
Internet Engineering Task Force A. Wright, Ed.
Internet-Draft
Intended status: Informational H. Andrews, Ed.
Expires: March 19, 2020
 B. Hutton, Ed.
 Wellcome Sanger Institute
 G. Dennis
 September 16, 2019

JSON Schema: A Media Type for Describing JSON Documents
draft-handrews-json-schema-02

Abstract

 JSON Schema defines the media type "application/schema+json", a JSON-
 based format for describing the structure of JSON data. JSON Schema
 asserts what a JSON document must look like, ways to extract
 information from it, and how to interact with it. The "application/
 schema-instance+json" media type provides additional feature-rich
 integration with "application/schema+json" beyond what can be offered
 for "application/json" documents.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <https://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Wright, et al. Expires March 19, 2020 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
https://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Schema September 2019

 This Internet-Draft will expire on March 19, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 4
2. Conventions and Terminology 4
3. Overview . 4
4. Definitions . 5
4.1. JSON Document . 5
4.2. Instance . 6
4.2.1. Instance Data Model 6
4.2.2. Instance Media Types 7
4.2.3. Instance Equality 7

4.3. JSON Schema Documents 8
4.3.1. JSON Schema Objects and Keywords 8
4.3.2. Boolean JSON Schemas 9
4.3.3. Schema Vocabularies 9
4.3.4. Meta-Schemas . 9
4.3.5. Root Schema and Subschemas and Resources 10

5. Fragment Identifiers . 10
6. General Considerations 11
6.1. Range of JSON Values 11
6.2. Programming Language Independence 11
6.3. Mathematical Integers 11
6.4. Regular Expressions 12
6.5. Extending JSON Schema 12

7. Keyword Behaviors . 13
7.1. Lexical Scope and Dynamic Scope 13
7.2. Keyword Interactions 14
7.3. Default Behaviors . 15
7.4. Identifiers . 15
7.5. Applicators . 15
7.5.1. Referenced and Referencing Schemas 16

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Wright, et al. Expires March 19, 2020 [Page 2]

Internet-Draft JSON Schema September 2019

7.6. Assertions . 16
7.6.1. Assertions and Instance Primitive Types 17

7.7. Annotations . 17
7.7.1. Collecting Annotations 18

7.8. Reserved Locations 22
8. The JSON Schema Core Vocabulary 22
8.1. Meta-Schemas and Vocabularies 23
8.1.1. The "$schema" Keyword 24
8.1.2. The "$vocabulary" Keyword 25
8.1.3. Updates to Meta-Schema and Vocabulary URIs 26
8.1.4. Detecting a Meta-Schema 26

8.2. Base URI, Anchors, and Dereferencing 27
8.2.1. Initial Base URI 27
8.2.2. The "$id" Keyword 28

 8.2.3. Defining location-independent identifiers with
 "$anchor" . 30

8.2.4. Schema References 31
8.2.5. Schema Re-Use With "$defs" 36

8.3. Comments With "$comment" 36
9. A Vocabulary for Applying Subschemas 37
9.1. Keyword Independence 37
9.2. Keywords for Applying Subschemas in Place 38

 9.2.1. Keywords for Applying Subschemas With Boolean Logic . 38
9.2.2. Keywords for Applying Subschemas Conditionally . . . 39

9.3. Keywords for Applying Subschemas to Child Instances . . . 41
9.3.1. Keywords for Applying Subschemas to Arrays 41
9.3.2. Keywords for Applying Subschemas to Objects 43

10. Output Formatting . 45
10.1. Format . 46
10.2. Output Formats . 46
10.3. Minimum Information 46
10.3.1. Keyword Relative Location 47
10.3.2. Keyword Absolute Location 47
10.3.3. Instance Location 47
10.3.4. Error or Annotation 47
10.3.5. Nested Results 48

10.4. Output Structure . 48
10.4.1. Flag . 50
10.4.2. Basic . 50
10.4.3. Detailed . 51
10.4.4. Verbose . 53
10.4.5. Output validation schemas 55

11. Usage for Hypermedia . 55
11.1. Linking to a Schema 55
11.2. Identifying a Schema via a Media Type Parameter 55
11.3. Usage Over HTTP . 57

12. Security Considerations 57
13. IANA Considerations . 58

Wright, et al. Expires March 19, 2020 [Page 3]

Internet-Draft JSON Schema September 2019

13.1. application/schema+json 58
13.2. application/schema-instance+json 59

14. References . 59
14.1. Normative References 59
14.2. Informative References 60

Appendix A. Schema identification examples 62
Appendix B. Manipulating schema documents and references 64
B.1. Bundling schema resources into a single document 64
B.2. Reference removal is not always safe 64

Appendix C. Example of recursive schema extension 65
Appendix D. Working with vocabularies 66
D.1. Best practices for vocabulary and meta-schema authors . . 66
D.2. Example meta-schema with vocabulary declarations 67

Appendix E. References and generative use cases 70
Appendix F. Acknowledgments 71
Appendix G. ChangeLog . 71

 Authors' Addresses . 74

1. Introduction

 JSON Schema is a JSON media type for defining the structure of JSON
 data. JSON Schema is intended to define validation, documentation,
 hyperlink navigation, and interaction control of JSON data.

 This specification defines JSON Schema core terminology and
 mechanisms, including pointing to another JSON Schema by reference,
 dereferencing a JSON Schema reference, specifying the vocabulary
 being used, and defining the expected output.

 Other specifications define the vocabularies that perform assertions
 about validation, linking, annotation, navigation, and interaction.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The terms "JSON", "JSON text", "JSON value", "member", "element",
 "object", "array", "number", "string", "boolean", "true", "false",
 and "null" in this document are to be interpreted as defined in RFC

8259 [RFC8259].

3. Overview

 This document proposes a new media type "application/schema+json" to
 identify a JSON Schema for describing JSON data. It also proposes a
 further optional media type, "application/schema-instance+json", to

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 4]

Internet-Draft JSON Schema September 2019

 provide additional integration features. JSON Schemas are themselves
 JSON documents. This, and related specifications, define keywords
 allowing authors to describe JSON data in several ways.

 JSON Schema uses keywords to assert constraints on JSON instances or
 annotate those instances with additional information. Additional
 keywords are used to apply assertions and annotations to more complex
 JSON data structures, or based on some sort of condition.

 To facilitate re-use, keywords can be organized into vocabularies. A
 vocabulary consists of a list of keywords, together with their syntax
 and semantics.

 JSON Schema can be extended either by defining additional
 vocabularies, or less formally by defining additional keywords
 outside of any vocabulary. Unrecognized individual keywords are
 ignored, while the behavior with respect to an unrecognized
 vocabulary can be controlled when declaring which vocabularies are in
 use.

 This document defines a core vocabulary that MUST be supported by any
 implementation, and cannot be disabled. Its keywords are each
 prefixed with a "$" character to emphasize their required nature.
 This vocabulary is essential to the functioning of the "application/
 schema+json" media type, and is used to bootstrap the loading of
 other vocabularies.

 Additionally, this document defines a RECOMMENDED vocabulary of
 keywords for applying subschemas conditionally, and for applying
 subschemas to the contents of objects and arrays. Either this
 vocabulary or one very much like it is required to write schemas for
 non-trivial JSON instances, whether those schemas are intended for
 assertion validation, annotation, or both. While not part of the
 required core vocabulary, for maximum interoperability this
 additional vocabulary is included in this document and its use is
 strongly encouraged.

 Further vocabularies for purposes such as structural validation or
 hypermedia annotation are defined in other documents.

4. Definitions

4.1. JSON Document

 A JSON document is an information resource (series of octets)
 described by the application/json media type.

Wright, et al. Expires March 19, 2020 [Page 5]

Internet-Draft JSON Schema September 2019

 In JSON Schema, the terms "JSON document", "JSON text", and "JSON
 value" are interchangeable because of the data model it defines.

 JSON Schema is only defined over JSON documents. However, any
 document or memory structure that can be parsed into or processed
 according to the JSON Schema data model can be interpreted against a
 JSON Schema, including media types like CBOR [RFC7049].

4.2. Instance

 A JSON document to which a schema is applied is known as an
 "instance".

4.2.1. Instance Data Model

 JSON Schema interprets documents according to a data model. A JSON
 value interpreted according to this data model is called an
 "instance".

 An instance has one of six primitive types, and a range of possible
 values depending on the type:

 null: A JSON "null" production

 boolean: A "true" or "false" value, from the JSON "true" or "false"
 productions

 object: An unordered set of properties mapping a string to an
 instance, from the JSON "object" production

 array: An ordered list of instances, from the JSON "array"
 production

 number: An arbitrary-precision, base-10 decimal number value, from
 the JSON "number" production

 string: A string of Unicode code points, from the JSON "string"
 production

 Whitespace and formatting concerns, including different lexical
 representations of numbers that are equal within the data model, are
 thus outside the scope of JSON Schema. JSON Schema vocabularies
 (Section 8.1) that wish to work with such differences in lexical
 representations SHOULD define keywords to precisely interpret
 formatted strings within the data model rather than relying on having
 the original JSON representation Unicode characters available.

https://datatracker.ietf.org/doc/html/rfc7049

Wright, et al. Expires March 19, 2020 [Page 6]

Internet-Draft JSON Schema September 2019

 Since an object cannot have two properties with the same key,
 behavior for a JSON document that tries to define two properties (the
 "member" production) with the same key (the "string" production) in a
 single object is undefined.

 Note that JSON Schema vocabularies are free to define their own
 extended type system. This should not be confused with the core data
 model types defined here. As an example, "integer" is a reasonable
 type for a vocabulary to define as a value for a keyword, but the
 data model makes no distinction between integers and other numbers.

4.2.2. Instance Media Types

 JSON Schema is designed to fully work with "application/json"
 documents, as well as media types using the "+json" structured syntax
 suffix.

 Some functionality that is useful for working with schemas is defined
 by each media type, namely media type parameters and URI fragment
 identifier syntax and semantics. These features are useful in
 content negotiation and in calculating URIs for specific locations
 within an instance, respectively.

 This specification defines the "application/schema-instance+json"
 media type in order to allow instance authors to take full advantage
 of parameters and fragment identifiers for these purposes.

4.2.3. Instance Equality

 Two JSON instances are said to be equal if and only if they are of
 the same type and have the same value according to the data model.
 Specifically, this means:

 both are null; or

 both are true; or

 both are false; or

 both are strings, and are the same codepoint-for-codepoint; or

 both are numbers, and have the same mathematical value; or

 both are arrays, and have an equal value item-for-item; or

 both are objects, and each property in one has exactly one
 property with a key equal to the other's, and that other property
 has an equal value.

Wright, et al. Expires March 19, 2020 [Page 7]

Internet-Draft JSON Schema September 2019

 Implied in this definition is that arrays must be the same length,
 objects must have the same number of members, properties in objects
 are unordered, there is no way to define multiple properties with the
 same key, and mere formatting differences (indentation, placement of
 commas, trailing zeros) are insignificant.

4.3. JSON Schema Documents

 A JSON Schema document, or simply a schema, is a JSON document used
 to describe an instance. A schema can itself be interpreted as an
 instance, but SHOULD always be given the media type "application/
 schema+json" rather than "application/schema-instance+json". The
 "application/schema+json" media type is defined to offer a superset
 of the media type parameter and fragment identifier syntax and
 semantics provided by "application/schema-instance+json".

 A JSON Schema MUST be an object or a boolean.

4.3.1. JSON Schema Objects and Keywords

 Object properties that are applied to the instance are called
 keywords, or schema keywords. Broadly speaking, keywords fall into
 one of four categories:

 identifiers: control schema identification through setting the
 schema's canonical URI and/or changing how the base URI is
 determined

 assertions: produce a boolean result when applied to an instance

 annotations: attach information to an instance for application use

 applicators: apply one or more subschemas to a particular location
 in the instance, and combine or modify their results

 reserved locations: do not directly affect results, but reserve a
 place for a specific purpose to ensure interoperability

 Keywords may fall into multiple categories, although applicators
 SHOULD only produce assertion results based on their subschemas'
 results. They should not define additional constraints independent
 of their subschemas.

 Extension keywords, meaning those defined outside of this document
 and its companions, are free to define other behaviors as well.

 A JSON Schema MAY contain properties which are not schema keywords.
 Unknown keywords SHOULD be ignored.

Wright, et al. Expires March 19, 2020 [Page 8]

Internet-Draft JSON Schema September 2019

 An empty schema is a JSON Schema with no properties, or only unknown
 properties.

4.3.2. Boolean JSON Schemas

 The boolean schema values "true" and "false" are trivial schemas that
 always produce themselves as assertions results, regardless of the
 instance value. They never produce annotation results.

 These boolean schemas exist to clarify schema author intent and
 facilitate schema processing optimizations. They behave identically
 to the following schema objects (where "not" is part of the subschema
 application vocabulary defined in this document).

 true: Always passes validation, as if the empty schema {}

 false: Always fails validation, as if the schema { "not": {} }

 While the empty schema object is unambiguous, there are many possible
 equivalents to the "false" schema. Using the boolean values ensures
 that the intent is clear to both human readers and implementations.

4.3.3. Schema Vocabularies

 A schema vocabulary, or simply a vocabulary, is a set of keywords,
 their syntax, and their semantics. A vocabulary is generally
 organized around a particular purpose. Different uses of JSON
 Schema, such as validation, hypermedia, or user interface generation,
 will involve different sets of vocabularies.

 Vocabularies are the primary unit of re-use in JSON Schema, as schema
 authors can indicate what vocabularies are required or optional in
 order to process the schema. Since vocabularies are identified by
 URIs in the meta-schema, generic implementations can load extensions
 to support previously unknown vocabularies. While keywords can be
 supported outside of any vocabulary, there is no analogous mechanism
 to indicate individual keyword usage.

4.3.4. Meta-Schemas

 A schema that itself describes a schema is called a meta-schema.
 Meta-schemas are used to validate JSON Schemas and specify which
 vocabularies they are using.

 Typically, a meta-schema will specify a set of vocabularies, and
 validate schemas that conform to the syntax of those vocabularies.
 However, meta-schemas and vocabularies are separate in order to allow
 meta-schemas to validate schema conformance more strictly or more

Wright, et al. Expires March 19, 2020 [Page 9]

Internet-Draft JSON Schema September 2019

 loosely than the vocabularies' specifications call for. Meta-schemas
 may also describe and validate additional keywords that are not part
 of a formal vocabulary.

4.3.5. Root Schema and Subschemas and Resources

 A JSON Schema resource is a schema which is canonically [RFC6596]
 identified by an absolute URI [RFC3986].

 The root schema is the schema that comprises the entire JSON document
 in question. The root schema is always a schema resource, where the
 URI is determined as described in section 8.2.1.

 Some keywords take schemas themselves, allowing JSON Schemas to be
 nested:

 {
 "title": "root",
 "items": {
 "title": "array item"
 }
 }

 In this example document, the schema titled "array item" is a
 subschema, and the schema titled "root" is the root schema.

 As with the root schema, a subschema is either an object or a
 boolean.

 As discussed in section 8.2.2, a JSON Schema document can contain
 multiple JSON Schema resources. When used without qualification, the
 term "root schema" refers to the document's root schema. In some
 cases, resource root schemas are discussed. A resource's root schema
 is its top-level schema object, which would also be a document root
 schema if the resource were to be extracted to a standalone JSON
 Schema document.

5. Fragment Identifiers

 In accordance with section 3.1 of [RFC6839], the syntax and semantics
 of fragment identifiers specified for any +json media type SHOULD be
 as specified for "application/json". (At publication of this
 document, there is no fragment identification syntax defined for
 "application/json".)

https://datatracker.ietf.org/doc/html/rfc6596
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6839#section-3.1

Wright, et al. Expires March 19, 2020 [Page 10]

Internet-Draft JSON Schema September 2019

 Additionally, the "application/schema+json" media type supports two
 fragment identifier structures: plain names and JSON Pointers. The
 "application/schema-instance+json" media type supports one fragment
 identifier structure: JSON Pointers.

 The use of JSON Pointers as URI fragment identifiers is described in
RFC 6901 [RFC6901]. For "application/schema+json", which supports

 two fragment identifier syntaxes, fragment identifiers matching the
 JSON Pointer syntax, including the empty string, MUST be interpreted
 as JSON Pointer fragment identifiers.

 Per the W3C's best practices for fragment identifiers
 [W3C.WD-fragid-best-practices-20121025], plain name fragment
 identifiers in "application/schema+json" are reserved for referencing
 locally named schemas. All fragment identifiers that do not match
 the JSON Pointer syntax MUST be interpreted as plain name fragment
 identifiers.

 Defining and referencing a plain name fragment identifier within an
 "application/schema+json" document are specified in the "$anchor"
 keyword (Section 8.2.3) section.

6. General Considerations

6.1. Range of JSON Values

 An instance may be any valid JSON value as defined by JSON [RFC8259].
 JSON Schema imposes no restrictions on type: JSON Schema can describe
 any JSON value, including, for example, null.

6.2. Programming Language Independence

 JSON Schema is programming language agnostic, and supports the full
 range of values described in the data model. Be aware, however, that
 some languages and JSON parsers may not be able to represent in
 memory the full range of values describable by JSON.

6.3. Mathematical Integers

 Some programming languages and parsers use different internal
 representations for floating point numbers than they do for integers.

 For consistency, integer JSON numbers SHOULD NOT be encoded with a
 fractional part.

https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 11]

Internet-Draft JSON Schema September 2019

6.4. Regular Expressions

 Keywords MAY use regular expressions to express constraints, or
 constrain the instance value to be a regular expression. These
 regular expressions SHOULD be valid according to the regular
 expression dialect described in ECMA 262, section 15.10.1 [ecma262].

 Furthermore, given the high disparity in regular expression
 constructs support, schema authors SHOULD limit themselves to the
 following regular expression tokens:

 individual Unicode characters, as defined by the JSON
 specification [RFC8259];

 simple character classes ([abc]), range character classes ([a-z]);

 complemented character classes ([^abc], [^a-z]);

 simple quantifiers: "+" (one or more), "*" (zero or more), "?"
 (zero or one), and their lazy versions ("+?", "*?", "??");

 range quantifiers: "{x}" (exactly x occurrences), "{x,y}" (at
 least x, at most y, occurrences), {x,} (x occurrences or more),
 and their lazy versions;

 the beginning-of-input ("^") and end-of-input ("$") anchors;

 simple grouping ("(...)") and alternation ("|").

 Finally, implementations MUST NOT take regular expressions to be
 anchored, neither at the beginning nor at the end. This means, for
 instance, the pattern "es" matches "expression".

6.5. Extending JSON Schema

 Additional schema keywords and schema vocabularies MAY be defined by
 any entity. Save for explicit agreement, schema authors SHALL NOT
 expect these additional keywords and vocabularies to be supported by
 implementations that do not explicitly document such support.
 Implementations SHOULD ignore keywords they do not support.

 Implementations MAY provide the ability to register or load handlers
 for vocabularies that they do not support directly. The exact
 mechanism for registering and implementing such handlers is
 implementation-dependent.

https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 12]

Internet-Draft JSON Schema September 2019

7. Keyword Behaviors

 JSON Schema keywords fall into several general behavior categories.
 Assertions validate that an instance satisfies constraints, producing
 a boolean result. Annotations attach information that applications
 may use in any way they see fit. Applicators apply subschemas to
 parts of the instance and combine their results.

 Extension keywords SHOULD stay within these categories, keeping in
 mind that annotations in particular are extremely flexible. Complex
 behavior is usually better delegated to applications on the basis of
 annotation data than implemented directly as schema keywords.
 However, extension keywords MAY define other behaviors for
 specialized purposes.

 Evaluating an instance against a schema involves processing all of
 the keywords in the schema against the appropriate locations within
 the instance. Typically, applicator keywords are processed until a
 schema object with no applicators (and therefore no subschemas) is
 reached. The appropriate location in the instance is evaluated
 against the assertion and annotation keywords in the schema object,
 and their results are gathered into the parent schema according to
 the rules of the applicator.

 Evaluation of a parent schema object can complete once all of its
 subschemas have been evaluated, although in some circumstances
 evaluation may be short-circuited due to assertion results. When
 annotations are being collected, some assertion result short-
 circuiting is not possible due to the need to examine all subschemas
 for annotation collection, including those that cannot further change
 the assertion result.

7.1. Lexical Scope and Dynamic Scope

 While most JSON Schema keywords can be evaluated on their own, or at
 most need to take into account the values or results of adjacent
 keywords in the same schema object, a few have more complex behavior.

 The lexical scope of a keyword is determined by the nested JSON data
 structure of objects and arrays. The largest such scope is an entire
 schema document. The smallest scope is a single schema object with
 no subschemas.

 Keywords MAY be defined with a partial value, such as a URI-
 reference, which must be resolved against another value, such as
 another URI-reference or a full URI, which is found through the
 lexical structure of the JSON document. The "$id" core keyword and
 the "base" JSON Hyper-Schema keyword are examples of this sort of

Wright, et al. Expires March 19, 2020 [Page 13]

Internet-Draft JSON Schema September 2019

 behavior. Additionally, "$ref" and "$recursiveRef" from this
 specification resolve their values in this way, although they do not
 change how further values are resolved.

 Note that some keywords, such as "$schema", apply to the lexical
 scope of the entire schema document, and therefore MUST only appear
 in a schema resource's root schema.

 Other keywords may take into account the dynamic scope that exists
 during the evaluation of a schema, typically together with an
 instance document. The outermost dynamic scope is the root schema of
 the schema document in which processing begins. The path from this
 root schema to any particular keyword (that includes any "$ref" and
 "$recursiveRef" keywords that may have been resolved) is considered
 the keyword's "validation path." [[CREF1: Or should this be the
 schema object at which processing begins, even if it is not a root?
 This has some implications for the case where "$recursiveAnchor" is
 only allowed in the root schema but processing begins in a subschema.
]]

 Lexical and dynamic scopes align until a reference keyword is
 encountered. While following the reference keyword moves processing
 from one lexical scope into a different one, from the perspective of
 dynamic scope, following reference is no different from descending
 into a subschema present as a value. A keyword on the far side of
 that reference that resolves information through the dynamic scope
 will consider the originating side of the reference to be their
 dynamic parent, rather than examining the local lexically enclosing
 parent.

 The concept of dynamic scope is primarily used with "$recursiveRef"
 and "$recursiveAnchor", and should be considered an advanced feature
 and used with caution when defining additional keywords. It also
 appears when reporting errors and collected annotations, as it may be
 possible to revisit the same lexical scope repeatedly with different
 dynamic scopes. In such cases, it is important to inform the user of
 the dynamic path that produced the error or annotation.

7.2. Keyword Interactions

 Keyword behavior MAY be defined in terms of the annotation results of
 subschemas (Section 4.3.5) and/or adjacent keywords. Such keywords
 MUST NOT result in a circular dependency. Keywords MAY modify their
 behavior based on the presence or absence of another keyword in the
 same schema object (Section 4.3).

Wright, et al. Expires March 19, 2020 [Page 14]

Internet-Draft JSON Schema September 2019

7.3. Default Behaviors

 A missing keyword MUST NOT produce a false assertion result, MUST NOT
 produce annotation results, and MUST NOT cause any other schema to be
 evaluated as part of its own behavioral definition. However, given
 that missing keywords do not contribute annotations, the lack of
 annotation results may indirectly change the behavior of other
 keywords.

 In some cases, the missing keyword assertion behavior of a keyword is
 identical to that produced by a certain value, and keyword
 definitions SHOULD note such values where known. However, even if
 the value which produces the default behavior would produce
 annotation results if present, the default behavior still MUST NOT
 result in annotations.

 Because annotation collection can add significant cost in terms of
 both computation and memory, implementations MAY opt out of this
 feature. Keywords known to an implementation to have assertion or
 applicator behavior that depend on annotation results MUST then be
 treated as errors, unless an alternate implementation producing the
 same behavior is available. Keywords of this sort SHOULD describe
 reasonable alternate approaches when appropriate. This approach is
 demonstrated by the "additionalItems" and "additionalProperties"
 keywords in this document.

7.4. Identifiers

 Identifiers set the canonical URI of a schema, or affect how such
 URIs are resolved in references (Section 8.2.4), or both. The Core
 vocabulary defined in this document defines several identifying
 keywords, most notably "$id".

 Canonical schema URIs MUST NOT change while processing an instance,
 but keywords that affect URI-reference resolution MAY have behavior
 that is only fully determined at runtime.

 While custom identifier keywords are possible, vocabulary designers
 should take care not to disrupt the functioning of core keywords.
 For example, the "$recursiveAnchor" keyword in this specification
 limits its URI resolution effects to the matching "$recursiveRef"
 keyword, leaving "$ref" undisturbed.

7.5. Applicators

 Applicators allow for building more complex schemas than can be
 accomplished with a single schema object. Evaluation of an instance
 against a schema document (Section 4.3) begins by applying the root

Wright, et al. Expires March 19, 2020 [Page 15]

Internet-Draft JSON Schema September 2019

 schema (Section 4.3.5) to the complete instance document. From
 there, keywords known as applicators are used to determine which
 additional schemas are applied. Such schemas may be applied in-place
 to the current location, or to a child location.

 The schemas to be applied may be present as subschemas comprising all
 or part of the keyword's value. Alternatively, an applicator may
 refer to a schema elsewhere in the same schema document, or in a
 different one. The mechanism for identifying such referenced schemas
 is defined by the keyword.

 Applicator keywords also define how subschema or referenced schema
 boolean assertion (Section 7.6) results are modified and/or combined
 to produce the boolean result of the applicator. Applicators may
 apply any boolean logic operation to the assertion results of
 subschemas, but MUST NOT introduce new assertion conditions of their
 own.

 Annotation (Section 7.7) results are combined according to the rules
 specified by each annotation keyword.

7.5.1. Referenced and Referencing Schemas

 As noted in Section 7.5, an applicator keyword may refer to a schema
 to be applied, rather than including it as a subschema in the
 applicator's value. In such situations, the schema being applied is
 known as the referenced schema, while the schema containing the
 applicator keyword is the referencing schema.

 While root schemas and subschemas are static concepts based on a
 schema's position within a schema document, referenced and
 referencing schemas are dynamic. Different pairs of schemas may find
 themselves in various referenced and referencing arrangements during
 the evaluation of an instance against a schema.

 For some by-reference applicators, such as "$ref" (Section 8.2.4.1),
 the referenced schema can be determined by static analysis of the
 schema document's lexical scope. Others, such as "$recursiveRef" and
 "$recursiveAnchor", may make use of dynamic scoping, and therefore
 only be resolvable in the process of evaluating the schema with an
 instance.

7.6. Assertions

 JSON Schema can be used to assert constraints on a JSON document,
 which either passes or fails the assertions. This approach can be
 used to validate conformance with the constraints, or document what
 is needed to satisfy them.

Wright, et al. Expires March 19, 2020 [Page 16]

Internet-Draft JSON Schema September 2019

 JSON Schema implementations produce a single boolean result when
 evaluating an instance against schema assertions.

 An instance can only fail an assertion that is present in the schema.

7.6.1. Assertions and Instance Primitive Types

 Most assertions only constrain values within a certain primitive
 type. When the type of the instance is not of the type targeted by
 the keyword, the instance is considered to conform to the assertion.

 For example, the "maxLength" keyword from the companion validation
 vocabulary [json-schema-validation]: will only restrict certain
 strings (that are too long) from being valid. If the instance is a
 number, boolean, null, array, or object, then it is valid against
 this assertion.

 This behavior allows keywords to be used more easily with instances
 that can be of multiple primitive types. The companion validation
 vocabulary also includes a "type" keyword which can independently
 restrict the instance to one or more primitive types. This allows
 for a concise expression of use cases such as a function that might
 return either a string of a certain length or a null value:

 {
 "type": ["string", "null"],
 "maxLength": 255
 }

 If "maxLength" also restricted the instance type to be a string, then
 this would be substantially more cumbersome to express because the
 example as written would not actually allow null values. Each
 keyword is evaluated separately unless explicitly specified
 otherwise, so if "maxLength" restricted the instance to strings, then
 including "null" in "type" would not have any useful effect.

7.7. Annotations

 JSON Schema can annotate an instance with information, whenever the
 instance validates against the schema object containing the
 annotation, and all of its parent schema objects. The information
 can be a simple value, or can be calculated based on the instance
 contents.

 Annotations are attached to specific locations in an instance. Since
 many subschemas can be applied to any single location, annotation

Wright, et al. Expires March 19, 2020 [Page 17]

Internet-Draft JSON Schema September 2019

 keywords need to specify any unusual handling of multiple applicable
 occurrences of the keyword with different values.

 Unlike assertion results, annotation data can take a wide variety of
 forms, which are provided to applications to use as they see fit.
 JSON Schema implementations are not expected to make use of the
 collected information on behalf of applications.

 Unless otherwise specified, the value of an annotation keyword's
 annotation is the keyword's value. However, other behaviors are
 possible. For example, JSON Hyper-Schema's [json-hyper-schema]
 "links" keyword is a complex annotation that produces a value based
 in part on the instance data.

 While "short-circuit" evaluation is possible for assertions,
 collecting annotations requires examining all schemas that apply to
 an instance location, even if they cannot change the overall
 assertion result. The only exception is that subschemas of a schema
 object that has failed validation MAY be skipped, as annotations are
 not retained for failing schemas.

7.7.1. Collecting Annotations

 Annotations are collected by keywords that explicitly define
 annotation-collecting behavior. Note that boolean schemas cannot
 produce annotations as they do not make use of keywords.

 A collected annotation MUST include the following information:

 The name of the keyword that produces the annotation

 The instance location to which it is attached, as a JSON Pointer

 The schema location path, indicating how reference keywords such
 as "$ref" were followed to reach the absolute schema location.

 The absolute schema location of the attaching keyword, as a URI.
 This MAY be omitted if it is the same as the schema location path
 from above.

 The attached value(s)

 If the same keyword attaches values from multiple schema locations to
 the same instance location, and the annotation defines a process for
 combining such values, then the combined value MUST also be
 associated with the instance location. The output formats
 (Section 10) described in this specification that include annotation
 information meet this requirement.

Wright, et al. Expires March 19, 2020 [Page 18]

Internet-Draft JSON Schema September 2019

7.7.1.1. Distinguishing Among Multiple Values

 Applications MAY make decisions on which of multiple annotation
 values to use based on the schema location that contributed the
 value. This is intended to allow flexible usage. Collecting the
 schema location facilitates such usage.

 For example, consider this schema, which uses annotations and
 assertions from the Validation specification
 [json-schema-validation]:

Wright, et al. Expires March 19, 2020 [Page 19]

Internet-Draft JSON Schema September 2019

 Note that some lines are wrapped for clarity.

 {
 "title": "Feature list",
 "type": "array",
 "items": [
 {
 "title": "Feature A",
 "properties": {
 "enabled": {
 "$ref": "#/$defs/enabledToggle",
 "default": true
 }
 }
 },
 {
 "title": "Feature B",
 "properties": {
 "enabled": {
 "description": "If set to null, Feature B
 inherits the enabled
 value from Feature A",
 "$ref": "#/$defs/enabledToggle"
 }
 }
 }
],
 "$defs": {
 "enabledToggle": {
 "title": "Enabled",
 "description": "Whether the feature is enabled (true),
 disabled (false), or under
 automatic control (null)",
 "type": ["boolean", "null"],
 "default": null
 }
 }
 }

 In this example, both Feature A and Feature B make use of the re-
 usable "enabledToggle" schema. That schema uses the "title",
 "description", and "default" annotations, none of which define
 special behavior for handling multiple values. Therefore the
 application has to decide how to handle the additional "default"
 value for Feature A, and the additional "description" value for
 Feature B.

Wright, et al. Expires March 19, 2020 [Page 20]

Internet-Draft JSON Schema September 2019

 The application programmer and the schema author need to agree on the
 usage. For this example, let's assume that they agree that the most
 specific "default" value will be used, and any additional, more
 generic "default" values will be silently ignored. Let's also assume
 that they agree that all "description" text is to be used, starting
 with the most generic, and ending with the most specific. This
 requires the schema author to write descriptions that work when
 combined in this way.

 The application can use the schema location path to determine which
 values are which. The values in the feature's immediate "enabled"
 property schema are more specific, while the values under the re-
 usable schema that is referenced to with "$ref" are more generic.
 The schema location path will show whether each value was found by
 crossing a "$ref" or not.

 Feature A will therefore use a default value of true, while Feature B
 will use the generic default value of null. Feature A will only have
 the generic description from the "enabledToggle" schema, while
 Feature B will use that description, and also append its locally
 defined description that explains how to interpret a null value.

 Note that there are other reasonable approaches that a different
 application might take. For example, an application may consider the
 presence of two different values for "default" to be an error,
 regardless of their schema locations.

7.7.1.2. Annotations and Assertions

 Schema objects that produce a false assertion result MUST NOT produce
 any annotation results, whether from their own keywords or from
 keywords in subschemas.

 Note that the overall schema results may still include annotations
 collected from other schema locations. Given this schema:

Wright, et al. Expires March 19, 2020 [Page 21]

Internet-Draft JSON Schema September 2019

 {
 "oneOf": [
 {
 "title": "Integer Value",
 "type": "integer"
 },
 {
 "title": "String Value",
 "type": "string"
 }
]
 }

 And the instance ""This is a string"", the title annotation "Integer
 Value" is discarded because the type assertion in that schema object
 fails. The title annotation "String Value" is kept, as the instance
 passes the string type assertions.

7.7.1.3. Annotations and Applicators

 In addition to possibly defining annotation results of their own,
 applicator keywords aggregate the annotations collected in their
 subschema(s) or referenced schema(s). The rules for aggregating
 annotation values are defined by each annotation keyword, and are not
 directly affected by the logic used for combining assertion results.

7.8. Reserved Locations

 A fourth category of keywords simply reserve a location to hold re-
 usable components or data of interest to schema authors that is not
 suitable for re-use. These keywords do not affect validation or
 annotation results. Their purpose in the core vocabulary is to
 ensure that locations are available for certain purposes and will not
 be redefined by extension keywords.

 While these keywords do not directly affect results, as explained in
section 8.2.4.4 unrecognized extension keywords that reserve

 locations for re-usable schemas may have undesirable interactions
 with references in certain circumstances.

8. The JSON Schema Core Vocabulary

 Keywords declared in this section, which all begin with "$", make up
 the JSON Schema Core vocabulary. These keywords are either required
 in order process any schema or meta-schema, including those split
 across multiple documents, or exist to reserve keywords for purposes
 that require guaranteed interoperability.

Wright, et al. Expires March 19, 2020 [Page 22]

Internet-Draft JSON Schema September 2019

 The Core vocabulary MUST be considered mandatory at all times, in
 order to bootstrap the processing of further vocabularies. Meta-
 schemas that use the "$vocabulary" (Section 8.1) keyword to declare
 the vocabularies in use MUST explicitly list the Core vocabulary,
 which MUST have a value of true indicating that it is required.

 The behavior of a false value for this vocabulary (and only this
 vocabulary) is undefined, as is the behavior when "$vocabulary" is
 present but the Core vocabulary is not included. However, it is
 RECOMMENDED that implementations detect these cases and raise an
 error when they occur. It is not meaningful to declare that a meta-
 schema optionally uses Core.

 Meta-schemas that do not use "$vocabulary" MUST be considered to
 require the Core vocabulary as if its URI were present with a value
 of true.

 The current URI for the Core vocabulary is: <https://json-schema.org/
draft/2019-09/vocab/core>.

 The current URI for the corresponding meta-schema is: <https://json-
schema.org/draft/2019-09/meta/core>.

 While the "$" prefix is not formally reserved for the Core
 vocabulary, it is RECOMMENDED that extension keywords (in
 vocabularies or otherwise) begin with a character other than "$" to
 avoid possible future collisions.

8.1. Meta-Schemas and Vocabularies

 Two concepts, meta-schemas and vocabularies, are used to inform an
 implementation how to interpret a schema. Every schema has a meta-
 schema, which can be declared using the "$schema" keyword.

 The meta-schema serves two purposes:

 Declaring the vocabularies in use The "$vocabulary" keyword, when it
 appears in a meta-schema, declares which vocabularies are
 available to be used in schemas that refer to that meta-schema.
 Vocabularies define keyword semantics, as well as their general
 syntax.

 Describing valid schema syntax A schema MUST successfully validate
 against its meta-schema, which constrains the syntax of the
 available keywords. The syntax described is expected to be
 compatible with the vocabularies declared; while it is possible to
 describe an incompatible syntax, such a meta-schema would be
 unlikely to be useful.

https://json-schema.org/draft/2019-09/vocab/core
https://json-schema.org/draft/2019-09/vocab/core
https://json-schema.org/draft/2019-09/meta/core
https://json-schema.org/draft/2019-09/meta/core

Wright, et al. Expires March 19, 2020 [Page 23]

Internet-Draft JSON Schema September 2019

 Meta-schemas are separate from vocabularies to allow for vocabularies
 to be combined in different ways, and for meta-schema authors to
 impose additional constraints such as forbidding certain keywords, or
 performing unusually strict syntactical validation, as might be done
 during a development and testing cycle. Each vocabulary typically
 identifies a meta-schema consisting only of the vocabulary's
 keywords.

 Meta-schema authoring is an advanced usage of JSON Schema, so the
 design of meta-schema features emphasizes flexibility over
 simplicity.

8.1.1. The "$schema" Keyword

 The "$schema" keyword is both used as a JSON Schema feature set
 identifier and as the identifier of a resource which is itself a JSON
 Schema, which describes the set of valid schemas written for this
 particular feature set.

 The value of this keyword MUST be a URI [RFC3986] (containing a
 scheme) and this URI MUST be normalized. The current schema MUST be
 valid against the meta-schema identified by this URI.

 If this URI identifies a retrievable resource, that resource SHOULD
 be of media type "application/schema+json".

 The "$schema" keyword SHOULD be used in a resource root schema. It
 MUST NOT appear in resource subschemas. If absent from the root
 schema, the resulting behavior is implementation-defined.

 If multiple schema resources are present in a single document, then
 all schema resources SHOULD Have the same value for "$schema". The
 result of differing values for "$schema" within the same schema
 document is implementation-defined. [[CREF2: Using multiple
 "$schema" keywords in the same document would imply that the feature
 set and therefore behavior can change within a document. This would
 necessitate resolving a number of implementation concerns that have
 not yet been clearly defined. So, while the pattern of using
 "$schema" only in root schemas is likely to remain the best practice
 for schema authoring, implementation behavior is subject to be
 revised or liberalized in future drafts.]] [[CREF3: The exception
 made for embedded schema resources is to allow bundling multiple
 schema resources into a single schema document without needing to
 change their contents, as described later in this specification.]]

 Values for this property are defined elsewhere in this and other
 documents, and by other parties.

https://datatracker.ietf.org/doc/html/rfc3986

Wright, et al. Expires March 19, 2020 [Page 24]

Internet-Draft JSON Schema September 2019

8.1.2. The "$vocabulary" Keyword

 The "$vocabulary" keyword is used in meta-schemas to identify the
 vocabularies available for use in schemas described by that meta-
 schema. It is also used to indicate whether each vocabulary is
 required or optional, in the sense that an implementation MUST
 understand the required vocabularies in order to successfully process
 the schema.

 The value of this keyword MUST be an object. The property names in
 the object MUST be URIs (containing a scheme) and this URI MUST be
 normalized. Each URI that appears as a property name identifies a
 specific set of keywords and their semantics.

 The URI MAY be a URL, but the nature of the retrievable resource is
 currently undefined, and reserved for future use. Vocabulary authors
 MAY use the URL of the vocabulary specification, in a human-readable
 media type such as text/html or text/plain, as the vocabulary URI.
 [[CREF4: Vocabulary documents may be added in forthcoming drafts.
 For now, identifying the keyword set is deemed sufficient as that,
 along with meta-schema validation, is how the current "vocabularies"
 work today. Any future vocabulary document format will be specified
 as a JSON document, so using text/html or other non-JSON formats in
 the meantime will not produce any future ambiguity.]]

 The values of the object properties MUST be booleans. If the value
 is true, then implementations that do not recognize the vocabulary
 MUST refuse to process any schemas that declare this meta-schema with
 "$schema". If the value is false, implementations that do not
 recognize the vocabulary SHOULD proceed with processing such schemas.

 Per 6.5, unrecognized keywords SHOULD be ignored. This remains the
 case for keywords defined by unrecognized vocabularies. It is not
 currently possible to distinguish between unrecognized keywords that
 are defined in vocabularies from those that are not part of any
 vocabulary.

 The "$vocabulary" keyword SHOULD be used in the root schema of any
 schema document intended for use as a meta-schema. It MUST NOT
 appear in subschemas.

 The "$vocabulary" keyword MUST be ignored in schema documents that
 are not being processed as a meta-schema. This allows validating a
 meta-schema M against its own meta-schema M' without requiring the
 validator to understand the vocabularies declared by M.

Wright, et al. Expires March 19, 2020 [Page 25]

Internet-Draft JSON Schema September 2019

8.1.2.1. Default vocabularies

 If "$vocabulary" is absent, an implementation MAY determine behavior
 based on the meta-schema if it is recognized from the URI value of
 the referring schema's "$schema" keyword. This is how behavior (such
 as Hyper-Schema usage) has been recognized prior to the existence of
 vocabularies.

 If the meta-schema, as referenced by the schema, is not recognized,
 or is missing, then the behavior is implementation-defined. If the
 implementation proceeds with processing the schema, it MUST assume
 the use of the core vocabulary. If the implementation is built for a
 specific purpose, then it SHOULD assume the use of all of the most
 relevant vocabularies for that purpose.

 For example, an implementation that is a validator SHOULD assume the
 use of all vocabularies in this specification and the companion
 Validation specification.

8.1.2.2. Non-inheritability of vocabularies

 Note that the processing restrictions on "$vocabulary" mean that
 meta-schemas that reference other meta-schemas using "$ref" or
 similar keywords do not automatically inherit the vocabulary
 declarations of those other meta-schemas. All such declarations must
 be repeated in the root of each schema document intended for use as a
 meta-schema. This is demonstrated in the example meta-schema
 (Appendix D.2). [[CREF5: This requirement allows implementations to
 find all vocabulary requirement information in a single place for
 each meta-schema. As schema extensibility means that there are
 endless potential ways to combine more fine-grained meta-schemas by
 reference, requiring implementations to anticipate all possibilities
 and search for vocabularies in referenced meta-schemas would be
 overly burdensome.]]

8.1.3. Updates to Meta-Schema and Vocabulary URIs

 Updated vocabulary and meta-schema URIs MAY be published between
 specification drafts in order to correct errors. Implementations
 SHOULD consider URIs dated after this specification draft and before
 the next to indicate the same syntax and semantics as those listed
 here.

8.1.4. Detecting a Meta-Schema

 Implementations MUST recognize a schema as a meta-schema if it is
 being examined because it was identified as such by another schema's
 "$schema" keyword. This means that a single schema document might

Wright, et al. Expires March 19, 2020 [Page 26]

Internet-Draft JSON Schema September 2019

 sometimes be considered a regular schema, and other times be
 considered a meta-schema.

 In the case of examining a schema which is its own meta-schema, when
 an implementation begins processing it as a regular schema, it is
 processed under those rules. However, when loaded a second time as a
 result of checking its own "$schema" value, it is treated as a meta-
 schema. So the same document is processed both ways in the course of
 one session.

 Implementations MAY allow a schema to be explicitly passed as a meta-
 schema, for implementation-specific purposes, such as pre-loading a
 commonly used meta-schema and checking its vocabulary support
 requirements up front. Meta-schema authors MUST NOT expect such
 features to be interoperable across implementations.

8.2. Base URI, Anchors, and Dereferencing

 To differentiate between schemas in a vast ecosystem, schemas are
 identified by URI [RFC3986], and can embed references to other
 schemas by specifying their URI.

 Several keywords can accept a relative URI-reference [RFC3986], or a
 value used to construct a relative URI-reference. For these
 keywords, it is necessary to establish a base URI in order to resolve
 the reference.

8.2.1. Initial Base URI

RFC3986 Section 5.1 [RFC3986] defines how to determine the default
 base URI of a document.

 Informatively, the initial base URI of a schema is the URI at which
 it was found, whether that was a network location, a local
 filesystem, or any other situation identifiable by a URI of any known
 scheme.

 If a schema document defines no explicit base URI with "$id"
 (embedded in content), the base URI is that determined per RFC 3986
 section 5 [RFC3986].

 If no source is known, or no URI scheme is known for the source, a
 suitable implementation-specific default URI MAY be used as described
 in RFC 3986 Section 5.1.4 [RFC3986]. It is RECOMMENDED that
 implementations document any default base URI that they assume.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-5.1
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-5
https://datatracker.ietf.org/doc/html/rfc3986#section-5
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-5.1.4
https://datatracker.ietf.org/doc/html/rfc3986

Wright, et al. Expires March 19, 2020 [Page 27]

Internet-Draft JSON Schema September 2019

 Unless the "$id" keyword described in the next section is present in
 the root schema, this base URI SHOULD be considered the canonical URI
 of the schema document's root schema resource.

8.2.2. The "$id" Keyword

 The "$id" keyword identifies a schema resource with its canonical
 [RFC6596] URI.

 Note that this URI is an identifier and not necessarily a network
 locator. In the case of a network-addressable URL, a schema need not
 be downloadable from its canonical URI.

 If present, the value for this keyword MUST be a string, and MUST
 represent a valid URI-reference [RFC3986]. This URI-reference SHOULD
 be normalized, and MUST resolve to an absolute-URI [RFC3986] (without
 a fragment). Therefore, "$id" MUST NOT contain a non-empty fragment,
 and SHOULD NOT contain an empty fragment.

 Since an empty fragment in the context of the application/schema+json
 media type refers to the same resource as the base URI without a
 fragment, an implementation MAY normalize a URI ending with an empty
 fragment by removing the fragment. However, schema authors SHOULD
 NOT rely on this behavior across implementations. [[CREF6: This is
 primarily allowed because older meta-schemas have an empty fragment
 in their $id (or previously, id). A future draft may outright forbid
 even empty fragments in "$id".]]

 This URI also serves as the base URI for relative URI-references in
 keywords within the schema resource, in accordance with RFC 3986
 section 5.1.1 [RFC3986] regarding base URIs embedded in content.

 The presence of "$id" in a subschema indicates that the subschema
 constitutes a distinct schema resource within a single schema
 document. Furthermore, in accordance with RFC 3986 section 5.1.2
 [RFC3986] regarding encapsulating entities, if an "$id" in a
 subschema is a relative URI-reference, the base URI for resolving
 that reference is the URI of the parent schema resource.

 If no parent schema object explicitly identifies itself as a resource
 with "$id", the base URI is that of the entire document, as
 established by the steps given in the previous section.
 (Section 8.2.1)

https://datatracker.ietf.org/doc/html/rfc6596
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc3986#section-5.1.1
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-5.1.2
https://datatracker.ietf.org/doc/html/rfc3986

Wright, et al. Expires March 19, 2020 [Page 28]

Internet-Draft JSON Schema September 2019

8.2.2.1. Identifying the root schema

 The root schema of a JSON Schema document SHOULD contain an "$id"
 keyword with an absolute-URI [RFC3986] (containing a scheme, but no
 fragment).

8.2.2.2. JSON Pointer fragments and embedded schema resources

 Since JSON Pointer URI fragments are constructed based on the
 structure of the schema document, an embedded schema resource and its
 subschemas can be identified by JSON Pointer fragments relative to
 either its own canonical URI, or relative to the containing
 resource's URI.

 Conceptually, a set of linked schema resources should behave
 identically whether each resource is a separate document connected
 with schema references (Section 8.2.4), or is structured as a single
 document with one or more schema resources embedded as subschemas.

 Since URIs involving JSON Pointer fragments relative to the parent
 schema resource's URI cease to be valid when the embedded schema is
 moved to a separate document and referenced, applications and schemas
 SHOULD NOT use such URIs to identify embedded schema resources or
 locations within them.

 Consider the following schema document that contains another schema
 resource embedded within it:

 {
 "$id": "https://example.com/foo",
 "items": {
 "$id": "https://example.com/bar",
 "additionalProperties": { }
 }
 }

 The URI "https://example.com/foo#/items/additionalProperties" points
 to the schema of the "additionalProperties" keyword in the embedded
 resource. The canonical URI of that schema, however, is
 "https://example.com/bar#/additionalProperties".

https://datatracker.ietf.org/doc/html/rfc3986

Wright, et al. Expires March 19, 2020 [Page 29]

Internet-Draft JSON Schema September 2019

 Now consider the following two schema resources linked by reference
 using a URI value for "$ref":

 {
 "$id": "https://example.com/foo",
 "items": {
 "$ref": "bar"
 }
 }

 {
 "$id": "https://example.com/bar",
 "additionalProperties": { }
 }

 Here we see that the canonical URI for that "additionalProperties"
 subschema is still valid, while the non-canonical URI with the
 fragment beginning with "#/items/$ref" now resolves to nothing.

 Note also that "https://example.com/foo#/items" is valid in both
 arrangments, but resolves to a different value. This URI ends up
 functioning similarly to a retrieval URI for a resource. While
 valid, examining the resolved value and either using the "$id" (if
 the value is a subschema), or resolving the reference and using the
 "$id" of the reference target, is preferable.

 An implementation MAY choose not to support addressing schemas by
 non-canonical URIs. As such, it is RECOMENDED that schema authors
 only use canonical URIs, as using non-canonical URIs may reduce
 schema interoperability. [[CREF7: This is to avoid requiring
 implementations to keep track of a whole stack of possible base URIs
 and JSON Pointer fragments for each, given that all but one will be
 fragile if the schema resources are reorganized. Some have argued
 that this is easy so there is no point in forbidding it, while others
 have argued that it complicates schema identification and should be
 forbidden. Feedback on this topic is encouraged.]]

 Further examples of such non-canonical URIs, as well as the
 appropriate canonical URIs to use instead, are provided in appendix

A.

8.2.3. Defining location-independent identifiers with "$anchor"

 Using JSON Pointer fragments requires knowledge of the structure of
 the schema. When writing schema documents with the intention to
 provide re-usable schemas, it may be preferable to use a plain name

Wright, et al. Expires March 19, 2020 [Page 30]

Internet-Draft JSON Schema September 2019

 fragment that is not tied to any particular structural location.
 This allows a subschema to be relocated without requiring JSON
 Pointer references to be updated.

 The "$anchor" keyword is used to specify such a fragment. It is an
 identifier keyword that can only be used to create plain name
 fragments.

 If present, the value of this keyword MUST be a string, which MUST
 start with a letter ([A-Za-z]), followed by any number of letters,
 digits ([0-9]), hyphens ("-"), underscores ("_"), colons (":"), or
 periods ("."). [[CREF8: Note that the anchor string does not include
 the "#" character, as it is not a URI-reference. An "$anchor": "foo"
 becomes the fragment "#foo" when used in a URI. See below for full
 examples.]]

 The base URI to which the resulting fragment is appended is
 determined by the "$id" keyword as explained in the previous section.
 Two "$anchor" keywords in the same schema document MAY have the same
 value if they apply to different base URIs, as the resulting full
 URIs will be distinct. However, the effect of two "$anchor" keywords
 with the same value and the same base URI is undefined.
 Implementations MAY raise an error if such usage is detected.

8.2.4. Schema References

 Several keywords can be used to reference a schema which is to be
 applied to the current instance location. "$ref" and "$recursiveRef"
 are applicator keywords, applying the referenced schema to the
 instance. "$recursiveAnchor" is an identifier keyword that controls
 how the base URI for resolving the URI-reference value of
 "$recursiveRef is determined.

 As the values of "$ref" and "$recursiveRef" are URI References, this
 allows the possibility to externalise or divide a schema across
 multiple files, and provides the ability to validate recursive
 structures through self-reference.

 The resolved URI produced by these keywords is not necessarily a
 network locator, only an identifier. A schema need not be
 downloadable from the address if it is a network-addressable URL, and
 implementations SHOULD NOT assume they should perform a network
 operation when they encounter a network-addressable URI.

Wright, et al. Expires March 19, 2020 [Page 31]

Internet-Draft JSON Schema September 2019

8.2.4.1. Direct References with "$ref"

 The "$ref" keyword is an applicator that is used to reference a
 statically identified schema. Its results are the results of the
 referenced schema. [[CREF9: Note that this definition of how the
 results are determined means that other keywords can appear alongside
 of "$ref" in the same schema object.]]

 The value of the "$ref" property MUST be a string which is a URI-
 Reference. Resolved against the current URI base, it produces the
 URI of the schema to apply.

8.2.4.2. Recursive References with "$recursiveRef" and
 "$recursiveAnchor"

 The "$recursiveRef" and "$recursiveAnchor" keywords are used to
 construct extensible recursive schemas. A recursive schema is one
 that has a reference to its own root, identified by the empty
 fragment URI reference ("#").

 Simply stated, a "$recursiveRef" behaves identically to "$ref",
 except when its target schema contains "$recursiveAnchor" with a
 value of true. In that case, the dynamic scope is examined to
 determine a new base URI, and the URI-reference in "$recursiveRef" is
 re-evaluated against that base URI. Unlike base URI changes with
 "$id", changes with "$recursiveAnchor" are calculated each time a
 "$recursiveRef" is resolved, and do not impact any other keywords.

 For an example using these keyword, see appendix C. [[CREF10: The
 difference between the hyper-schema meta-schema in previous drafts
 and an this draft dramatically demonstrates the utility of these
 keywords.]]

8.2.4.2.1. Dynamically recursive references with "$recursiveRef"

 The value of the "$recursiveRef" property MUST be a string which is a
 URI-reference. It is a by-reference applicator that uses a
 dynamically calculated base URI to resolve its value.

 The behavior of this keyword is defined only for the value "#".
 Implementations MAY choose to consider other values to be errors.
 [[CREF11: This restriction may be relaxed in the future, but to date
 only the value "#" has a clear use case.]]

 The value of "$recursiveRef" is initially resolved against the
 current base URI, in the same manner as for "$ref".

Wright, et al. Expires March 19, 2020 [Page 32]

Internet-Draft JSON Schema September 2019

 The schema identified by the resulting URI is examined for the
 presence of "$recursiveAnchor", and a new base URI is calculated as
 described for that keyword in the following section.

 Finally, the value of "$recursiveRef" is resolved against the new
 base URI determined according to "$recursiveAnchor" producing the
 final resolved reference URI.

 Note that in the absence of "$recursiveAnchor" (and in some cases
 when it is present), "$recursiveRef"'s behavior is identical to that
 of "$ref".

 As with "$ref", the results of this keyword are the results of the
 referenced schema.

8.2.4.2.2. Enabling Recursion with "$recursiveAnchor"

 The value of the "$recursiveAnchor" property MUST be a boolean.

 "$recursiveAnchor" is used to dynamically identify a base URI at
 runtime for "$recursiveRef" by marking where such a calculation can
 start, and where it stops. This keyword MUST NOT affect the base URI
 of other keywords, unless they are explicitly defined to rely on it.

 If set to true, then when the containing schema object is used as a
 target of "$recursiveRef", a new base URI is determined by examining
 the dynamic scope (Section 7.1) for the outermost schema that also
 contains "$recursiveAnchor" with a value of true. The base URI of
 that schema is then used as the dynamic base URI.

 If no such schema exists, then the base URI is unchanged.

 If this keyword is set to false, the base URI is unchanged.

 Omitting this keyword has the same behavior as a value of false.

8.2.4.3. Guarding Against Infinite Recursion

 A schema MUST NOT be run into an infinite loop against an instance.
 For example, if two schemas "#alice" and "#bob" both have an "allOf"
 property that refers to the other, a naive validator might get stuck
 in an infinite recursive loop trying to validate the instance.
 Schemas SHOULD NOT make use of infinite recursive nesting like this;
 the behavior is undefined.

Wright, et al. Expires March 19, 2020 [Page 33]

Internet-Draft JSON Schema September 2019

8.2.4.4. References to Possible Non-Schemas

 Subschema objects (or booleans) are recognized by their use with
 known applicator keywords or with location-reserving keywords such as
 "$defs" (Section 8.2.5) that take one or more subschemas as a value.
 These keywords may be "$defs" and the standard applicators from this
 document, or extension keywords from a known vocabulary, or
 implementation-specific custom keywords.

 Multi-level structures of unknown keywords are capable of introducing
 nested subschemas, which would be subject to the processing rules for
 "$id". Therefore, having a reference target in such an unrecognized
 structure cannot be reliably implemented, and the resulting behavior
 is undefined. Similarly, a reference target under a known keyword,
 for which the value is known not to be a schema, results in undefined
 behavior in order to avoid burdening implementations with the need to
 detect such targets. [[CREF12: These scenarios are analogous to
 fetching a schema over HTTP but receiving a response with a Content-
 Type other than application/schema+json. An implementation can
 certainly try to interpret it as a schema, but the origin server
 offered no guarantee that it actually is any such thing. Therefore,
 interpreting it as such has security implications and may produce
 unpredictable results.]]

 Note that single-level custom keywords with identical syntax and
 semantics to "$defs" do not allow for any intervening "$id" keywords,
 and therefore will behave correctly under implementations that
 attempt to use any reference target as a schema. However, this
 behavior is implementation-specific and MUST NOT be relied upon for
 interoperability.

8.2.4.5. Loading a referenced schema

 The use of URIs to identify remote schemas does not necessarily mean
 anything is downloaded, but instead JSON Schema implementations
 SHOULD understand ahead of time which schemas they will be using, and
 the URIs that identify them.

 When schemas are downloaded, for example by a generic user-agent that
 doesn't know until runtime which schemas to download, see Usage for
 Hypermedia (Section 11).

 Implementations SHOULD be able to associate arbitrary URIs with an
 arbitrary schema and/or automatically associate a schema's "$id"-
 given URI, depending on the trust that the validator has in the
 schema. Such URIs and schemas can be supplied to an implementation
 prior to processing instances, or may be noted within a schema

Wright, et al. Expires March 19, 2020 [Page 34]

Internet-Draft JSON Schema September 2019

 document as it is processed, producing associations as shown in
appendix A.

 A schema MAY (and likely will) have multiple URIs, but there is no
 way for a URI to identify more than one schema. When multiple
 schemas try to identify as the same URI, validators SHOULD raise an
 error condition.

8.2.4.6. Dereferencing

 Schemas can be identified by any URI that has been given to them,
 including a JSON Pointer or their URI given directly by "$id". In
 all cases, dereferencing a "$ref" reference involves first resolving
 its value as a URI reference against the current base URI per RFC

3986 [RFC3986].

 If the resulting URI identifies a schema within the current document,
 or within another schema document that has been made available to the
 implementation, then that schema SHOULD be used automatically.

 For example, consider this schema:

 {
 "$id": "https://example.net/root.json",
 "items": {
 "type": "array",
 "items": { "$ref": "#item" }
 },
 "$defs": {
 "single": {
 "$anchor": "item",
 "type": "object",
 "additionalProperties": { "$ref": "other.json" }
 }
 }
 }

 When an implementation encounters the <#/$defs/single> schema, it
 resolves the "$id" URI reference against the current base URI to form
 <https://example.net/root.json#item>.

 When an implementation then looks inside the <#/items> schema, it
 encounters the <#item> reference, and resolves this to
 <https://example.net/root.json#item>, which it has seen defined in
 this same document and can therefore use automatically.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986

Wright, et al. Expires March 19, 2020 [Page 35]

Internet-Draft JSON Schema September 2019

 When an implementation encounters the reference to "other.json", it
 resolves this to <https://example.net/other.json>, which is not
 defined in this document. If a schema with that identifier has
 otherwise been supplied to the implementation, it can also be used
 automatically. [[CREF13: What should implementations do when the
 referenced schema is not known? Are there circumstances in which
 automatic network dereferencing is allowed? A same origin policy? A
 user-configurable option? In the case of an evolving API described
 by Hyper-Schema, it is expected that new schemas will be added to the
 system dynamically, so placing an absolute requirement of pre-loading
 schema documents is not feasible.]]

8.2.5. Schema Re-Use With "$defs"

 The "$defs" keyword reserves a location for schema authors to inline
 re-usable JSON Schemas into a more general schema. The keyword does
 not directly affect the validation result.

 This keyword's value MUST be an object. Each member value of this
 object MUST be a valid JSON Schema.

 As an example, here is a schema describing an array of positive
 integers, where the positive integer constraint is a subschema in
 "$defs":

 {
 "type": "array",
 "items": { "$ref": "#/$defs/positiveInteger" },
 "$defs": {
 "positiveInteger": {
 "type": "integer",
 "exclusiveMinimum": 0
 }
 }
 }

8.3. Comments With "$comment"

 This keyword reserves a location for comments from schema authors to
 readers or maintainers of the schema.

 The value of this keyword MUST be a string. Implementations MUST NOT
 present this string to end users. Tools for editing schemas SHOULD
 support displaying and editing this keyword. The value of this
 keyword MAY be used in debug or error output which is intended for
 developers making use of schemas.

Wright, et al. Expires March 19, 2020 [Page 36]

Internet-Draft JSON Schema September 2019

 Schema vocabularies SHOULD allow "$comment" within any object
 containing vocabulary keywords. Implementations MAY assume
 "$comment" is allowed unless the vocabulary specifically forbids it.
 Vocabularies MUST NOT specify any effect of "$comment" beyond what is
 described in this specification.

 Tools that translate other media types or programming languages to
 and from application/schema+json MAY choose to convert that media
 type or programming language's native comments to or from "$comment"
 values. The behavior of such translation when both native comments
 and "$comment" properties are present is implementation-dependent.

 Implementations SHOULD treat "$comment" identically to an unknown
 extension keyword. They MAY strip "$comment" values at any point
 during processing. In particular, this allows for shortening schemas
 when the size of deployed schemas is a concern.

 Implementations MUST NOT take any other action based on the presence,
 absence, or contents of "$comment" properties. In particular, the
 value of "$comment" MUST NOT be collected as an annotation result.

9. A Vocabulary for Applying Subschemas

 This section defines a vocabulary of applicator keywords that are
 RECOMMENDED for use as the basis of other vocabularies.

 Meta-schemas that do not use "$vocabulary" SHOULD be considered to
 require this vocabulary as if its URI were present with a value of
 true.

 The current URI for this vocabulary, known as the Applicator
 vocabulary, is: <https://json-schema.org/draft/2019-09/vocab/

applicator>.

 The current URI for the corresponding meta-schema is: <https://json-
schema.org/draft/2019-09/meta/applicator>.

 Updated vocabulary and meta-schema URIs MAY be published between
 specification drafts in order to correct errors. Implementations
 SHOULD consider URIs dated after this specification draft and before
 the next to indicate the same syntax and semantics as those listed
 here.

9.1. Keyword Independence

 Schema keywords typically operate independently, without affecting
 each other's outcomes.

https://json-schema.org/draft/2019-09/vocab/applicator
https://json-schema.org/draft/2019-09/vocab/applicator
https://json-schema.org/draft/2019-09/meta/applicator
https://json-schema.org/draft/2019-09/meta/applicator

Wright, et al. Expires March 19, 2020 [Page 37]

Internet-Draft JSON Schema September 2019

 For schema author convenience, there are some exceptions among the
 keywords in this vocabulary:

 "additionalProperties", whose behavior is defined in terms of
 "properties" and "patternProperties"

 "unevaluatedProperties", whose behavior is defined in terms of
 annotations from "properties", "patternProperties",
 "additionalProperties" and itself

 "additionalItems", whose behavior is defined in terms of "items"

 "unevaluatedItems", whose behavior is defined in terms of
 annotations from "items", "additionalItems" and itself

9.2. Keywords for Applying Subschemas in Place

 These keywords apply subschemas to the same location in the instance
 as the parent schema is being applied. They allow combining or
 modifying the subschema results in various ways.

9.2.1. Keywords for Applying Subschemas With Boolean Logic

 These keywords correspond to logical operators for combining or
 modifying the boolean assertion results of the subschemas. They have
 no direct impact on annotation collection, although they enable the
 same annotation keyword to be applied to an instance location with
 different values. Annotation keywords define their own rules for
 combining such values.

9.2.1.1. allOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against all schemas defined by this keyword's
 value.

9.2.1.2. anyOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against at least one schema defined by this
 keyword's value. Note that when annotations are being collected, all

Wright, et al. Expires March 19, 2020 [Page 38]

Internet-Draft JSON Schema September 2019

 subschemas MUST be examined so that annotations are collected from
 each subschema that validates successfully.

9.2.1.3. oneOf

 This keyword's value MUST be a non-empty array. Each item of the
 array MUST be a valid JSON Schema.

 An instance validates successfully against this keyword if it
 validates successfully against exactly one schema defined by this
 keyword's value.

9.2.1.4. not

 This keyword's value MUST be a valid JSON Schema.

 An instance is valid against this keyword if it fails to validate
 successfully against the schema defined by this keyword.

9.2.2. Keywords for Applying Subschemas Conditionally

 Three of these keywords work together to implement conditional
 application of a subschema based on the outcome of another subschema.
 The fourth is a shortcut for a specific conditional case.

 "if", "then", and "else" MUST NOT interact with each other across
 subschema boundaries. In other words, an "if" in one branch of an
 "allOf" MUST NOT have an impact on a "then" or "else" in another
 branch.

 There is no default behavior for "if", "then", or "else" when they
 are not present. In particular, they MUST NOT be treated as if
 present with an empty schema, and when "if" is not present, both
 "then" and "else" MUST be entirely ignored.

9.2.2.1. if

 This keyword's value MUST be a valid JSON Schema.

 This validation outcome of this keyword's subschema has no direct
 effect on the overall validation result. Rather, it controls which
 of the "then" or "else" keywords are evaluated.

 Instances that successfully validate against this keyword's subschema
 MUST also be valid against the subschema value of the "then" keyword,
 if present.

Wright, et al. Expires March 19, 2020 [Page 39]

Internet-Draft JSON Schema September 2019

 Instances that fail to validate against this keyword's subschema MUST
 also be valid against the subschema value of the "else" keyword, if
 present.

 If annotations (Section 7.7) are being collected, they are collected
 from this keyword's subschema in the usual way, including when the
 keyword is present without either "then" or "else".

9.2.2.2. then

 This keyword's value MUST be a valid JSON Schema.

 When "if" is present, and the instance successfully validates against
 its subschema, then validation succeeds against this keyword if the
 instance also successfully validates against this keyword's
 subschema.

 This keyword has no effect when "if" is absent, or when the instance
 fails to validate against its subschema. Implementations MUST NOT
 evaluate the instance against this keyword, for either validation or
 annotation collection purposes, in such cases.

9.2.2.3. else

 This keyword's value MUST be a valid JSON Schema.

 When "if" is present, and the instance fails to validate against its
 subschema, then validation succeeds against this keyword if the
 instance successfully validates against this keyword's subschema.

 This keyword has no effect when "if" is absent, or when the instance
 successfully validates against its subschema. Implementations MUST
 NOT evaluate the instance against this keyword, for either validation
 or annotation collection purposes, in such cases.

9.2.2.4. dependentSchemas

 This keyword specifies subschemas that are evaluated if the instance
 is an object and contains a certain property.

 This keyword's value MUST be an object. Each value in the object
 MUST be a valid JSON Schema.

 If the object key is a property in the instance, the entire instance
 must validate against the subschema. Its use is dependent on the
 presence of the property.

 Omitting this keyword has the same behavior as an empty object.

Wright, et al. Expires March 19, 2020 [Page 40]

Internet-Draft JSON Schema September 2019

9.3. Keywords for Applying Subschemas to Child Instances

 Each of these keywords defines a rule for applying its subschema(s)
 to child instances, specifically object properties and array items,
 and combining their results.

9.3.1. Keywords for Applying Subschemas to Arrays

9.3.1.1. items

 The value of "items" MUST be either a valid JSON Schema or an array
 of valid JSON Schemas.

 If "items" is a schema, validation succeeds if all elements in the
 array successfully validate against that schema.

 If "items" is an array of schemas, validation succeeds if each
 element of the instance validates against the schema at the same
 position, if any.

 This keyword produces an annotation value which is the largest index
 to which this keyword applied a subschema. The value MAY be a
 boolean true if a subschema was applied to every index of the
 instance, such as when "items" is a schema.

 Annotation results for "items" keywords from multiple schemas applied
 to the same instance location are combined by setting the combined
 result to true if any of the values are true, and otherwise retaining
 the largest numerical value.

 Omitting this keyword has the same assertion behavior as an empty
 schema.

9.3.1.2. additionalItems

 The value of "additionalItems" MUST be a valid JSON Schema.

 The behavior of this keyword depends on the presence and annotation
 result of "items" within the same schema object. If "items" is
 present, and its annotation result is a number, validation succeeds
 if every instance element at an index greater than that number
 validates against "additionalItems".

 Otherwise, if "items" is absent or its annotation result is the
 boolean true, "additionalItems" MUST be ignored.

 If the "additionalItems" subschema is applied to any positions within
 the instance array, it produces an annotation result of boolean true,

Wright, et al. Expires March 19, 2020 [Page 41]

Internet-Draft JSON Schema September 2019

 analogous to the single schema behavior of "items". If any
 "additionalItems" keyword from any subschema applied to the same
 instance location produces an annotation value of true, then the
 combined result from these keywords is also true.

 Omitting this keyword has the same assertion behavior as an empty
 schema.

 Implementations MAY choose to implement or optimize this keyword in
 another way that produces the same effect, such as by directly
 checking for the presence and size of an "items" array.
 Implementations that do not support annotation collection MUST do so.

9.3.1.3. unevaluatedItems

 The value of "unevaluatedItems" MUST be a valid JSON Schema.

 The behavior of this keyword depends on the annotation results of
 adjacent keywords that apply to the instance location being
 validated. Specifically, the annotations from "items" and
 "additionalItems", which can come from those keywords when they are
 adjacent to the "unevaluatedItems" keyword. Those two annotations,
 as well as "unevaluatedItems", can also result from any and all
 adjacent in-place applicator (Section 9.2) keywords. This includes
 but is not limited to the in-place applicators defined in this
 document.

 If an "items" annotation is present, and its annotation result is a
 number, and no "additionalItems" or "unevaluatedItems" annotation is
 present, then validation succeeds if every instance element at an
 index greater than the "items" annotation validates against
 "unevaluatedItems".

 Otherwise, if any "items", "additionalItems", or "unevaluatedItems"
 annotations are present with a value of boolean true, then
 "unevaluatedItems" MUST be ignored. However, if none of these
 annotations are present, "unevaluatedItems" MUST be applied to all
 locations in the array.

 This means that "items", "additionalItems", and all in-place
 applicators MUST be evaluated before this keyword can be evaluated.
 Authors of extension keywords MUST NOT define an in-place applicator
 that would need to be evaluated before this keyword.

 If the "unevaluatedItems" subschema is applied to any positions
 within the instance array, it produces an annotation result of
 boolean true, analogous to the single schema behavior of "items". If
 any "unevaluatedItems" keyword from any subschema applied to the same

Wright, et al. Expires March 19, 2020 [Page 42]

Internet-Draft JSON Schema September 2019

 instance location produces an annotation value of true, then the
 combined result from these keywords is also true.

 Omitting this keyword has the same assertion behavior as an empty
 schema.

 Implementations that do not collect annotations MUST raise an error
 upon encountering this keyword.

9.3.1.4. contains

 The value of this keyword MUST be a valid JSON Schema.

 An array instance is valid against "contains" if at least one of its
 elements is valid against the given schema. Note that when
 collecting annotations, the subschema MUST be applied to every array
 element even after the first match has been found. This is to ensure
 that all possible annotations are collected.

9.3.2. Keywords for Applying Subschemas to Objects

9.3.2.1. properties

 The value of "properties" MUST be an object. Each value of this
 object MUST be a valid JSON Schema.

 Validation succeeds if, for each name that appears in both the
 instance and as a name within this keyword's value, the child
 instance for that name successfully validates against the
 corresponding schema.

 The annotation result of this keyword is the set of instance property
 names matched by this keyword. Annotation results for "properties"
 keywords from multiple schemas applied to the same instance location
 are combined by taking the union of the sets.

 Omitting this keyword has the same assertion behavior as an empty
 object.

9.3.2.2. patternProperties

 The value of "patternProperties" MUST be an object. Each property
 name of this object SHOULD be a valid regular expression, according
 to the ECMA 262 regular expression dialect. Each property value of
 this object MUST be a valid JSON Schema.

 Validation succeeds if, for each instance name that matches any
 regular expressions that appear as a property name in this keyword's

Wright, et al. Expires March 19, 2020 [Page 43]

Internet-Draft JSON Schema September 2019

 value, the child instance for that name successfully validates
 against each schema that corresponds to a matching regular
 expression.

 The annotation result of this keyword is the set of instance property
 names matched by this keyword. Annotation results for
 "patternProperties" keywords from multiple schemas applied to the
 same instance location are combined by taking the union of the sets.

 Omitting this keyword has the same assertion behavior as an empty
 object.

9.3.2.3. additionalProperties

 The value of "additionalProperties" MUST be a valid JSON Schema.

 The behavior of this keyword depends on the presence and annotation
 results of "properties" and "patternProperties" within the same
 schema object. Validation with "additionalProperties" applies only
 to the child values of instance names that do not appear in the
 annotation results of either "properties" or "patternProperties".

 For all such properties, validation succeeds if the child instance
 validates against the "additionalProperties" schema.

 The annotation result of this keyword is the set of instance property
 names validated by this keyword's subschema. Annotation results for
 "additionalProperties" keywords from multiple schemas applied to the
 same instance location are combined by taking the union of the sets.

 Omitting this keyword has the same assertion behavior as an empty
 schema.

 Implementations MAY choose to implement or optimize this keyword in
 another way that produces the same effect, such as by directly
 checking the names in "properties" and the patterns in
 "patternProperties" against the instance property set.
 Implementations that do not support annotation collection MUST do so.

9.3.2.4. unevaluatedProperties

 The value of "unevaluatedProperties" MUST be a valid JSON Schema.

 The behavior of this keyword depends on the annotation results of
 adjacent keywords that apply to the instance location being
 validated. Specifically, the annotations from "properties",
 "patternProperties", and "additionalProperties", which can come from
 those keywords when they are adjacent to the "unevaluatedProperties"

Wright, et al. Expires March 19, 2020 [Page 44]

Internet-Draft JSON Schema September 2019

 keyword. Those three annotations, as well as
 "unevaluatedProperties", can also result from any and all adjacent
 in-place applicator (Section 9.2) keywords. This includes but is not
 limited to the in-place applicators defined in this document.

 Validation with "unevaluatedProperties" applies only to the child
 values of instance names that do not appear in the "properties",
 "patternProperties", "additionalProperties", or
 "unevaluatedProperties" annotation results that apply to the instance
 location being validated.

 For all such properties, validation succeeds if the child instance
 validates against the "unevaluatedProperties" schema.

 This means that "properties", "patternProperties",
 "additionalProperties", and all in-place applicators MUST be
 evaluated before this keyword can be evaluated. Authors of extension
 keywords MUST NOT define an in-place applicator that would need to be
 evaluated before this keyword.

 The annotation result of this keyword is the set of instance property
 names validated by this keyword's subschema. Annotation results for
 "unevaluatedProperties" keywords from multiple schemas applied to the
 same instance location are combined by taking the union of the sets.

 Omitting this keyword has the same assertion behavior as an empty
 schema.

 Implementations that do not collect annotations MUST raise an error
 upon encountering this keyword.

9.3.2.5. propertyNames

 The value of "propertyNames" MUST be a valid JSON Schema.

 If the instance is an object, this keyword validates if every
 property name in the instance validates against the provided schema.
 Note the property name that the schema is testing will always be a
 string.

 Omitting this keyword has the same behavior as an empty schema.

10. Output Formatting

 JSON Schema is defined to be platform-independent. As such, to
 increase compatibility across platforms, implementations SHOULD
 conform to a standard validation output format. This section

Wright, et al. Expires March 19, 2020 [Page 45]

Internet-Draft JSON Schema September 2019

 describes the minimum requirements that consumers will need to
 properly interpret validation results.

10.1. Format

 JSON Schema output is defined using the JSON Schema data instance
 model as described in section 4.2.1. Implementations MAY deviate
 from this as supported by their specific languages and platforms,
 however it is RECOMMENDED that the output be convertible to the JSON
 format defined herein via serialization or other means.

10.2. Output Formats

 This specification defines four output formats. See the "Output
 Structure" section for the requirements of each format.

 Flag - A boolean which simply indicates the overall validation
 result with no further details.

 Basic - Provides validation information in a flat list structure.

 Detailed - Provides validation information in a condensed
 hierarchical structure based on the structure of the schema.

 Verbose - Provides validation information in an uncondensed
 hierarchical structure that matches the exact structure of the
 schema.

 An implementation SHOULD provide at least the "flag", "basic", or
 "detailed" format and MAY provide the "verbose" format. If it
 provides one or more of the complex formats, it MUST also provide the
 "flag" format. Implementations SHOULD specify in their documentation
 which formats they support.

10.3. Minimum Information

 Beyond the simplistic "flag" output, additional information is useful
 to aid in debugging a schema or instance. Each sub-result SHOULD
 contain the information contained within this section at a minimum.

 A single object that contains all of these components is considered
 an output unit.

 Implementations MAY elect to provide additional information.

Wright, et al. Expires March 19, 2020 [Page 46]

Internet-Draft JSON Schema September 2019

10.3.1. Keyword Relative Location

 The relative location of the validating keyword that follows the
 validation path. The value MUST be expressed as a JSON Pointer, and
 it MUST include any by-reference applicators such as "$ref" or
 "$recursiveRef".

 #/properties/width/$ref/minimum

 Note that this pointer may not be resolvable by the normal JSON
 Pointer process due to the inclusion of these by-reference applicator
 keywords.

 The JSON key for this information is "keywordLocation".

10.3.2. Keyword Absolute Location

 The absolute, dereferenced location of the validating keyword. The
 value MUST be expressed as an absolute URI using the canonical URI of
 the relevant schema object, and it MUST NOT include by-reference
 applicators such as "$ref" or "$recursiveRef" as non-terminal path
 components. It MAY end in such keywords if the error or annotation
 is for that keyword, such as an unresolvable reference.

 https://example.com/schemas/common#/$defs/count/minimum

 This information MAY be omitted only if either the relative location
 contains no references or if the schema does not declare an absolute
 URI as its "$id".

 The JSON key for this information is "absoluteKeywordLocation".

10.3.3. Instance Location

 The location of the JSON value within the instance being validated.
 The value MUST be expressed as a URI fragment-encoded JSON Pointer.

 The JSON key for this information is "instanceLocation".

10.3.4. Error or Annotation

 The error or annotation that is produced by the validation.

Wright, et al. Expires March 19, 2020 [Page 47]

Internet-Draft JSON Schema September 2019

 For errors, the specific wording for the message is not defined by
 this specification. Implementations will need to provide this.

 For annotations, each keyword that produces an annotation specifies
 its format. By default, it is the keyword's value.

 The JSON key for failed validations is "error"; for successful
 validations it is "annotation".

10.3.5. Nested Results

 For the two hierarchical structures, this property will hold nested
 errors and annotations.

 The JSON key for nested results in failed validations is "errors";
 for successful validations it is "annotations". Note the plural
 forms, as a keyword with nested results can also have a local error
 or annotation.

10.4. Output Structure

 The output MUST be an object containing a boolean property named
 "valid". When additional information about the result is required,
 the output MUST also contain "errors" or "annotations" as described
 below.

 "valid" - a boolean value indicating the overall validation
 success or failure

 "errors" - the collection of errors or annotations produced by a
 failed validation

 "annotations" - the collection of errors or annotations produced
 by a successful validation

 For these examples, the following schema and instance will be used.

Wright, et al. Expires March 19, 2020 [Page 48]

Internet-Draft JSON Schema September 2019

 {
 "$id": "https://example.com/polygon",
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$defs": {
 "point": {
 "type": "object",
 "properties": {
 "x": { "type": "number" },
 "y": { "type": "number" }
 },
 "additionalProperties": false,
 "required": ["x", "y"]
 }
 },
 "type": "array",
 "items": { "$ref": "#/$defs/point" },
 "minItems": 3
 }

 [
 {
 "x": 2.5,
 "y": 1.3,
 },
 {
 "x": 1,
 "z": 6.7
 }
]

 This instance will fail validation and produce errors, but it's
 trivial to deduce examples for passing schemas that produce
 annotations.

 Specifically, the errors it will produce are:

 The second element in the "vertices" property is missing a "y"
 property.

 The second element in the "vertices" property has a disallowed "z"
 property.

 There are only two vertices, but three are required.

 Note that the error message wording as depicted in these examples is
 not a requirement of this specification. Implementations SHOULD
 craft error messages tailored for their audience or provide a

Wright, et al. Expires March 19, 2020 [Page 49]

Internet-Draft JSON Schema September 2019

 templating mechanism that allows their users to craft their own
 messages.

10.4.1. Flag

 In the simplest case, merely the boolean result for the "valid" valid
 property needs to be fulfilled.

 {
 "valid": false
 }

 Because no errors or annotations are returned with this format, it is
 RECOMMENDED that implementations use short-circuiting logic to return
 failure or success as soon as the outcome can be determined. For
 example, if an "anyOf" keyword contains five sub-schemas, and the
 second one passes, there is no need to check the other three. The
 logic can simply return with success.

10.4.2. Basic

 The "Basic" structure is a flat list of output units.

Wright, et al. Expires March 19, 2020 [Page 50]

Internet-Draft JSON Schema September 2019

{
 "valid": false,
 "errors": [
 {
 "keywordLocation": "#",
 "instanceLocation": "#",
 "error": "A subschema had errors."
 },
 {
 "keywordLocation": "#/items/$ref",
 "absoluteKeywordLocation":
 "https://example.com/polygon#/$defs/point",
 "instanceLocation": "#/1",
 "error": "A subschema had errors."
 },
 {
 "keywordLocation": "#/items/$ref/required",
 "absoluteKeywordLocation":
 "https://example.com/polygon#/$defs/point/required",
 "instanceLocation": "#/1",
 "error": "Required property 'y' not found."
 },
 {
 "keywordLocation": "#/items/$ref/additionalProperties",
 "absoluteKeywordLocation":
 "https://example.com/polygon#/$defs/point/additionalProperties",
 "instanceLocation": "#/1/z",
 "error": "Additional property 'z' found but was invalid."
 },
 {
 "keywordLocation": "#/minItems",
 "instanceLocation": "#",
 "error": "Expected at least 3 items but found 2"
 }
]
}

10.4.3. Detailed

 The "Detailed" structure is based on the schema and can be more
 readable for both humans and machines. Having the structure
 organized this way makes associations between the errors more
 apparent. For example, the fact that the missing "y" property and
 the extra "z" property both stem from the same location in the
 instance is not immediately obvious in the "Basic" structure. In a
 hierarchy, the correlation is more easily identified.

Wright, et al. Expires March 19, 2020 [Page 51]

Internet-Draft JSON Schema September 2019

 The following rules govern the construction of the results object:

 All applicator keywords ("*Of", "$ref", "if"/"then"/"else", etc.)
 require a node.

 Nodes that have no children are removed.

 Nodes that have a single child are replaced by the child.

 Branch nodes do not require an error message or an annotation.

Wright, et al. Expires March 19, 2020 [Page 52]

Internet-Draft JSON Schema September 2019

{
 "valid": false,
 "keywordLocation": "#",
 "instanceLocation": "#",
 "errors": [
 {
 "valid": false,
 "keywordLocation": "#/items/$ref",
 "absoluteKeywordLocation":
 "https://example.com/polygon#/$defs/point",
 "instanceLocation": "#/1",
 "errors": [
 {
 "valid": false,
 "keywordLocation": "#/items/$ref/required",
 "absoluteKeywordLocation":
 "https://example.com/polygon#/$defs/point/required",
 "instanceLocation": "#/1",
 "error": "Required property 'y' not found."
 },
 {
 "valid": false,
 "keywordLocation": "#/items/$ref/additionalProperties",
 "absoluteKeywordLocation":
 "https://example.com/polygon#/$defs/point/additionalProperties",
 "instanceLocation": "#/1/z",
 "error": "Additional property 'z' found but was invalid."
 }
]
 },
 {
 "valid": false,
 "keywordLocation": "#/minItems",
 "instanceLocation": "#",
 "error": "Expected at least 3 items but found 2"
 }
]
}

10.4.4. Verbose

 The "Verbose" structure is a fully realized hierarchy that exactly
 matches that of the schema. This structure has applications in form
 generation and validation where the error's location is important.

 The primary difference between this and the "Detailed" structure is
 that all results are returned. This includes sub-schema validation

Wright, et al. Expires March 19, 2020 [Page 53]

Internet-Draft JSON Schema September 2019

 results that would otherwise be removed (e.g. annotations for failed
 validations, successful validations inside a `not` keyword, etc.).
 Because of this, it is RECOMMENDED that each node also carry a
 `valid` property to indicate the validation result for that node.

 Because this output structure can be quite large, a smaller example
 is given here for brevity. The URI of the full output structure of
 the example above is: <https://json-schema.org/draft/2019-09/output/

verbose-example>.

// schema
{
 "$id": "https://example.com/polygon",
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "type": "object",
 "properties": {
 "validProp": true,
 },
 "additionalProperties": false
}

// instance
{
 "validProp": 5,
 "disallowedProp": "value"
}

// result
{
 "valid": false,
 "keywordLocation": "#",
 "instanceLocation": "#",
 "errors": [
 {
 "valid": true,
 "keywordLocation": "#/type",
 "instanceLocation": "#"
 },
 {
 "valid": true,
 "keywordLocation": "#/properties",
 "instanceLocation": "#"
 },
 {
 "valid": false,
 "keywordLocation": "#/additionalProperties",
 "instanceLocation": "#",

https://json-schema.org/draft/2019-09/output/verbose-example
https://json-schema.org/draft/2019-09/output/verbose-example

Wright, et al. Expires March 19, 2020 [Page 54]

Internet-Draft JSON Schema September 2019

 "errors": [
 {
 "valid": false,
 "keywordLocation": "#/additionalProperties",
 "instanceLocation": "#/disallowedProp",
 "error": "Additional property 'disallowedProp' found but was
invalid."
 }
]
 }
]
}

10.4.5. Output validation schemas

 For convenience, JSON Schema has been provided to validate output
 generated by implementations. Its URI is: <https://json-schema.org/

draft/2019-09/output/schema>.

11. Usage for Hypermedia

 JSON has been adopted widely by HTTP servers for automated APIs and
 robots. This section describes how to enhance processing of JSON
 documents in a more RESTful manner when used with protocols that
 support media types and Web linking [RFC8288].

11.1. Linking to a Schema

 It is RECOMMENDED that instances described by a schema provide a link
 to a downloadable JSON Schema using the link relation "describedby",
 as defined by Linked Data Protocol 1.0, section 8.1
 [W3C.REC-ldp-20150226].

 In HTTP, such links can be attached to any response using the Link
 header [RFC8288]. An example of such a header would be:

 Link: <https://example.com/my-hyper-schema#>; rel="describedby"

11.2. Identifying a Schema via a Media Type Parameter

 Media types MAY allow for a "schema" media type parameter, which
 gives HTTP servers the ability to perform Content-Type Negotiation
 based on schema. The media-type parameter MUST be a whitespace-
 separated list of URIs (i.e. relative references are invalid).

https://json-schema.org/draft/2019-09/output/schema
https://json-schema.org/draft/2019-09/output/schema
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288

Wright, et al. Expires March 19, 2020 [Page 55]

Internet-Draft JSON Schema September 2019

 When using the media type application/schema-instance+json, the
 "schema" parameter MUST be supplied.

 When using the media type application/schema+json, the "schema"
 parameter MAY be supplied. If supplied, it SHOULD contain the same
 URI as identified by the "$schema" keyword, and MAY contain
 additional URIs. The "$schema" URI MUST be considered the schema's
 canonical meta-schema, regardless of the presence of alternative or
 additional meta-schemas as a media type parameter.

 The schema URI is opaque and SHOULD NOT automatically be
 dereferenced. If the implementation does not understand the
 semantics of the provided schema, the implementation can instead
 follow the "describedby" links, if any, which may provide information
 on how to handle the schema. Since "schema" doesn't necessarily
 point to a network location, the "describedby" relation is used for
 linking to a downloadable schema. However, for simplicity, schema
 authors should make these URIs point to the same resource when
 possible.

 In HTTP, the media-type parameter would be sent inside the Content-
 Type header:

 Content-Type: application/json;
 schema="https://example.com/my-hyper-schema#"

 Multiple schemas are whitespace separated, and indicate that the
 instance conforms to all of the listed schemas:

 Content-Type: application/json;
 schema="https://example.com/alice https://example.com/bob"

 Media type parameters are also used in HTTP's Accept request header:

 Accept: application/json;
 schema="https://example.com/qiang https://example.com/li",
 application/json;
 schema="https://example.com/kumar"

 As with Content-Type, multiple schema parameters in the same string
 requests an instance that conforms to all of the listed schemas.

Wright, et al. Expires March 19, 2020 [Page 56]

Internet-Draft JSON Schema September 2019

 Unlike Content-Type, Accept can contain multiple values to indicate
 that the client can accept several media types. In the above
 example, note that the two media types differ only by their schema
 parameter values. This requests an application/json representation
 that conforms to at least one of the identified schemas.

 [[CREF14: This paragraph assumes that we can register a "schema" link
 relation. Should we instead specify something like "tag:json-
 schema.org,2017:schema" for now?]] HTTP can also send the "schema"
 in a Link, though this may impact media-type semantics and Content-
 Type negotiation if this replaces the media-type parameter entirely:

 Link: </alice>;rel="schema", </bob>;rel="schema"

11.3. Usage Over HTTP

 When used for hypermedia systems over a network, HTTP [RFC7231] is
 frequently the protocol of choice for distributing schemas.
 Misbehaving clients can pose problems for server maintainers if they
 pull a schema over the network more frequently than necessary, when
 it's instead possible to cache a schema for a long period of time.

 HTTP servers SHOULD set long-lived caching headers on JSON Schemas.
 HTTP clients SHOULD observe caching headers and not re-request
 documents within their freshness period. Distributed systems SHOULD
 make use of a shared cache and/or caching proxy.

 Clients SHOULD set or prepend a User-Agent header specific to the
 JSON Schema implementation or software product. Since symbols are
 listed in decreasing order of significance, the JSON Schema library
 name/version should precede the more generic HTTP library name (if
 any). For example:

 User-Agent: product-name/5.4.1 so-cool-json-schema/1.0.2 curl/7.43.0

 Clients SHOULD be able to make requests with a "From" header so that
 server operators can contact the owner of a potentially misbehaving
 script.

12. Security Considerations

 Both schemas and instances are JSON values. As such, all security
 considerations defined in RFC 8259 [RFC8259] apply.

https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 57]

Internet-Draft JSON Schema September 2019

 Instances and schemas are both frequently written by untrusted third
 parties, to be deployed on public Internet servers. Validators
 should take care that the parsing and validating against schemas
 doesn't consume excessive system resources. Validators MUST NOT fall
 into an infinite loop.

 Servers MUST ensure that malicious parties can't change the
 functionality of existing schemas by uploading a schema with a pre-
 existing or very similar "$id".

 Individual JSON Schema vocabularies are liable to also have their own
 security considerations. Consult the respective specifications for
 more information.

 Schema authors should take care with "$comment" contents, as a
 malicious implementation can display them to end-users in violation
 of a spec, or fail to strip them if such behavior is expected.

 A malicious schema author could place executable code or other
 dangerous material within a "$comment". Implementations MUST NOT
 parse or otherwise take action based on "$comment" contents.

13. IANA Considerations

13.1. application/schema+json

 The proposed MIME media type for JSON Schema is defined as follows:

 Type name: application

 Subtype name: schema+json

 Required parameters: N/A

 Optional parameters:

 schema: A non-empty list of space-separated URIs, each
 identifying a JSON Schema resource. The instance SHOULD
 successfully validate against at least one of these meta-
 schemas. Non-validating meta-schemas MAY be included for
 purposes such as allowing clients to make use of older versions
 of a meta-schema as long as the runtime instance validates
 against that older version.

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See JSON
 [RFC8259].

https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 58]

Internet-Draft JSON Schema September 2019

 Security considerations: See Section 12 above.

 Interoperability considerations: See Sections 6.2, 6.3, and 6.4
 above.

 Fragment identifier considerations: See Section 5

13.2. application/schema-instance+json

 The proposed MIME media type for JSON Schema Instances that require a
 JSON Schema-specific media type is defined as follows:

 Type name: application

 Subtype name: schema-instance+json

 Required parameters:

 schema: A non-empty list of space-separated URIs, each
 identifying a JSON Schema resource. The instance SHOULD
 successfully validate against at least one of these schemas.
 Non-validating schemas MAY be included for purposes such as
 allowing clients to make use of older versions of a schema as
 long as the runtime instance validates against that older
 version.

 Encoding considerations: Encoding considerations are identical to
 those specified for the "application/json" media type. See JSON
 [RFC8259].

 Security considerations: See Section 12 above.

 Interoperability considerations: See Sections 6.2, 6.3, and 6.4
 above.

 Fragment identifier considerations: See Section 5

14. References

14.1. Normative References

 [ecma262] "ECMA 262 specification", <http://www.ecma-
international.org/publications/files/ECMA-ST/
Ecma-262.pdf>.

https://datatracker.ietf.org/doc/html/rfc8259
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf

Wright, et al. Expires March 19, 2020 [Page 59]

Internet-Draft JSON Schema September 2019

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6839] Hansen, T. and A. Melnikov, "Additional Media Type
 Structured Syntax Suffixes", RFC 6839,
 DOI 10.17487/RFC6839, January 2013,
 <https://www.rfc-editor.org/info/rfc6839>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

 [W3C.REC-ldp-20150226]
 Speicher, S., Arwe, J., and A. Malhotra, "Linked Data
 Platform 1.0", World Wide Web Consortium Recommendation
 REC-ldp-20150226, February 2015,
 <http://www.w3.org/TR/2015/REC-ldp-20150226>.

14.2. Informative References

 [json-hyper-schema]
 Andrews, H. and A. Wright, "JSON Hyper-Schema: A
 Vocabulary for Hypermedia Annotation of JSON", draft-

handrews-json-schema-hyperschema-02 (work in progress),
 November 2017.

 [json-schema-validation]
 Wright, A., Andrews, H., and G. Luff, "JSON Schema
 Validation: A Vocabulary for Structural Validation of
 JSON", draft-handrews-json-schema-validation-02 (work in
 progress), November 2017.

 [RFC6596] Ohye, M. and J. Kupke, "The Canonical Link Relation",
RFC 6596, DOI 10.17487/RFC6596, April 2012,

 <https://www.rfc-editor.org/info/rfc6596>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6839
https://www.rfc-editor.org/info/rfc6839
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
http://www.w3.org/TR/2015/REC-ldp-20150226
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-02
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/rfc6596
https://www.rfc-editor.org/info/rfc6596

Wright, et al. Expires March 19, 2020 [Page 60]

Internet-Draft JSON Schema September 2019

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

 [W3C.WD-fragid-best-practices-20121025]
 Tennison, J., "Best Practices for Fragment Identifiers and
 Media Type Definitions", World Wide Web Consortium WD WD-
 fragid-best-practices-20121025, October 2012,
 <http://www.w3.org/TR/2012/

WD-fragid-best-practices-20121025>.

https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
http://www.w3.org/TR/2012/WD-fragid-best-practices-20121025
http://www.w3.org/TR/2012/WD-fragid-best-practices-20121025

Wright, et al. Expires March 19, 2020 [Page 61]

Internet-Draft JSON Schema September 2019

Appendix A. Schema identification examples

 Consider the following schema, which shows "$id" being used to
 identify both the root schema and various subschemas, and "$anchor"
 being used to define plain name fragment identifiers.

 {
 "$id": "https://example.com/root.json",
 "$defs": {
 "A": { "$anchor": "foo" },
 "B": {
 "$id": "other.json",
 "$defs": {
 "X": { "$anchor": "bar" },
 "Y": {
 "$id": "t/inner.json",
 "$anchor": "bar"
 }
 }
 },
 "C": {
 "$id": "urn:uuid:ee564b8a-7a87-4125-8c96-e9f123d6766f"
 }
 }
 }

 The schemas at the following URI-encoded JSON Pointers [RFC6901]
 (relative to the root schema) have the following base URIs, and are
 identifiable by any listed URI in accordance with sections 5 and
 8.2.2.2 above.

 # (document root)

 canonical absolute-URI (and also base URI) https://example.com/
 root.json

 canonical URI with pointer fragment https://example.com/
 root.json#

 #/$defs/A

 base URI https://example.com/root.json

 canonical URI with plain fragment https://example.com/
 root.json#foo

https://datatracker.ietf.org/doc/html/rfc6901

Wright, et al. Expires March 19, 2020 [Page 62]

Internet-Draft JSON Schema September 2019

 canonical URI with pointer fragment
 https://example.com/root.json#/$defs/A

 #/$defs/B

 base URI https://example.com/other.json

 canonical URI with pointer fragment https://example.com/
 other.json#

 non-canonical URI with fragment relative to root.json
 https://example.com/root.json#/$defs/B

 #/$defs/B/$defs/X

 base URI https://example.com/other.json

 canonical URI with plain fragment https://example.com/
 other.json#bar

 canonical URI with pointer fragment
 https://example.com/other.json#/$defs/X

 non-canonical URI with fragment relative to root.json
 https://example.com/root.json#/$defs/B/$defs/X

 #/$defs/B/$defs/Y

 base URI https://example.com/t/inner.json

 canonical URI with plain fragment https://example.com/t/
 inner.json#bar

 canonical URI with pointer fragment https://example.com/t/
 inner.json#

 non-canonical URI with fragment relative to other.json
 https://example.com/other.json#/$defs/Y

 non-canonical URI with fragment relative to root.json
 https://example.com/root.json#/$defs/B/$defs/Y

 #/$defs/C

 base URI urn:uuid:ee564b8a-7a87-4125-8c96-e9f123d6766f

 canonical URI with pointer fragment urn:uuid:ee564b8a-
 7a87-4125-8c96-e9f123d6766f#

Wright, et al. Expires March 19, 2020 [Page 63]

Internet-Draft JSON Schema September 2019

 non-canonical URI with fragment relative to root.json
 https://example.com/root.json#/$defs/C

Appendix B. Manipulating schema documents and references

 Various tools have been created to rearrange schema documents based
 on how and where references ("$ref") appear. This appendix discusses
 which use cases and actions are compliant with this specification.

B.1. Bundling schema resources into a single document

 A set of schema resources intended for use together can be organized
 with each in its own schema document, all in the same schema
 document, or any granularity of document grouping in between.

 Numerous tools exist to perform various sorts of reference removal.
 A common case of this is producing a single file where all references
 can be resolved within that file. This is typically done to simplify
 distribution, or to simplify coding so that various invocations of
 JSON Schema libraries do not have to keep track of and load a large
 number of resources.

 This transformation can be safely and reversibly done as long as all
 static references (e.g. "$ref") use URI-references that resolve to
 canonical URIs, and all schema resources have an absolute-URI as the
 "$id" in their root schema.

 With these conditions met, each external resource can be copied under
 "$defs", without breaking any references among the resources' schema
 objects, and without changing any aspect of validation or annotation
 results. The names of the schemas under "$defs" do not affect
 behavior, assuming they are each unique, as they do not appear in
 canonical URIs for the embedded resources.

B.2. Reference removal is not always safe

 Attempting to remove all references and produce a single schema
 document does not, in all cases, produce a schema with identical
 behavior to the original form.

 Since "$ref" is now treated like any other keyword, with other
 keywords allowed in the same schema objects, fully supporting non-
 recursive "$ref" removal in all cases can require relatively complex
 schema manipulations. It is beyond the scope of this specification
 to determine or provide a set of safe "$ref" removal transformations,
 as they depend not only on the schema structure but also on the
 intended usage.

Wright, et al. Expires March 19, 2020 [Page 64]

Internet-Draft JSON Schema September 2019

Appendix C. Example of recursive schema extension

 Consider the following two schemas describing a simple recursive tree
 structure, where each node in the tree can have a "data" field of any
 type. The first schema allows and ignores other instance properties.
 The second is more strict and only allows the "data" and "children"
 properties. An example instance with "data" misspelled as "daat" is
 also shown.

 // tree schema, extensible
 {
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "https://example.com/tree",
 "$recursiveAnchor": true,

 "type": "object",
 "properties": {
 "data": true,
 "children": {
 "type": "array",
 "items": {
 "$recursiveRef": "#"
 }
 }
 }
 }

 // strict-tree schema, guards against misspelled properties
 {
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "https://example.com/strict-tree",
 "$recursiveAnchor": true,

 "$ref": "tree",
 "unevaluatedProperties": false
 }

 // instance with misspelled field
 {
 "children": [{ "daat": 1 }]
 }

 If we apply the "strict-tree" schema to the instance, we will follow
 the "$ref" to the "tree" schema, examine its "children" subschema,
 and find the "$recursiveAnchor" in its "items" subschema. At this

Wright, et al. Expires March 19, 2020 [Page 65]

Internet-Draft JSON Schema September 2019

 point, the dynamic path is "#/$ref/properties/children/
 items/$recursiveRef".

 The base URI at this point is "https://example.com/tree", so the
 "$recursiveRef" initially resolves to "https://example.com/tree#".
 Since "$recursiveAnchor" is true, we examine the dynamic path to see
 if there is a different base URI to use. We find "$recursiveAnchor"
 with a true value at the dynamic paths of "#" and "#/$ref".

 The outermost is "#", which is the root schema of the "strict-tree"
 schema, so we use its base URI of "https://example.com/strict-tree",
 which produces a final resolved URI of "https://example.com/strict-
 tree#" for the "$recursiveRef".

 This way, the recursion in the "tree" schema recurses to the root of
 "strict-tree", instead of only applying "strict-tree" to the instance
 root, but applying "tree" to instance children.

Appendix D. Working with vocabularies

D.1. Best practices for vocabulary and meta-schema authors

 Vocabulary authors should take care to avoid keyword name collisions
 if the vocabulary is intended for broad use, and potentially combined
 with other vocabularies. JSON Schema does not provide any formal
 namespacing system, but also does not constrain keyword names,
 allowing for any number of namespacing approaches.

 Vocabularies may build on each other, such as by defining the
 behavior of their keywords with respect to the behavior of keywords
 from another vocabulary, or by using a keyword from another
 vocabulary with a restricted or expanded set of acceptable values.
 Not all such vocabulary re-use will result in a new vocabulary that
 is compatible with the vocabulary on which it is built. Vocabulary
 authors should clearly document what level of compatibility, if any,
 is expected.

 Meta-schema authors should not use "$vocabulary" to combine multiple
 vocabularies that define conflicting syntax or semantics for the same
 keyword. As semantic conflicts are not generally detectable through
 schema validation, implementations are not expected to detect such
 conflicts. If conflicting vocabularies are declared, the resulting
 behavior is undefined.

 Vocabulary authors should provide a meta-schema that validates the
 expected usage of the vocabulary's keywords on their own. Such meta-
 schemas should not forbid additional keywords, and must not forbid
 any keywords from the Core vocabulary.

Wright, et al. Expires March 19, 2020 [Page 66]

Internet-Draft JSON Schema September 2019

 It is recommended that meta-schema authors reference each
 vocabulary's meta-schema using the "allOf" (Section 9.2.1.1) keyword,
 although other mechanisms for constructing the meta-schema may be
 appropriate for certain use cases.

 The recursive nature of meta-schemas makes the "$recursiveAnchor" and
 "$recursiveRef" keywords particularly useful for extending existing
 meta-schemas, as can be seen in the JSON Hyper-Schema meta-schema
 which extends the Validation meta-schema.

 Meta-schemas may impose additional constraints, including describing
 keywords not present in any vocabulary, beyond what the meta-schemas
 associated with the declared vocabularies describe. This allows for
 restricting usage to a subset of a vocabulary, and for validating
 locally defined keywords not intended for re-use.

 However, meta-schemas should not contradict any vocabularies that
 they declare, such as by requiring a different JSON type than the
 vocabulary expects. The resulting behavior is undefined.

 Meta-schemas intended for local use, with no need to test for
 vocabulary support in arbitrary implementations, can safely omit
 "$vocabulary" entirely.

D.2. Example meta-schema with vocabulary declarations

 This meta-schema explicitly declares both the Core and Applicator
 vocabularies, together with an extension vocabulary, and combines
 their meta-schemas with an "allOf". The extension vocabulary's meta-
 schema, which describes only the keywords in that vocabulary, is
 shown after the main example meta-schema.

 The main example meta-schema also restricts the usage of the
 Applicator vocabulary by forbidding the keywords prefixed with
 "unevaluated", which are particularly complex to implement. This
 does not change the semantics or set of keywords defined by the
 Applicator vocabulary. It just ensures that schemas using this meta-
 schema that attempt to use the keywords prefixed with "unevaluted"
 will fail validation against this meta-schema.

 Finally, this meta-schema describes the syntax of a keyword,
 "localKeyword", that is not part of any vocabulary. Presumably, the
 implementors and users of this meta-schema will understand the
 semantics of "localKeyword". JSON Schema does not define any
 mechanism for expressing keyword semantics outside of vocabularies,
 making them unsuitable for use except in a specific environment in
 which they are understood.

Wright, et al. Expires March 19, 2020 [Page 67]

Internet-Draft JSON Schema September 2019

 This meta-schema combines several vocabularies for general use.

 {
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "https://example.com/meta/general-use-example",
 "$recursiveAnchor": true,
 "$vocabulary": {
 "https://json-schema.org/draft/2019-09/vocab/core": true,
 "https://json-schema.org/draft/2019-09/vocab/applicator": true,
 "https://json-schema.org/draft/2019-09/vocab/validation": true,
 "https://example.com/vocab/example-vocab": true
 },
 "allOf": [
 {"$ref": "https://json-schema.org/draft/2019-09/meta/core"},
 {"$ref": "https://json-schema.org/draft/2019-09/meta/applicator"},
 {"$ref": "https://json-schema.org/draft/2019-09/meta/validation"},
 {"$ref": "https://example.com/meta/example-vocab",
],
 "patternProperties": {
 "^unevaluated.*$": false
 },
 "properties": {
 "localKeyword": {
 "$comment": "Not in vocabulary, but validated if used",
 "type": "string"
 }
 }
 }

Wright, et al. Expires March 19, 2020 [Page 68]

Internet-Draft JSON Schema September 2019

 This meta-schema describes only a single extension vocabulary.

 {
 "$schema": "https://json-schema.org/draft/2019-09/schema",
 "$id": "https://example.com/meta/example-vocab",
 "$recursiveAnchor": true,
 "$vocabulary": {
 "https://example.com/vocab/example-vocab": true,
 },
 "type": ["object", "boolean"],
 "properties": {
 "minDate": {
 "type": "string",
 "pattern": "\d\d\d\d-\d\d-\d\d",
 "format": "date",
 }
 }
 }

 As shown above, even though each of the single-vocabulary meta-
 schemas referenced in the general-use meta-schema's "allOf" declares
 its corresponding vocabulary, this new meta-schema must re-declare
 them.

 The standard meta-schemas that combine all vocabularies defined by
 the Core and Validation specification, and that combine all
 vocabularies defined by those specifications as well as the Hyper-
 Schema specification, demonstrate additional complex combinations.
 These URIs for these meta-schemas may be found in the Validation and
 Hyper-Schema specifications, respectively.

 While the general-use meta-schema can validate the syntax of
 "minDate", it is the vocabulary that defines the logic behind the
 semantic meaning of "minDate". Without an understanding of the
 semantics (in this example, that the instance value must be a date
 equal to or after the date provided as the keyword's value in the
 schema), an implementation can only validate the syntactic usage. In
 this case, that means validating that it is a date-formatted string
 (using "pattern" to ensure that it is validated even when "format"
 functions purely as an annotation, as explained in the Validation
 specification [json-schema-validation].

Wright, et al. Expires March 19, 2020 [Page 69]

Internet-Draft JSON Schema September 2019

Appendix E. References and generative use cases

 While the presence of references is expected to be transparent to
 validation results, generative use cases such as code generators and
 UI renderers often consider references to be semantically
 significant.

 To make such use case-specific semantics explicit, the best practice
 is to create an annotation keyword for use in the same schema object
 alongside of a reference keyword such as "$ref".

 For example, here is a hypothetical keyword for determining whether a
 code generator should consider the reference target to be a distinct
 class, and how those classes are related. Note that this example is
 solely for illustrative purposes, and is not intended to propose a
 functional code generation keyword.

 {
 "allOf": [
 {
 "classRelation": "is-a",
 "$ref": "classes/base.json"
 },
 {
 "$ref": "fields/common.json"
 }
],
 "properties": {
 "foo": {
 "classRelation": "has-a",
 "$ref": "classes/foo.json"
 },
 "date": {
 "$ref": "types/dateStruct.json",
 }
 }
 }

 Here, this schema represents some sort of object-oriented class. The
 first reference in the "allOf" is noted as the base class. The
 second is not assigned a class relationship, meaning that the code
 generator should combine the target's definition with this one as if
 no reference were involved.

Wright, et al. Expires March 19, 2020 [Page 70]

Internet-Draft JSON Schema September 2019

 Looking at the properties, "foo" is flagged as object composition,
 while the "date" property is not. It is simply a field with sub-
 fields, rather than an instance of a distinct class.

 This style of usage requires the annotation to be in the same object
 as the reference, which must be recognizable as a reference.

Appendix F. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, and
 Dave Finlay for their submissions and patches to the document.

Appendix G. ChangeLog

 [[CREF15: This section to be removed before leaving Internet-Draft
 status.]]

draft-handrews-json-schema-02

 * Update to RFC 8259 for JSON specification

 * Moved "definitions" from the Validation specification here as
 "$defs"

 * Moved applicator keywords from the Validation specification as
 their own vocabulary

 * Moved the schema form of "dependencies" from the Validation
 specification as "dependentSchemas"

 * Formalized annotation collection

 * Specified recommended output formats

 * Defined keyword interactions in terms of annotation and
 assertion results

 * Added "unevaluatedProperties" and "unevaluatedItems"

 * Define "$ref" behavior in terms of the assertion, applicator,
 and annotation model

 * Allow keywords adjacent to "$ref"

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-02
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 71]

Internet-Draft JSON Schema September 2019

 * Note undefined behavior for "$ref" targets involving unknown
 keywords

 * Add recursive referencing, primarily for meta-schema extension

 * Add the concept of formal vocabularies, and how they can be
 recognized through meta-schemas

 * Additional guidance on initial base URIs beyond network
 retrieval

 * Allow "schema" media type parameter for "application/
 schema+json"

 * Better explanation of media type parameters and the HTTP Accept
 header

 * Use "$id" to establish canonical and base absolute-URIs only,
 no fragments

 * Replace plain-name-fragment-only form of "$id" with "$anchor"

 * Clarified that the behavior of JSON Pointers across "$id"
 boundary is unreliable

draft-handrews-json-schema-01

 * This draft is purely a clarification with no functional changes

 * Emphasized annotations as a primary usage of JSON Schema

 * Clarified $id by use cases

 * Exhaustive schema identification examples

 * Replaced "external referencing" with how and when an
 implementation might know of a schema from another document

 * Replaced "internal referencing" with how an implementation
 should recognized schema identifiers during parsing

 * Dereferencing the former "internal" or "external" references is
 always the same process

 * Minor formatting improvements

draft-handrews-json-schema-00

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-01
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-00

Wright, et al. Expires March 19, 2020 [Page 72]

Internet-Draft JSON Schema September 2019

 * Make the concept of a schema keyword vocabulary more clear

 * Note that the concept of "integer" is from a vocabulary, not
 the data model

 * Classify keywords as assertions or annotations and describe
 their general behavior

 * Explain the boolean schemas in terms of generalized assertions

 * Reserve "$comment" for non-user-visible notes about the schema

 * Wording improvements around "$id" and fragments

 * Note the challenges of extending meta-schemas with recursive
 references

 * Add "application/schema-instance+json" media type

 * Recommend a "schema" link relation / parameter instead of
 "profile"

draft-wright-json-schema-01

 * Updated intro

 * Allowed for any schema to be a boolean

 * "$schema" SHOULD NOT appear in subschemas, although that may
 change

 * Changed "id" to "$id"; all core keywords prefixed with "$"

 * Clarify and formalize fragments for application/schema+json

 * Note applicability to formats such as CBOR that can be
 represented in the JSON data model

draft-wright-json-schema-00

 * Updated references to JSON

 * Updated references to HTTP

 * Updated references to JSON Pointer

 * Behavior for "id" is now specified in terms of RFC3986

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-01
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-00
https://datatracker.ietf.org/doc/html/rfc3986

Wright, et al. Expires March 19, 2020 [Page 73]

Internet-Draft JSON Schema September 2019

 * Aligned vocabulary usage for URIs with RFC3986

 * Removed reference to draft-pbryan-zyp-json-ref-03

 * Limited use of "$ref" to wherever a schema is expected

 * Added definition of the "JSON Schema data model"

 * Added additional security considerations

 * Defined use of subschema identifiers for "id"

 * Rewrote section on usage with HTTP

 * Rewrote section on usage with rel="describedBy" and
 rel="profile"

 * Fixed numerous invalid examples

draft-zyp-json-schema-04

 * Salvaged from draft v3.

 * Split validation keywords into separate document.

 * Split hypermedia keywords into separate document.

 * Initial post-split draft.

 * Mandate the use of JSON Reference, JSON Pointer.

 * Define the role of "id". Define URI resolution scope.

 * Add interoperability considerations.

draft-zyp-json-schema-00

 * Initial draft.

Authors' Addresses

 Austin Wright (editor)

 EMail: aaa@bzfx.net

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/draft-pbryan-zyp-json-ref-03
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-04
https://datatracker.ietf.org/doc/html/draft-zyp-json-schema-00

Wright, et al. Expires March 19, 2020 [Page 74]

Internet-Draft JSON Schema September 2019

 Henry Andrews (editor)

 EMail: andrews_henry@yahoo.com

 Ben Hutton (editor)
 Wellcome Sanger Institute

 EMail: bh7@sanger.ac.uk
 URI: https://jsonschema.dev

 Greg Dennis
 Auckland
 NZ

 EMail: gregsdennis@yahoo.com

https://jsonschema.dev

Wright, et al. Expires March 19, 2020 [Page 75]

