized
using the JSON serialization MUST conform to the JSONText production.
The following table lists type conversions between LLSD and JSON:

Undefined LLSD 'Undefined' values are represented by the JSON non-
terminal 'JSONNullLiteral'.

Boolean LLSD 'Boolean' values are represented by the JSON non-
terminal 'JSONBooleanLiteral'.

Integer LLSD 'Integer' values are represented by the JSON non-
terminal 'JSONNumberLiteral'.

Real LLSD 'Real' values are represented by the JSON non-terminal
"JSONNumberLiteral'.

String LLSD 'String' values are represented by the JSON
"JSONString' non-terminal. Note that this specification inherits
JSON's behavior of requiring control characters, reverse solidus
and quotation mark characters to be escaped.

UUID LLSD 'UUID' values are represented by a JSON string, and are
rendered in the common 8-4-4-4-12 format defined by the 'UUID'
non-terminal in RFC 4122 (Leach, P., Mealling, M., and R. Salz,
“A Universally Unique IDentifier (UUID) URN Namespace,”

July 2005.) [RFC4122].

Date LLSD 'Date' values are represented by the JSON 'string' non-
terminal, the contents of which is a valid ISO 8601 value with
years, months, days, hours, seconds and time zone indicator.

URI LLSD 'URI' values are represented by the JSON 'string' non-
terminal, the contents of which is a valid URI as defined by RFC
3986 (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform
Resource Identifier (URI): Generic Syntax,” January 2005.)
[RFC3986] .

Binary LLSD 'Binary' values are represented as a JSON 'JSONArray'.
That is, they follow the ECMA-262 (ECMA International, “Standard
ECMA-262, 5th Edition : ECMAScript Language Specification,”
December 2009.) [ECMA262r5] 'JSONArray' non-terminal whose
members are integer numbers representing each octet of the binary
array.

Array LLSD 'Array' values are represented by the JSON 'JSONArray'
non-terminal.

Map LLSD 'Map' values are represented by the JSON 'JSONObject' non-
terminal. Each key-value pair of the map is represented by the
JSON 'JSONMember' non-terminal where the LLSD map key is the

"JSONString' prior to the name separator terminal (':') and the
LLSD map value is the 'JSONvValue' after the name separator.

LLSD defines additional types over those defined by JSON. The LLSD
types UUID, Date and URI are serialized as JSON strings whose contents
are generated using the <Type> to String conversion defined in Abstract
Type System section above.

4.2.1. Examples of JSON LLSD Serialization TOC

Example 1. The following example shows the JSON encoding of the integer
42,

42
Example 2. The following example shows the JSON encoding of the example

given in the section above on XML serialization (Serializing Composite
Types

[

42,

"6bad258e-06f0-4a87-a659-493117c9c162",

{
"hot": "cold",
"higgs_boson_rest_mass": null,
"info_page":

"https://example.org/r/6bad258e-06f0-4a87-a659-493117c9c162",

"status_report_due_by": "2008-10-13T19:00.00Z"

}

]

4.3. Binary Serialization TOC

The LLSD Binary Serialization is an encoding syntax appropriate for
situations where high message entropy is required or limiting
processing power for parsing messages is available.

Encoding LLSD structured data using the binary serialization scheme
involves generating tag, (optional) size values, and serialization of
simple values. Composite types are serialized by iterating across all
members of the collection, serializing each simple or composite member
in turn, and adding a closing tag. For each element in an LLSD

structured data object, the following process is used to generate a
binary output stream of serialized data:

*A one octet type tag is emitted to the output stream. See the
table below for tag octets.

*If the size of the element being serialized is variable (as it
will be for strings, URIs, arrays and maps), the size or length
of the element is output to the stream as a network-order 32 bit
value. Elements of types with fixed lengths such as undefined
values, booleans, integers, reals, UUIDs and dates will not
include size information in the output stream.

*Finally, the binary representation of the element is appended to
the output stream.

Undefined Undefined values are serialized with a single exclamation
point character ('!'). Undefined values append neither size
information or data to the output stream.

Boolean True values are serialized with a single '1l' character.
False values are serialized with a single '@' character. Booleans
append neither size information or data to the output stream.

Integer 1Integer values are serialized by emitting the 'i' character
to the output stream followed by the four octets representing the
integer's 32 bits in network order.

Real Real values are serialized by emitting the 'r' character to
the output stream followed by the eight octets representing the
real value's 64 bits in network order.

String String values are serialized by emitting the 's' character
to the output stream followed by the string's length in octets
represented as a network-order 32 bit integer, followed by the
string's UTF-8 encoding.

UUID UUID values are serialized by emitting the 'u' character to
the output stream followed by the sixteen octets representing the
UUID's 128 bits, with the most significant byte coming first.

Date Date values are serialized by emitting the 'd' character to
the output stream followed by the number of seconds since the
start of the epoch, represented as a 64-bit real value.

URI URI values are serialized by emitting the 'l' character to the
output stream followed by the URI's length in octets represented
as a network-order 32 bit integer, followed by the binary
representation of the URI.

Binary
Binary values are serialized by emitting the 'b' character
to the output stream followed by the binary array's length in
octets represented as a network-order 32 bit integer, followed by
the octets of the binary array.

Array Arrays are serialized by emitting the left square bracket
('[") character, followed by the count of objects in the array
represented as a network-order 32 bit integer, followed by each
array element in order. Note that compliant implementations MUST
preserve the order of array elements. Following the elements in
the array, a single octet closing tag is appended to the
enclosing. The closing tag for arrays is a single right square
bracket (']').

Map Maps are serialized by emitting the left curly brace ('{')
character, followed by the count of objects in the map
represented as a network-order 32 bit integer, followed by each
key-value element. Map keys are represented as strings except
that they use the character 'k' instead of the character 's' as a
tag. Note that preserving the order of maps is not REQUIRED.
Following the elements in the map, a single octet closing tag is
appended to the enclosing. The closing tag for arrays is a single
right curly brace ('}'").

4.3.1. Example of BINARY LLSD Serialization TOC

The LLSD object given as an example in the section above on XML
serialization (Serializing Composite Types) would look as follows would
it have been serialized using the binary scheme. The following example
encodes octets as hexadecimal values.

Offset
00000000
00000001
00000005
00000006
0000000A
0000000B
00000013
0000001B
0000001C
00000020
00000021
00000025
00000028
00000029
0000002D
00000031
00000032
00000036
0000003E
00000046
0000004B
0000004C
0000004D
00000051
0000006059
0000005A
0000005B
0000005F
00000067
0000006F
00000077
0000007F
0000006087
0000008F
00000097
00000099
O00OO009%A
0000OO9E
000000A7
O00000AF
00000060B3
00000060B7
000000B8

Hex Data

00 00

00 00

6B AD
A6 59

00 00

00 00
68 6F

00 00
63 6F

00 00
68 69
73 6F
5f 6d

00 00
69 6E

00 00
68 74
65 78
6F 72
61 64
36 66
2D 61
33 31
36 32

00 00
73 74
65 70
65 5F
00 00

41 D2

00

00

25
49

00

00
74

00
6C

00
67
6E
61

00
66

00
74
61
67
32
30
36
31

00
61
6F
62
00

3C

03

2A

8E
31

04

03

04
64

13
67
5F
73

09
6F

3A
70
6D
2F
35
2D
35
37

14
74
72
79
08

E6

06 FO 4A 87
17 C9 C1 62

73
72
73

5F

73
70
72
38
34
39
63

75
74

AC

5F
65

70

3A
6C
2F
65
61
2D
39

73
5F

00

62
73

61

2f
65
36
2D
38
34
63

5F
64

00

6F
74

67

2F
2E
62
30
37
39
31

72
75

00

Char Data

'k.%...J."'
".YI1...b'
I{l

'cold'

K
"higgs_bo'
'son_rest'
'_mass'
vy

e
'info_pag'
et

EE
"https://'
'example.'
'org/r/6b'
'ad258e-0'
'6T0-4a87"'
'-a659-49'
'3117c9c1’
162"

e
'status_r'
"eport_du'
'e_by'

Idl

5. IANA Considerations TOC

In accordance with [RFC5226] (Narten, T. and H. Alvestrand, “Guidelines
for Writing an IANA Considerations Section in RFCs,” May 2008.), this
document registers the following mime types:

application/11idl
application/11lsd+xml
application/llsd+json
application/llsd+binary

See the MIME Type Registrations section (MIME Type Registrations) below
for detailed information on MIME Type registrations.

6. MIME Type Registrations TOC

(@)

This section provides media-type registration applications (as per RF
4288 (Freed, N. and J. Klensin, “Media Type Specifications and
Registration Procedures,” December 2005.) [RFC4288].)

6.1. MIME Type Registration for application/11lidl TOC

To: ietf-types@iana.org LLIDL may be used with any character set
Subject: Registration of media type application/llidl that encodes
Type name: application character points identical to ASCII for the
Subtype name: 1llidl first 127 characters. Compliant systems SHOULD
Required Parameters: none use UTF-8 and if no character set is
Optional Parameters: none indicated, UTF-8 MUST be assumed.
Encoding Considerations:
Security Considerations: LLIDL interface descriptions contain
"plain" text and generally poses no
immediate risk to system security of either the sender or the
receiver. Still, it is possible for a malicious adversary to
include arbitrary binary data in an attempt to exploit specific
vulnerabilities (if they exist.) It is the obligation of the
receiver to ensure such vulnerabilities are mitigated in a timely
fashion
In the unlikely event that sensitive information is to be
expressed as an LLIDL interface, it is the responsibility of the

6.

2.

transport, network or link layers to ensure the confidentiality,
message integrity and origin integrity of the message.

Interoperability Considerations: While it is possible for compliant
implementations to specify the use of character sets other than
UTF-8, such systems MUST accept UTF-8 input and SHOULD generate
UTF-8 output.

Published specification: The grammar of LLIDL is defined in the
internet draft draft-ietf-vwrap-11sd-00 (Brashears, A., Hamrick,
M., and M. Lentczner, “VWRAP : Abstract Type System for the
Transmission of Dynamic Structured Data,” 2009.)
[I-D.hamrick-11sd].

Applications that use this media type: Virtual world, tele-presence
and content management systems related to "virtual reality"
systems.

Additional Information:

Magic Number(s): none

File Extension: 11lidl Meadhbh Hamrick

Macintosh File Type Code(s): TEXT <infinity@lindenlab.com>
Person & email address to contact for further information:
Intended Usage: COMMON
Author: IESG
Change Controller: IESG

MIME Type Registration for application/1llsd+xml TOC

To: ietf-types@iana.org The Extensible Markup Language (XML)

Subject: Registration of media type application/llsd+xml

Type name: application specification allows for the use of multiple

Subtype name: llsd+xml character sets. The character set used to

Required Parameters: none encode the body of the message is defined

Optional Parameters: none as part of the XML header. If no

Encoding Considerations: character set is indicated in the XML
header, compliant systems MUST assume UTF-8.

Security Considerations: LLSD XML serialized data contains "plain"
text and generally poses no immediate risk to system security of
either the sender or the receiver. Still, it is possible for a
malicious adversary to include arbitrary binary data in an
attempt to exploit specific vulnerabilities (if they exist.) It
is the obligation of the receiver of LLSD XML serialized messages
to ensure such vulnerabilities are mitigated in a timely fashion.
If sensitive information is to be encoded into a LLSD XML
serialized message, it is the responsibility of the transport,
network or link layers to ensure the confidentiality, message
integrity and origin integrity of the message.

Interoperability Considerations:
While it is possible for compliant

implementations to specify the use of character sets other than
UTF-8, such systems MUST accept UTF-8 input and SHOULD generate
UTF-8 output.

Published specification: The LLSD XML Serialization is defined in
the internet draft draft-ietf-vwrap-11sd-00 (Brashears, A.,
Hamrick, M., and M. Lentczner, “VWRAP : Abstract Type System for
the Transmission of Dynamic Structured Data,” 2009.)
[I-D.hamrick-11sd].

Applications that use this media type: Virtual world, tele-presence
and content management systems related to "virtual reality"
systems.

Additional Information:

Magic Number(s): none

File Extension: 1lsdx Meadhbh Hamrick

Macintosh File Type Code(s): TEXT <infinity@lindenlab.com>
Person & email address to contact for further information:
Intended Usage: COMMON
Author: IESG
Change Controller: IESG

6.3. MIME Type Registration for application/llsd+json TOC

To: ietf-types@iana.org This specification requires that LLSD
Subject: Registration of media type application/llsd+json objects
Type name: application encoded using the JSON serialization scheme
Subtype name: llsd+json encode their data using Unicode. It is
Required Parameters: none assumed that the transport will carry
Optional Parameters: none meta-data describing the character
Encoding Considerations: encoding used (UTF-8, UTF-16, UTF-32,
etc.) The UTF-8 character encoding is assumed if a character
encoding is not specified.

Security Considerations: The contents of messages identified with
this media type are expected to be passed into ECMAScript's
'parse()' function. RFC 4627 (Crockford, D., “The application/
json Media Type for JavaScript Object Notation (JSON),”

July 2006.) [RFC4627] provides a regular expression to ensure
that only "safe" characters (i.e. - characters used to describe
JSON tokens) are included outside string literal definitions.
Users of the application/llsd+json media type are strongly
encouraged to use this (or similar) tests to ensure message
safety.

If sensitive information is to be encoded into a LLSD JSON
serialized message, it is the responsibility of the transport,

network or link layers to ensure the confidentiality, message
integrity and origin integrity of the message.

Interoperability Considerations: none

Published specification: This specification. Virtual world, tele-
Applications that use this media type: presence and content
management systems related to "virtual reality" systems.

Additional Information:

Magic Number(s): none

File Extension: 1lsdj Meadhbh Hamrick

Macintosh File Type Code(s): TEXT <infinity@lindenlab.com>
Person & email address to contact for further information:
Intended Usage: COMMON
Author: IESG
Change Controller: IESG

6.4. MIME Type Registration for application/llsd+binary TOC

To: ietf-types@iana.org Section 5 of RFC 2045 (Freed, N. and N.
Subject: Registration of media type application/llsd+binary

Type name: application Borenstein, “Multipurpose Internet Mail
Subtype name: llsd+binary Extensions (MIME) Part One: Format of
Required Parameters: none Internet Message Bodies,” November 1996.)

Optional Parameters: none [RFC2045] describes the binary Content-
Encoding Considerations: LLSD Binary Serialization REQUIRES the use
of binary content-transfer-encoding
Transfer-Encoding header field. This specification REQUIRES the
use of this header to alert intermediary systems that information
being included in the message should be interpreted as binary
data with no end-of-line semantics which could be considerably
longer than allowed in an RFC 821 transport.

Security Considerations: This serialization format defines the use
of tagged binary fields with embedded length information. In the
past, similar binary encoding systems have fallen prey to
exploits when parsing implementations fail to check for
nonsensical lengths. Implementers are therefore strongly
encouraged to consider all failure modes of such a system.

If sensitive information is to be encoded into a LLSD JSON
serialized message, it is the responsibility of the transport,
network or link layers to ensure the confidentiality, message
integrity and origin integrity of the message.

Interoperability Considerations: none The LLSD binary serialization
Published specification: 1is defined in the internet draft draft-
hamrick-11sd-01 (Brashears, A., Hamrick, M., and M. Lentczner,

“VWRAP : Abstract Type System for the Transmission of Dynamic
Structured Data,” 2009.) [I-D.hamrick-11lsd].

Applications that use this media type: Virtual world, tele-presence
and content management systems related to "virtual reality"
systems.

Additional Information:

Magic Number(s): none

File Extension: 1lsdb Meadhbh Hamrick

Macintosh File Type Code(s): LSDB <infinity@lindenlab.com>
Person & email address to contact for further information:
Intended Usage: COMMON
Author: IESG
Change Controller: IESG

7. Security Considerations TOC

Security considerations for this specification are, fortunately, either
simple or beyond the scope of this document. RFC 3552 (Rescorla, E. and
B. Korver, “Guidelines for Writing RFC Text on Security
Considerations,” July 2003.) [RFC3552] describes several aspects to use
when evaluating the security of a specification or implementation. We
believe most common security concerns users of this specification will
encounter are more appropriately considered as transport, network or
link layer issues. Or, as higher level "application security" issues.
This document specifies the content, media type identifiers and content
encoding requirements for LLSD. It does not specify mechanisms to
transmit LLSD messages between network peers. We believe that many
communication security considerations such as confidentiality, data
integrity and peer entity authentication are more appropriately the
domain of message, transport, network or link layer protocols. Users of
this protocol should seriously consider the use Secure MIME, Transport
Layer Security (TLS), IPSec or related technologies.

8. References TOC

8.1. Normative References
TOC

[ECMA262r5] ECMA International, “Standard ECMA-262, 5th Edition
ECMAScript Language Specification,” December 2009.

[RFC2045]

http://www.ecma-international.org/publications/standards/Ecma-262.htm
http://www.ecma-international.org/publications/standards/Ecma-262.htm

.2,

[RFC2119]

[RFC2616]

[RFC2817]

[RFC3339]

[RFC3986]

[RFC4122]

[RFC4288]

[RFC4648]

[RFC5234]

[TR15]

[XML2006]

Freed, N. and N. Borenstein, “Multipurpose Internet
Mail Extensions (MIME) Part One: Format of Internet
Message Bodies,” RFC 2045, November 1996 (TXT).
Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).

Fielding, R., Gettys, J., Mogqul, J., Frystyk, H.,
Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext

Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999
(IXT, PS, PDE, HTML, XML).

Khare, R. and S. Lawrence, “Upgrading to TLS Within
HTTP/1.41,” RFC 2817, May 2000 (TXT).

Klyne, G., Ed. and C. Newman, “Date and Time on the
Internet: Timestamps,” RFC 3339, July 2002 (TXT, HTML,
XML) .

Berners-lLee, T., Fielding, R., and L. Masinter,
“Uniform Resource Identifier (URI): Generic Syntax,”
STD 66, RFC 3986, January 2005 (TXT, HTML, XML).
Leach, P., Mealling, M., and R. Salz, “A Universally
Unique IDentifier (UUID) URN Namespace,” RFC 4122,
July 2005 (TXT, HTML, XML).

Freed, N. and J. Klensin, *“Media Type Specifications
and Registration Procedures,” BCP 13, RFC 4288,
December 2005 (TXT).

Josefsson, S., “The Basel6, Base32, and Base64 Data
Encodings,” RFC 4648, October 2006 (TXT).

Crocker, D. and P. Overell, “Augmented BNF for Syntax
Specifications: ABNF,” STD 68, RFC 5234, January 2008
(TXT).

Davis, M. and M. Durst, “Unicode Standard Annex #15
UNICODE NORMALIZATION FORMS,"” 2008.

Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E.,
and F. Yergeau, “Extensible Markup Language (XML) 1.0
(Fourth Edition),” 2006.

Informative References

T0C

[Fielding2000] University of California, Irvine, “Architectural

[I-D.hamrick-
11sd]

[IS08601]
[Kaye2003]

Styles and the Design of Network-based Software
Architectures,” 2000.

Brashears, A., Hamrick, M., and M. Lentczner,
“VWRAP : Abstract Type System for the Transmission
of Dynamic Structured Data,” 2009.

“ISO 8601 - Date and Time Formats.”

The Conversations Network, “Loosely Coupled : The
Missing Pieces of Web Services,” 2003.

mailto:ned@innosoft.com
mailto:nsb@nsb.fv.com
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2045
http://www.rfc-editor.org/rfc/rfc2045.txt
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2616.ps
http://www.rfc-editor.org/rfc/rfc2616.pdf
http://xml.resource.org/public/rfc/html/rfc2616.html
http://xml.resource.org/public/rfc/xml/rfc2616.xml
http://tools.ietf.org/html/rfc2817
http://tools.ietf.org/html/rfc2817
http://www.rfc-editor.org/rfc/rfc2817.txt
mailto:GK@ACM.ORG
mailto:chris.newman@sun.com
http://tools.ietf.org/html/rfc3339
http://tools.ietf.org/html/rfc3339
http://www.rfc-editor.org/rfc/rfc3339.txt
http://xml.resource.org/public/rfc/html/rfc3339.html
http://xml.resource.org/public/rfc/xml/rfc3339.xml
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://www.rfc-editor.org/rfc/rfc3986.txt
http://xml.resource.org/public/rfc/html/rfc3986.html
http://xml.resource.org/public/rfc/xml/rfc3986.xml
mailto:paulle@microsoft.com
mailto:michael@refactored-networks.com
mailto:rsalz@datapower.com
http://tools.ietf.org/html/rfc4122
http://tools.ietf.org/html/rfc4122
http://www.rfc-editor.org/rfc/rfc4122.txt
http://xml.resource.org/public/rfc/html/rfc4122.html
http://xml.resource.org/public/rfc/xml/rfc4122.xml
http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc4288
http://www.rfc-editor.org/rfc/rfc4288.txt
http://tools.ietf.org/html/rfc4648
http://tools.ietf.org/html/rfc4648
http://www.rfc-editor.org/rfc/rfc4648.txt
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
http://www.rfc-editor.org/rfc/rfc5234.txt
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/

[RFC3552] Rescorla, E. and B. Korver, “Guidelines for Writing
RFC Text on Security Considerations,” BCP 72,
RFC 3552, July 2003 (TXT).

[RFC4627] Crockford, D., “The application/json Media Type for
JavaScript Object Notation (JSON),” RFC 4627,
July 2006 (TXT).

[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for
Writing an TIANA Considerations Section in RFCs,”
BCP 26, RFC 5226, May 2008 (TXT).

Appendix A. ABNF of Real Values TOC

The following is the Augmented Backus-Naur Form (ABNF) of valid Real
values for the purposes of converting strings into real values. ABNF 1is
described in RFC 5234 (Crocker, D. and P. Overell, “Augmented BNF for
Syntax Specifications: ABNF,” January 2008.) [RFC5234].

real = zero

real =/ negative-infinity
real =/ negative-zero
real =/ positive-zero
real =/ positive-infinity
real =/ signaling-nan
real =/ quiet-nan

real =/ realnumber

negative-infinity = %x2D.49.6E.66.69,6E.69.74.79 ; "-Infinity"

negative-zero = %x2D.5A.65.72.6F ; "-Zero"
zZero = %x30.2E.30 ; "0.0"
positive-zero = %Xx2B.5A.65.72.6F ; "+Zero"
positive-infinity = %x2B.49.6E.66.69,6E.69.74.79 ; "+Infinity"
signaling-nan = %4E.61.4E.53 ; "NaNS"
guiet-nan = %4E.61.4E.51 ; '""NaNQ"
realnumber = mantissa exponent

mantissa = (positive-number ["." *decimal-digit])
mantissa =/ ("0." *("0") positive-number)

exponent = "E" ("e" / (["-"] positive-number))

non-zero-digit *decimal-digit

positive-number

decimal-digit = %Xx30-39
non-zero-digit %x31-39

http://tools.ietf.org/html/rfc3552
http://tools.ietf.org/html/rfc3552
http://www.rfc-editor.org/rfc/rfc3552.txt
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://www.rfc-editor.org/rfc/rfc4627.txt
http://tools.ietf.org/html/rfc5226
http://tools.ietf.org/html/rfc5226
http://www.rfc-editor.org/rfc/rfc5226.txt

Appendix B. XML Serialization DTD TOC

The following Document Type Definition (DTD) describes the format of
LLSD XML Serialization. DTDs are described in the Extensible Markup

Language (XML) 1.0 (Fourth Edition) (Bray, T., Paoli, J., Sperberg-

McQueen, C., Maler, E., and F. Yergeau, “Extensible Markup Language

(XML) 1.0 (Fourth Edition),” 2006.) [XML2006] specification.

<!ELEMENT 1l1sd

(undef|boolean|integer|real|string|uuid|date|uri|binary|array|map)*>

<!ELEMENT undef EMPTY>
<!ELEMENT boolean (#PCDATA)>
<!ELEMENT integer (#PCDATA)>
<!ELEMENT real (#PCDATA)>
<!ELEMENT string (#PCDATA)>
<!ELEMENT uuid (#PCDATA)>
<IELEMENT date (#PCDATA)>
<!ELEMENT uri (#PCDATA)>
<!ELEMENT binary (#PCDATA)>
<!ELEMENT array

(undef|boolean|integer|real|string|uuid|date|uri|binary|array|map)*>

<!ELEMENT map

(key, (undef|boolean|integer|real|string|uuid|date|uri|binary|array

[map))*>
<IELEMENT key (#PCDATA)>

<IATTLIST string xml:space (default|preserve) 'preserve'>
<!ATTLIST binary encoding CDATA "base64">

Appendix C. ABNF of LLIDL TOC

The following is the Augmented Backus-Naur Form (ABNF) of the LLIDL
Interface Description Language. ABNF is described in RFC 5234 (Crocker,
D. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,”
January 2008.) [RFC5234].

11idl

resource-def
res-name
res-transaction
res-get
res-getput
res-getputdel
res-post
res-request
res-response

variant-def

value

type
type
type
type
type
type
type
type
type

array
array

map
map

value-list

member-1list
member

selector
selector
selector
selector

variant
S

comment
newline

*(s / resource-def / variant-def)

res-name s res-transaction
"%%" s name
res-get / res-getput / res-getputdel / res-post

= "<<" s value

"<>" s value
"<x>" s value
res-request s res-response
"->" s value
"<-" s value

"&" name s "=" s value

type / array / map / selector / variant

%X75.6E.64.65.66 ; "undef"
%x73.74.72.69.6E.67 ; "string"
%X62.6F.6F.6C ; "bool"
%X69.6E.74 ; "int"
%X72.65.61.6C ; "real"
%x64.61.74.65 ; "date"
%X75.72.69 ; "uri"
%X75.75.69.64 ; "uuid"

%x62.69.6E.61.72.79 ; "binary"

"[" s value-list s "]"
"[" s value-list s "..." s "]"

"{" s member-list s "}"
Il{ll S II$II S n : n S value S ll}ll

value [s "," [s value-list]]

member [s "," [s member-list]]
name s ":" s value

quote name quote

=/ %X74.72.75.65 ; "true"
=/ %x66.61.6C.73.65 ; "false"
=/ 1*digit

"&" name

*(tab / newline / sp / comment)
";" *char newline
1f / cr / (cr 1f)

tab = %X0009

1f = %XO00A
cr = %XxX000D
sp = %x0020
quote = %x0022
digit = %X0030-0039
char = %X09 / %x20-D7FF / %XEQOO-FFFD / %x10000-10FFFF
name = name_start *name_continue
name_start = id_start / "
name_continue = id_continue / "_" / "/"
id_start = %X0041-005A / %X0061-007A ; ALPHA
id_continue = id_start / %x0030-0039 ; DIGIT
Appendix D. Glossary TOC

Access See Resource Access.

Array An array is a collection in which elements are accessed by
numeric index. By default arrays are fixed length, but a trailing
ellipsis in an array definition denotes an array of indeterminate
length.

Array Definition An array definition is a feature of the LLIDL
grammar used to denote arrays of fixed or indeterminate size. An
array definition is a comma delimited sequence of type
definitions describing the type of each array element.

Composite Type A composite type in LLIDL and LLSD is an abstract
representation of an array or a map.

Deferred Entry Name A map defined with a single "Deferred Entry
Name Specifier" (i.e. - the dollar sign), signifies that the map
entry's names will be determined at the time the resource is
accessed, not when the resource is defined.

Defined Type A defined type is a feature of the LLIDL grammar used
to represent one of the eleven (11) predefined types. Defined
types are in contrast to literals and map variants. The eleven
predefined types are: undefined, boolean, integer, real, date,
uuid, uri, string, binary, array and map.

GET (Method Access) The GET method access, denoted in LLIDL with
the double less-than digraph ("<<") indicates a given resource
should be accessed via the HTTP GET verb. In LLIDL, a single

message body definition comes after the double less-than digraph
and indicates the composition of the message the client should
expect from the server.

GET/PUT (Method Access) The GET/PUT method access, denoted in LLIDL
with the less-than / greater-than digraph ("<>") indicates a
given resource should be accessed via either the HTTP GET or HTTP
PUT verbs. In LLIDL, a single message body definition comes after
the less-than / greater-than digraph and indicates the
composition of the message the client should expect from the
server (if the GET HTTP verb is used) or the composition of the
message the server should expect from the client (if the PUT HTTP
verb is used.)

GET/PUT/DELETE (Method Access) The GET/PUT/DELETE method access,
denoted in LLIDL with the less-than / x / greater-than trigraph
("<x>") indicates a given resource should be accessed via either
the HTTP GET, HTTP PUT or HTTP DELETE verbs. In LLIDL, a single
message body definition comes after the less-than / x / greater-
than trigraph and indicates the composition of the message the
client should expect from the server (if the GET HTTP verb is
used) or the composition of the message the server should expect
from the client (if the PUT HTTP verb is used.)

Interface An LLIDL Interface is a collection of zero or more
resources and any variant record definitions they reference.

Literal Values in LLIDL resource definitions usually represent
types. A literal value may be used when an element in a message
body is to be fixed to a particular value. Literals are in
contrast to defined types or map variants.

LLIDL LLIDL is an interface description language for describing
RESTful resources accessed via HTTP or HTTPS.

LLSD LLSD is an abstract type system used to describe the structure
of data in LLIDL Resource Definitions.

Map A map is a collection in which elements are accessed by a
string key.

Map Definition A map definition is a feature of the LLIDL grammar
used to denote maps. Map definitions are comprised of zero or
more comma delimited map entries.

Map Entry A map entry is a component of a map definition and is
composed of a key name and a type definition separated by a
colon.

Map Variant See Variant Map.

Method Access
A method access is a feature of the LLIDL grammar

used to describe which set HTTP verbs a client should use to
access a resource. Method access classes include 'GET', 'GET/
PUT', 'GET/PUT/DELETE' and 'POST'.

Message Body A message body is a feature of the LLIDL grammar that
describes the contents of a message flowing between a client and
a server. A message body is the type definition that describes
completely the structure of a message flowing between systems.

Named Type A named type is a developer declared name for a type,
array or map definition.

POST (Method Access) The POST method access, denoted in LLIDL with
the hyphen / greater-than ("->") and less-than / hyphen ("<-")
digraphs, indicates a given resource should be accessed via the
HTTP POST verb. In LLIDL, a message body definition comes after
both digraphs. The message body definition following the first
digraph indicates the composition of the message the client
should POST to the resource's URL while the second message body
definition describes the response the client should expect from
the server.

Resource A Resource is an abstract representation of information or
state maintained by a remote process, potentially on a remote
host. LLIDL may be used to describe the structure of a resource
and resources may be accessed by sending and receiving messages
serialized using one of the three serialization schemes via
HTTP(S).

Resource Access The act of accessing a RESTful resource.

Resource Definition An LLIDL Resource Definition is a statement in
the LLIDL language describing a single RESTful resource exported
by a remote service. Resource definitions include a resource
class, optional query parameters, a method access indicating
which HTTP verbs are acceptable to the service, the structure of
the resource access' request and/or the structure of the resource
access' response. Resource definitions may be used along with a

serialization scheme to format or parse a resource request or
response.

Resource Class A Resource Class is the textual identifier
associated with a resource. It is used to uniquely identify a
resource in an interface.

Selector See Variant Selector.

Selector Literal A literal used to identify which variant in a map
variant should be expected is a "selector literal."

Serialization Scheme A serialization scheme defines rules used to
convert a data structure into an octet stream suitable for
transmission across a network. Three schemes are defined in this
document: XML, JSON and Binary.

Simple Type 1In LLSD and LLIDL, a "simple type" is a defined type
that is not a collection. It is one of: undefined, boolean,
integer, real, date, uuid, uri, string or binary.

Type Definition A type definition is a feature of the LLIDL grammar
used to declare the type of a data element in a message body. It
may be a literal, a defined type or a variant map.

Variant Definition A map used as one of several options in a
variant map.

Variant Map A variant type definition in which a map is used for
one of the variants. Variant maps may include a selector to
assist in matching the most appropriate variant.

Variant Selector A map entry whose value is set as a literal. Used
to determine which variant definition of a variant map is to be
used.

Variant Type Definition A type definition comprised of more than
one definition. Variant type definitions are defined using the
named type feature of LLIDL.

Appendix E. Acknowledgements TOC

The authors gratefully acknowledge the contributions of: Lora Baines,
Alan Bradley, Suzy Deffeyes, Morgaine Dinova, Kevin Flynn, Valentyn
Gatsuk, Walter Gibbs, John Hurliman, Dave Huseby, Charles Krinke,

Jennifer Leech, David Levine, Steven Lisberger, Dan Olivares, Catherine
Pfeffer, Jon wWatte and Ryan Williams.

Authors' Addresses

Phone:
Email:

Phone:
Email:

Phone:
Email:

Aaron Brashears

Linden Research, Inc.
945 Battery St.

San Francisco, CA 94111
us

+1 415 243 9000
aaronb@lindenlab.com

Meadhbh Siobhan Hamrick (editor)
Linden Research, Inc.

945 Battery St.

San Francisco, CA 94111

us

+1 817 213 6479
infinity@lindenlab.com

Mark Lentczner

Linden Research, Inc.
945 Battery St.

San Francisco, CA 94111
us

+1 415 243 9000
zero@lindenlab.com

T0C

mailto:aaronb@lindenlab.com
mailto:infinity@lindenlab.com
mailto:zero@lindenlab.com

	VWRAP : Abstract Type System for the Transmission of Dynamic Structured Datadraft-hamrick-vwrap-type-system-00
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	2. The LLSD Abstract Type System
	2.1. Simple Types
	2.1.1. Undefined
	2.1.2. Boolean
	2.1.3. Integer
	2.1.4. Real
	2.1.5. String
	2.1.6. UUID (Universally Unique ID)
	2.1.7. Date
	2.1.8. URI (Uniform Resource Identifier)
	2.1.9. Binary
	2.2. Composite Types
	2.2.1. Array
	2.2.2. Map
	2.3. Converting Between Real and String Types
	2.4. Converting Between Date and String Types
	3. The LLIDL Interface Description Language
	3.1. Interfaces and Resources
	3.2. Simple Types
	3.3. Composite Types
	3.3.1. Arrays
	3.3.2. Maps
	3.4. Named Types
	3.5. Variant Type Definitions
	4. Serialization
	4.1. XML Serialization
	4.1.1. Serializing Simple Types
	4.1.2. Serializing Composite Types
	4.1.3. Example of XML LLSD Serialization
	4.2. JSON Serialization
	4.2.1. Examples of JSON LLSD Serialization
	4.3. Binary Serialization
	4.3.1. Example of BINARY LLSD Serialization
	5. IANA Considerations
	6. MIME Type Registrations
	6.1. MIME Type Registration for application/llidl
	6.2. MIME Type Registration for application/llsd+xml
	6.3. MIME Type Registration for application/llsd+json
	6.4. MIME Type Registration for application/llsd+binary
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. ABNF of Real Values
	Appendix B. XML Serialization DTD
	Appendix C. ABNF of LLIDL
	Appendix D. Glossary
	Appendix E. Acknowledgements
	Authors' Addresses

