
Internet Engineering Task Force Mark Handley
INTERNET DRAFT Jitendra Padhye
draft-handley-tcp-cwv-01.txt Sally Floyd
 ACIRI
 December 1999
 Expires: June 2000

TCP Congestion Window Validation

 Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 TCP's congestion window controls the number of packets a TCP flow may
 have in the network at any time. However, long periods when the
 sender is idle or application-limited can lead to the invalidation of
 the congestion window, in that the congestion window no longer
 reflects current information about the state of the network. This
 document describes a simple modification to TCP's congestion control
 algorithms to decay the congestion window cwnd after the transition
 from a sufficiently-long application-limited period, while using the
 slow-start threshold ssthresh to save information about the previous
 value of the congestion window.

Handley et al. [Page 1]

https://datatracker.ietf.org/doc/html/draft-handley-tcp-cwv-01.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

draft-handley-TCP TCP Congestion Window Validation December 1999

 An invalid congestion window also results when the congestion window
 is increased (i.e., in TCP's slow-start or congestion avoidance
 phases) during application-limited periods, when the previous value
 of the congestion window might never have been fully utilized. We
 propose that the TCP sender should not increase the congestion window
 when the TCP sender has been application-limited (and therefore has
 not fully used the current congestion window). We have explored
 these algorithms both with simulations and with experiments from an
 implementation in FreeBSD.

1. Conventions and Acronyms

 The keywords MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD,
 SHOULD NOT, RECOMMENDED, MAY, and OPTIONAL, when they appear in this
 document, are to be interpreted as described in [B97].

2. Introduction

 TCP's congestion window controls the number of packets a TCP flow may
 have in the network at any time. The congestion window is set using
 an Additive-Increase, Multiplicative-Decrease (AIMD) mechanism that
 probes for available bandwidth, dynamically adapting to changing
 network conditions. This AIMD mechanism works well when the sender
 continually has data to send, as is typically the case for TCP used
 for bulk-data transfer. In contrast, for TCP used with telnet
 applications, the data sender often has little or no data to send,
 and the sending rate is often determined by the rate at which data is
 generated by the user. With the advent of the web, including
 developments such as TCP senders with dynamically-created data and
 HTTP 1.1 with persistent-connection TCP, the interaction between
 application-limited periods (when the sender sends less than is
 allowed by the congestion or receiver windows) and network-limited
 periods (when the sender is limited by the TCP window) becomes
 increasingly important. More precisely, we define a network-limited
 period as any period when the sender is sending a full window of
 data.

 Long periods when the sender is application-limited can lead to the
 invalidation of the congestion window. During periods when the TCP
 sender is network-limited, the value of the congestion window is
 repeatedly ``revalidated'' by the successful transmission of a window
 of data without loss. When the TCP sender is network-limited, there
 is an incoming stream of acknowledgements that ``clocks out" new
 data, giving concrete evidence of recent available bandwidth in the
 network. In contrast, during periods when the TCP sender is
 application-limited, the estimate of available capacity represented
 by the congestion window may become steadily less accurate over time.
 In particular, capacity that had once been used by the network-

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 2]

draft-handley-TCP TCP Congestion Window Validation December 1999

 limited connection might now be used by other traffic.

 Current TCP implementations have a range of behaviors for starting up
 after an idle period. Some current TCP implementations slow-start
 after an idle period longer than the RTO estimate, as suggested in
 [RFC2581] and in the appendix of [VJ88], while other implementations
 don't reduce their congestion window after an idle period. RFC 2581
 [RFC2581] recommends the following: ``a TCP SHOULD set cwnd to no
 more than RW [the initial window] before beginning transmission if
 the TCP has not sent data in an interval exceeding the retransmission
 timeout.'' A proposal for TCP's slow-start after idle has also been
 discussed in [HTH98]. The issue of validation of congestion
 information during idle periods has also been addressed in contexts
 other than TCP and IP, for example in ``Use-it or Lose-it''
 mechanisms for ATM networks [J96,J95].

 To address the revalidation of the congestion window after a
 application-limited period, we propose a simple modification to TCP's
 congestion control algorithms to decay the congestion window cwnd
 after the transition from a sufficiently-long application-limited
 period (i.e., at least one roundtrip time) to a network-limited
 period.

 When the congestion window is reduced, the slow-start threshold
 ssthresh remains as ``memory" of the recent congestion window.
 Specifically, ssthresh is never decreased when cwnd is reduced after
 an application-limited period; before cwnd is reduced, ssthresh is
 set to the maximum of its current value, and half-way between the old
 and the new values of cwnd. This use of ssthresh allows a TCP sender
 increasing its sending rate after an application-limited period to
 quickly slow-start to recover most of the previous value of the
 congestion window.

 To be more precise, if ssthresh is less than 3/4 cwnd when the
 congestion window is reduced after an application-limited period,
 then ssthresh is increased to 3/4 cwnd before the reduction of the
 congestion window. The justification for this value of ``3/4 cwnd''
 is that 3/4 cwnd is a conservative estimate of the recent average
 value of the congestion window, and the TCP should safely be able to
 slow-start at least up to this point. For a TCP in steady-state that
 has been reducing its congestion window each time the congestion
 window reached some maximum value `maxwin', the average congestion
 window has been 3/4 maxwin. On average, when the connection becomes
 application-limited, cwnd will be 3/4 maxwin, and in this case cwnd
 itself represents the average value of the congestion window.
 However, if the connection happens to become application-limited when
 cwnd equals maxwin, then the average value of the congestion window
 is given by 3/4 cwnd.

https://datatracker.ietf.org/doc/html/draft-handley-TCP
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581

Handley et al. [Page 3]

draft-handley-TCP TCP Congestion Window Validation December 1999

 An invalid congestion window also results when the congestion window
 is increased (i.e., in TCP's slow-start or congestion avoidance
 phases) during application-limited periods, when the previous value
 of the congestion window might never have been fully utilized. As
 far as we know, all current TCP implementations increase the
 congestion window when an acknowledgement arrives, if allowed by the
 receiver's advertised window and the slow-start or congestion
 avoidance window increase algorithm, without checking to see if the
 previous value of the congestion window has in fact been used. This
 draft proposes that the window increase algorithm not be invoked
 during application-limited periods [MSML99]. In particular, the TCP
 sender should not increase the congestion window when the TCP sender
 has been application-limited (and therefore has not fully used the
 current congestion window). This restriction prevents the congestion
 window from growing arbitrarily large, in the absence of evidence
 that the congestion window can be supported by the network. From
 [MSML99, Section 5.2]: ``This restriction assures that [cwnd] only
 grows as long as TCP actually succeeds in injecting enough data into
 the network to test the path.''

 A somewhat-orthogonal problem associated with maintaining a large
 congestion window after an application-limited period is that the
 sender, with a sudden large amount of data to send after a quiescent
 period, might immediately send a full congestion window of back-to-
 back packets. This problem of sending large bursts of packets back-
 to-back can be effectively handled using rate-based pacing (RBP,
 [VH97]), or using a maximum burst size control [FF96]. We would
 contend that, even with mechanisms for limiting the sending of back-
 to-back packets or pacing packets out over the period of a roundtrip
 time, an old congestion window that has not been fully used for some
 time can not be trusted as an indication of the bandwidth currently
 available for that flow. We would contend that the mechanisms to
 pace out packets allowed by the congestion window are largely
 orthogonal to the algorithms used to determine the appropriate size
 of the congestion window.

3. Description

 When a TCP sender has sufficient data available to fill the available
 network capacity for that flow, cwnd and ssthresh get set to
 appropriate values for the network conditions. When a TCP sender
 stops sending, the flow stops sampling the network conditions, and so
 the value of the congestion window may become inaccurate. We believe
 the correct conservative behavior under these circumstances is to
 decay the congestion window by half for every RTT that the flow
 remains inactive. The value of half is a very conservative figure
 based on how quickly multiplicative decrease would have decayed the
 window in the presence of loss.

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 4]

draft-handley-TCP TCP Congestion Window Validation December 1999

 Another possibility is that the sender may not stop sending, but may
 become application-limited rather than network-limited, and offer
 less data to the network than the congestion window allows to be
 sent. In this case the TCP flow is still sampling network
 conditions, but is not offering sufficient traffic to be sure that
 there is still sufficient capacity in the network for that flow to
 send a full congestion window. Under these circumstances we believe
 the correct conservative behavior is for the sender to keep track of
 the maximum amount of the congestion window used during each RTT, and
 to decay the congestion window each RTT to midway between the current
 cwnd value and the maximum value used.

 Before the congestion window is reduced, ssthresh is set to the
 maximum of its current value and 3/4 cwnd. If the sender then has
 more data to send than the decayed cwnd allows, the TCP will slow-
 start (perform exponential increase) at least half-way back up to the
 old value of cwnd.

 An alternate possibility would be to set ssthresh to the maximum of
 the current value of ssthresh, and the old value of cwnd, allowing
 TCP to slow-start all of the way back up to the old value of cwnd.
 Further experimentation can be used to evaluate these two options for
 setting ssthresh.

 For the separate issue of the increase of the congestion window in
 response to an acknowledgement, we believe the correct behavior is
 for the sender to increase the congestion window only if the window
 was full when the acknowledgment arrived.

 We term this set of modifications to TCP Congestion Window Validation
 (CWV) because they are related to ensuring the congestion window is
 always a valid reflection of the current network state as probed by
 the connection.

3.1. The basic algorithm for reducing the congestion window

 A key issue in the CWV algorithm is to determine how to apply the
 guideline of reducing the congestion window once for every roundtrip
 time that the flow is application-limited. We use TCP's
 retransmission timer (RTO) as a reasonable upper bound on the
 roundtrip time, and reduce the congestion window once per RTO.

 This basic algorithm could be implemented in TCP as follows: After
 TCP sends a packet, it checks to see if that packet filled the
 congestion window. If so, the sender is network-limited, and sets
 the variable T_prev to the current TCP clock time, and a variable
 W_used to zero. T_prev will be used to determine the elapsed time
 since the sender last was network-limited. When the sender is

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 5]

draft-handley-TCP TCP Congestion Window Validation December 1999

 application-limited, W_used holds the maximum congestion window
 actually used since the sender was last network-limited.

 If the transmitted packet did not fill the congestion window and the
 TCP send queue is empty, then the sender is application-limited. The
 sender checks to see if the amount of unacknowledged data is greater
 than W_used; if so, W_used is set to the amount of unacknowledged
 data. In addition TCP checks to see if the elapsed time since T_prev
 is greater than RTO. If so, then the TCP has been application-
 limited rather than network-limited for an entire RTO interval. In
 this case, TCP sets ssthresh to the maximum of 3/4 cwnd and the
 current value of ssthresh, and reduces its congestion window to
 (cwnd+W_used)/2. W_used is then set to zero, T_prev is set to the
 current time, so a further reduction will not take place until
 another RTO period has elapsed.

 After TCP sends a packet, it also sets the variable T_{last} to the
 current time. When TCP sends a new packet it also checks to see if
 more than RTO seconds have elapsed since the previous packet was
 sent. If RTO has elapsed, ssthresh is set to the maximum of 3/4 cwnd
 and the current value of ssthresh, and then the congestion window is
 halved for every RTO that elapsed since the previous packet was sent.
 In addition, T_prev is set to the current time, and W_used is reset
 to zero. This last mechanism could also be implemented by using a
 timer that expires every RTO after the last packet was sent instead
 of a check per packet - efficiency constraints on different operating
 systems may dictate which is more efficient to implement.

3.2. Pseudo-code for reducing the congestion window

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 6]

draft-handley-TCP TCP Congestion Window Validation December 1999

 Initially:
 T_last = tcpnow, T_prev = tcpnow, W_used = 0

 After sending a data segment:
 If tcpnow - T_last >= RTO
 (The sender has been idle.)
 ssthresh = max(ssthresh, 3*cwnd/4)
 For i=1 To (tcpnow - T_last)/RTO
 win = min(cwnd, receiver's declared max window)
 cwnd = max(win/2, MSS)
 T_prev = tcpnow
 W_used = 0

 T_last = tcpnow

 If window is full
 T_prev = tcpnow
 W_used = 0
 Else
 If no more data is available to send
 W_used = max(W_used, amount of unacknowledged data)
 If tcpnow - T_prev >= RTO
 (The sender has been application-limited.)
 ssthresh = max(ssthresh, 3*cwnd/4)
 win = min(cwnd, receiver's declared max window)
 cwnd = (win + W_used)/2
 T_prev = tcpnow
 W_used = 0

4. Simulations

 The CWV proposal has been implemented as an option in the network
 simulator NS [NS]. The simulations in the validation test suite for
 CWV can be run with the command "./test-all-tcp" in the directory
 "tcl/test". The simulations show the use of CWV to reduce the
 congestion window after a period when the TCP connection was
 application-limited, and to limit the increase in the congestion
 window when a transfer is application-limited. As the simulations
 illustrate, the use of ssthresh to maintain connection history is a
 critical part of the Congestion Window Validation algorithm. [HPF99]
 discusses these simulations in more detail.

5. Experiments

 We have implemented the CWV mechanism in the TCP implementation in
 FreeBSD 3.2. [HPF99] discusses these experiments in more detail.

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 7]

draft-handley-TCP TCP Congestion Window Validation December 1999

 The first experiment examines the effects of the Congestion Window
 Validation mechanisms for limiting cwnd increases during application-
 limited periods. The experiment used a real ssh connection through a
 modem link emulated using Dummynet[Dummynet]. The link speed is
 30Kb/s and the link has five packet buffers available. Today most
 modem banks have more buffering available than this, but the more
 buffer-limited situation sometimes occurs with older modems. In the
 first half of the transfer, the user is typing away over the
 connection. About half way through the time, the user lists a
 moderately large file, which causes a large burst of traffic to be
 transmitted.

 For the unmodified TCP, every returning ACK during the first part of
 the transfer results in an increase in cwnd. As a result, the large
 burst of data arriving from the application to the transport layer is
 sent as many back-to-back packets, most of which get lost and
 subsequently retransmitted.

 For the modified TCP with Congestion Window Validation, the
 congestion window is not increased when the window is not full, has
 been decreased during application-limited periods closer to what the
 user actually used. The burst of traffic is now constrained by the
 congestion window, resulting in a better-behaved flow with minimal
 loss. The end result is that the transfer happens approximately 30%
 faster than the transfer without CWV, due to avoiding retransmission
 timeouts.

 The second experiment uses a real ssh connection over a real dialup
 ppp connection, where the modem bank has much more buffering. For
 the unmodified TCP, the initial burst from the large file does not
 cause loss, but does cause the RTT to increase to approximately 5
 seconds, where the connection becomes bounded by the receiver's
 window.

 For the modified TCP with Congestion Window Validation, the flow is
 much better behaved, and produces no large burst of traffic. In this
 case the linear increase for cwnd results in a slow increase in the
 RTT as the buffer slowly fills.

 For the second experiment, both the modified and the unmodified TCP
 finish delivering the data at precisely the same time. This is
 because the link has been fully utilized in both cases due to the
 modem buffer being larger than the receiver window. Clearly a modem
 buffer of this size is undesirable due to its effect on the RTT of
 competing flows, but it is necessary with current TCP implementations
 that produce bursts similar to those shown in the top graph.

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 8]

draft-handley-TCP TCP Congestion Window Validation December 1999

6. Conclusions

 This document has presented several TCP algorithms for Congestion
 Window Validation, to be employed after an idle period or a period in
 which the sender was application-limited, and before an increase of
 the congestion window. The goal of these algorithms is for TCP's
 congestion window to reflect recent knowledge of the TCP connection
 about the state of the network path, while at the same time keeping
 some memory (i.e., in ssthresh) about the earlier state of the path.
 We believe that these modifications will be of benefit to both the
 network and to the TCP flows themselves, by preventing unnecessary
 packet drops due to the TCP sender's failure to update its
 information (or lack of information) about current network
 conditions. Future work will document and investigate the benefit
 provided by these algorithms, using both simulations and experiments.
 Additional future work will describe a more complex version of the
 CWV algorithm for TCP implementations where the sender does not have
 an accurate estimate of the TCP roundtrip time.

https://datatracker.ietf.org/doc/html/draft-handley-TCP

Handley et al. [Page 9]

draft-handley-TCP TCP Congestion Window Validation December 1999

8. References

 [FF96] Fall, K., and Floyd, S., Simulation-based Comparisons of
 Tahoe, Reno, and SACK TCP, Computer Communication Review, V. 26 N. 3,
 July 1996, pp. 5-21. URL `http://www.aciri.org/floyd/papers.html'.

 [HPF99] Mark Handley, Jitendra Padhye, Sally Floyd, TCP Congestion
 Window Validation, UMass CMPSCI Technical Report 99-77, September
 1999. URL ``ftp://www-net.cs.umass.edu/pub/Handley99-tcpq-
 tr-99-77.ps.gz''.

 [HTH98] Amy Hughes, Joe Touch, John Heidemann, Issues in TCP Slow-
 Start Restart After Idle Work-in-progress. April 1998. URL
 ``ftp://ftp.isi.edu/internet-drafts/draft-ietf-tcpimpl-
 restart-00.txt".

 [J88] Jacobson, V., Congestion Avoidance and Control, Originally from
 Proceedings of SIGCOMM '88 (Palo Alto, CA, Aug. 1988), and revised in
 1992. URL ``http://www-nrg.ee.lbl.gov/nrg-papers.html".

 [JKBFL96] Raj Jain, Shiv Kalyanaraman, Rohit Goyal, Sonia Fahmy, and
 Fang Lu, Comments on "Use-it or Lose-it", ATM Forum Document Number:
 ATM Forum/96-0178, URL `http://www.netlab.ohio-
 state.edu/~jain/atmf/af_rl5b2.htm'.

 [JKGFL95] R. Jain, S. Kalyanaraman, R. Goyal, S. Fahmy, and F. Lu, A
 Fix for Source End System Rule 5, AF-TM 95-1660, December 1995, URL
 `http://www.netlab.ohio-state.edu/~jain/atmf/af_rl52.htm'.

 [MSML99] Matt Mathis, Jeff Semke, Jamshid Mahdavi, and Kevin Lahey,
 The Rate-Halving Algorithm for TCP Congestion Control, June 1999.
 URL ``http://www.psc.edu/networking/ftp/papers/draft-
 ratehalving.txt''.

 [NS] NS, the UCB/LBNL/VINT Network Simulator. URL ``http://www-
 mash.cs.berkeley.edu/ns/''.

 [RFC2581] M. Allman, V. Paxson, and W. Stevens, TCP Congestion
 Control, RFC 2581, Proposed Standard, April 1999. URL
 ``ftp://ftp.isi.edu/in-notes/rfc2581.txt''.

 [VH97] Vikram Visweswaraiah and John Heidemann. Improving Restart of
 Idle TCP Connections, Technical Report 97-661, University of Southern
 California, November, 1997.

 [Dummynet] Luigi Rizzo, "Dummynet and Forward Error Correction",
 Freenix 98, June 1998, New Orleans. URL
 ``http://info.iet.unipi.it/~luigi/ip_dummynet/''.

https://datatracker.ietf.org/doc/html/draft-handley-TCP
https://datatracker.ietf.org/doc/html/rfc2581

Handley et al. [Page 10]

draft-handley-TCP TCP Congestion Window Validation December 1999

AUTHORS' ADDRESSES

 Mark Handley
 AT&T Center for Internet Research at ICSI (ACIRI)
 Phone: +1 510 642 4274 x 146
 EMail: mjh@aciri.org
 URL: http://www.aciri.org/mjh/

 Jitendra Padhye
 University of Massachusetts at Amherst
 Phone: (413) 545 2447
 EMail: jitu@cs.umass.edu
 URL: http://www-net.cs.umass.edu/~jitu/

 Sally Floyd
 AT&T Center for Internet Research at ICSI (ACIRI)
 Phone: +1 510-642-4274 x189
 EMail: floyd@aciri.org
 URL: http://www.aciri.org/floyd/

 This draft was created in December 1999.
 It expires June 2000.

--

https://datatracker.ietf.org/doc/html/draft-handley-TCP
http://www.aciri.org/mjh/
http://www-net.cs.umass.edu/~jitu/
http://www.aciri.org/floyd/

Handley et al. [Page 11]

