
Internet Engineering Task Force H. Andrews, Ed.
Internet-Draft Cloudflare, Inc.
Intended status: Informational A. Wright, Ed.
Expires: July 23, 2018 January 19, 2018

JSON Hyper-Schema: A Vocabulary for Hypermedia Annotation of JSON
draft-handrews-json-schema-hyperschema-01

Abstract

 JSON Schema is a JSON-based format for describing JSON data using
 various vocabularies. This document specifies a vocabulary for
 annotating JSON documents with hyperlinks. These hyperlinks include
 attributes describing how to manipulate and interact with remote
 resources through hypermedia environments such as HTTP, as well as
 determining whether the link is usable based on the instance value.
 The hyperlink serialization format described in this document is also
 usable independent of JSON Schema.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <http://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 23, 2018.

Andrews & Wright Expires July 23, 2018 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
http://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Hyper-Schema January 2018

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Notational Conventions 4
3. Overview . 4
3.1. Terminology . 5
3.2. Functionality . 6

4. Meta-Schemas and Output Schema 7
5. Schema Keywords . 7
5.1. base . 8
5.2. links . 8

6. Link Description Object 8
6.1. Link Context . 9
6.1.1. anchor . 9
6.1.2. anchorPointer . 9

6.2. Link Relation Type 10
6.2.1. rel . 10
6.2.2. "self" Links . 10
6.2.3. "collection" and "item" Links 11
6.2.4. Using Extension Relation Types 11

6.3. Link Target . 11
6.3.1. href . 12

6.4. Adjusting URI Template Resolution 12
6.4.1. templatePointers 12
6.4.2. templateRequired 12

6.5. Link Target Attributes 12
6.5.1. title . 13
6.5.2. description . 13
6.5.3. targetMediaType 13
6.5.4. targetSchema . 14
6.5.5. targetHints . 14

6.6. Link Input . 15
6.6.1. hrefSchema . 15

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Andrews & Wright Expires July 23, 2018 [Page 2]

Internet-Draft JSON Hyper-Schema January 2018

6.6.2. headerSchema . 16
6.6.3. Manipulating the Target Resource Representation . . . 16
6.6.4. Submitting Data for Processing 17

7. Implementation Requirements 18
7.1. Link Discovery and Look-Up 19
7.2. URI Templating . 19
7.2.1. Populating Template Data From the Instance 21
7.2.2. Accepting Input for Template Data 21
7.2.3. Encoding Data as Strings 22

7.3. Providing Access to LDO Keywords 23
7.4. Requests . 23
7.5. Responses . 24
7.6. Streaming Parsers . 25

8. JSON Hyper-Schema and HTTP 25
8.1. One Link Per Target and Relation Type 26
8.2. "targetSchema" and HTTP 26
8.3. HTTP POST and the "submission*" keywords 27
8.4. Optimizing HTTP Discoverability With "targetHints" . . . 27
8.5. Advertising HTTP Features With "headerSchema" 28
8.6. Creating Resources Through Collections 28
8.7. Content Negotiation and Schema Evolution 29

9. Examples . 29
9.1. Entry Point Links, No Templates 29
9.2. Individually Identified Resources 31
9.3. Submitting a Payload and Accepting URI Input 32
9.4. "anchor", "base" and URI Template Resolution 35
9.5. Collections . 38
9.5.1. Pagination . 43
9.5.2. Creating the First Item 46

10. Security Considerations 47
10.1. Target Attributes 47
10.2. "self" Links . 48

11. Acknowledgments . 49
12. References . 49
12.1. Normative References 49
12.2. Informative References 50

Appendix A. Using JSON Hyper-Schema in APIs 52
A.1. Resource Evolution With Hyper-Schema 52
A.2. Responses and Errors 52
A.3. Static Analysis of an API's Hyper-Schemas 53

Appendix B. ChangeLog . 53
 Authors' Addresses . 56

1. Introduction

 JSON Hyper-Schema is a JSON Schema vocabulary for annotating JSON
 documents with hyperlinks and instructions for processing and

Andrews & Wright Expires July 23, 2018 [Page 3]

Internet-Draft JSON Hyper-Schema January 2018

 manipulating remote JSON resources through hypermedia environments
 such as HTTP.

 The term JSON Hyper-Schema is used to refer to a JSON Schema that
 uses these keywords. The term "hyper-schema" on its own refers to a
 JSON Hyper-Schema within the scope of this specification.

 The primary mechanism introduced for specifying links is the Link
 Description Object (LDO), which is a serialization of the abstract
 link model defined in RFC 8288, section 2 [RFC8288].

 This specification will use the concepts, syntax, and terminology
 defined by the JSON Schema core [json-schema] and JSON Schema
 validation [json-schema-validation] specifications. It is advised
 that readers have a copy of these specifications.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Overview

 JSON Hyper-Schema makes it possible to build hypermedia systems from
 JSON documents by describing how to construct hyperlinks from
 instance data.

 The combination of a JSON instance document and a valid application/
 schema+json hyper-schema for that instance behaves as a single
 hypermedia representation. By allowing this separation, hyper-
 schema-based systems can gracefully support applications that expect
 plain JSON, while providing full hypermedia capabilities for hyper-
 schema-aware applications and user agents.

 User agents can detect the presence of hyper-schema by looking for
 the application/schema+json media type and a "$schema" value that
 indicates the presence of the hyper-schema vocabulary. A user agent
 can then use an implementation of JSON Hyper-Schema to provide an
 interface to the combination of the schema and instance documents as
 a single logical representation of a resource, just as with any
 single-document hypermedia representation format.

 Hyper-schemas allow representations to take up fewer bytes on the
 wire, and distribute the burden of link construction from the server
 to each client. A user agent need not construct a link unless a
 client application requests that link. JSON Hyper-Schema can also be
 used on the server side to generate other link serializations or

https://datatracker.ietf.org/doc/html/rfc8288#section-2
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Andrews & Wright Expires July 23, 2018 [Page 4]

Internet-Draft JSON Hyper-Schema January 2018

 representation formats at runtime, or pre-emptively follow links to
 facilitate server push usage.

 Here is an example hyper-schema that adds a single link, with the
 IANA-registered link relation type "self", that is built from an
 instance with one known object field named "id":

 {
 "type": "object",
 "properties": {
 "id": {
 "type": "number",
 "readOnly": true
 }
 },
 "links": [
 {
 "rel": "self",
 "href": "thing/{id}"
 }
]
 }

 If the instance is {"id": 1234}, and its base URI according to RFC
3986 section 5.1 [RFC3986], is "https://api.example.com/", then

 "https://api.example.com/thing/1234" is the resulting link's target
 URI.

3.1. Terminology

 The terms "schema", "instance", and "meta-schema" are to be
 interpreted as defined in the JSON Schema core specification
 [json-schema].

 The terms "applicable" and "attached" are to be interpreted as
 defined in Section 3 of the JSON Schema validation specification
 [json-schema-validation].

 The terms "link", "link context" (or "context"), "link target" (or
 "target"), and "target attributes" are to be interpreted as defined
 in Section 2 of RFC 8288 [RFC8288].

 The term "user agent" is to be interpreted as defined in Section 2.1
 of RFC 7230 [RFC7230], generalized to apply to any protocol that may
 be used in a hypermedia system rather than specifically being an HTTP
 client.

 This specification defines the following terms:

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986#section-5.1
https://datatracker.ietf.org/doc/html/rfc8288#section-2
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc7230#section-2.1
https://datatracker.ietf.org/doc/html/rfc7230#section-2.1
https://datatracker.ietf.org/doc/html/rfc7230

Andrews & Wright Expires July 23, 2018 [Page 5]

Internet-Draft JSON Hyper-Schema January 2018

 JSON Hyper-Schema A JSON Schema using the keywords defined by this
 specification.

 hyper-schema Within this document, the term "hyper-schema" always
 refers to a JSON Hyper-Schema

 link validity A valid link for an instance is one that is applicable
 to that instance and does not fail any requirement imposed by the
 keywords in the Link Description Object.

 generic user agent A user agent which can be used to interact with
 any resource, from any server, from among the standardized link
 relations, media types, URI schemes, and protocols that it
 supports; though it may be extendible to specially handle
 particular profiles of media types.

 client application An application which uses a hypermedia system for
 a specific purpose. Such an application may also be its own user
 agent, or it may be built on top of a generic user agent. A
 client application is programmed with knowledge of link relations,
 media types, URI schemes, protocols, and data structures that are
 specific to the application's domain.

 client input Data provided through a user agent, and most often also
 through a client application. Such data may be requested from a
 user interactively, or provided before interaction in forms such
 as command-line arguments, configuration files, or hardcoded
 values in source code.

 operation A specific use of a hyperlink, such as making a network
 request (for a URI with a scheme such as "http://" that indicates
 a protocol) or otherwise taking action based on a link (reading
 data from a "data:" URI, or constructing an email message based on
 a "mailto:" link). For protocols such as HTTP that support
 multiple methods, each method is considered to be a separate
 operation on the same link.

3.2. Functionality

 A JSON Hyper-Schema implementation is able to take a hyper-schema, an
 instance, and in some cases client input, and produce a set of fully
 resolved valid links. As defined by RFC 8288, section 2 [RFC8288], a
 link consists of a context, a typed relation, a target, and
 optionally additional target attributes.

 The relation type and target attributes are taken directly from each
 link's Link Description Object. The context and target identifiers

https://datatracker.ietf.org/doc/html/rfc8288#section-2
https://datatracker.ietf.org/doc/html/rfc8288

Andrews & Wright Expires July 23, 2018 [Page 6]

Internet-Draft JSON Hyper-Schema January 2018

 are constructed from some combination of URI Templates, instance
 data, and (in the case of the target identifier) client input.

 The target is always fully identified by a URI. Due to the lack of a
 URI fragment identifier syntax for application/json and many other
 media types that can be used with JSON Hyper-Schema, the context may
 be only partially identified by a URI. In such cases, the remaining
 identification will be provided as a JSON Pointer.

 A few IANA-registered link relation types are given specific
 semantics in a JSON Hyper-Schema document. A "self" link is used to
 interact with the resource that the instance document represents,
 while "collection" and "item" links identify resources for which
 collection-specific semantics can be assumed.

4. Meta-Schemas and Output Schema

 The current URI for the JSON Hyper-Schema meta-schema is
 <http://json-schema.org/draft-07/hyper-schema#>.

 The link description format (Section 6) can be used without JSON
 Schema, and use of this format can be declared by referencing the
 normative link description schema as the schema for the data
 structure that uses the links. The URI of the normative link
 description schema is: <http://json-schema.org/draft-07/links#>.

 JSON Hyper-Schema implementations are free to provide output in any
 format. However, a specific format is defined for use in the
 conformance test suite, which is also used to illustrate points in
 the "Implementation Requirements" (Section 7), and to show the output
 generated by examples (Section 9). It is RECOMMENDED that
 implementations be capable of producing output in this format to
 facilitated testing. The URI of the JSON Schema describing the
 recommended output format is <http://json-schema.org/draft-07/hyper-

schema-output#>.

5. Schema Keywords

 Hyper-schema keywords from all schemas that are applicable to a
 position in an instance, as defined by Section 3 of JSON Schema
 validation [json-schema-validation], can be used with that instance.

 When multiple subschemas are applicable to a given sub-instance, all
 "link" arrays MUST be combined, in any order, into a single set.
 Each object in the resulting set MUST retain its own list of
 applicable "base" values, in resolution order, from the same schema
 and any parent schemas.

http://json-schema.org/draft-07/hyper-schema#
http://json-schema.org/draft-07/links#
http://json-schema.org/draft-07/hyper-schema-output#
http://json-schema.org/draft-07/hyper-schema-output#

Andrews & Wright Expires July 23, 2018 [Page 7]

Internet-Draft JSON Hyper-Schema January 2018

 As with all JSON Schema keywords, all keywords described in this
 section are optional. The minimal valid JSON Hyper-schema is the
 blank object.

5.1. base

 If present, this keyword MUST be first resolved as a URI Template
 (Section 7.2), and then MUST be resolved as a URI Reference against
 the current URI base of the instance. The result MUST be set as the
 new URI base for the instance while processing the sub-schema
 containing "base" and all sub-schemas within it.

 The process for resolving the "base" template can be different when
 being resolved for use with "anchor" than when being resolved for use
 with "href", which is explained in detail in the URI Templating
 section.

5.2. links

 The "links" property of schemas is used to associate Link Description
 Objects with instances. The value of this property MUST be an array,
 and the items in the array must be Link Description Objects, as
 defined below.

6. Link Description Object

 A Link Description Object (LDO) is a serialization of the abstract
 link model defined in RFC 8288, section 2 [RFC8288]. As described in
 that document, a link consists of a context, a relation type, a
 target, and optionally target attributes. JSON Hyper-Schema's LDO
 provides all of these, along with additional features using JSON
 Schema to describe input for use with the links in various ways.

 Due to the use of URI Templates to identify link contexts and
 targets, as well as optional further use of client input when
 identifying targets, an LDO is a link template that may resolve to
 multiple links when used with a JSON instance document.

 A specific use of an LDO, typically involving a request and response
 across a protocol, is referred to as an operation. For many
 protocols, multiple operations are possible on any given link. The
 protocol is indicated by the target's URI scheme. Note that not all
 URI schemes indicate a protocol that can be used for communications,
 and even resources with URI schemes that do indicate such protocols
 need not be available over that protocol.

 A Link Description Object MUST be an object, and the "href"
 (Section 6.3.1) and "rel" (Section 6.2.1) properties MUST be present.

https://datatracker.ietf.org/doc/html/rfc8288#section-2
https://datatracker.ietf.org/doc/html/rfc8288

Andrews & Wright Expires July 23, 2018 [Page 8]

Internet-Draft JSON Hyper-Schema January 2018

 Each keyword is covered briefly in this section, with additional
 usage explanation and comprehensive examples given later in the
 document.

6.1. Link Context

 In JSON Hyper-Schema, the link's context resource is, by default, the
 sub-instance to which it is attached (as defined by Section 3 of the
 JSON Schema validation specification [json-schema-validation]). This
 is often not the entire instance document. This default context can
 be changed using the keywords in this section.

 Depending on the media type of the instance, it may or may not be
 possible to assign a URI to the exact default context resource. In
 particular, application/json does not define a URI fragment
 resolution syntax, so properties or array elements within a plain
 JSON document cannot be fully identified by a URI. When it is not
 possible to produce a complete URI, the position of the context
 SHOULD be conveyed by the URI of the instance document, together with
 a separate plain-string JSON Pointer.

 Implementations MUST be able to construct the link context's URI, and
 (if necessary for full identification), a JSON Pointer in string
 representation form as per RFC 6901, section 5 [RFC6901] in place of
 a URI fragment. The process for constructing a URI based on a URI
 template is given in the URI Templating (Section 7.2) section.

6.1.1. anchor

 This property sets the context URI of the link. The value of the
 property is a URI Template [RFC6570], and the resulting URI-reference
 [RFC3986] MUST be resolved against the base URI of the instance.

 The URI is computed from the provided URI template using the same
 process described for the "href" (Section 6.3.1) property, with the
 exception that "hrefSchema" (Section 6.6.1) MUST NOT be applied.
 Unlike target URIs, context URIs do not accept user input.

6.1.2. anchorPointer

 This property changes the point within the instance that is
 considered to be the context resource of the link. The value of the
 property MUST be a valid JSON Pointer in JSON String representation
 form, or a valid Relative JSON Pointer [relative-json-pointer] which
 is evaluated relative to the default context.

 While an alternate context with a known URI is best set with the
 "anchor" (Section 6.1.1) keyword, the lack of a fragment identifier

https://datatracker.ietf.org/doc/html/rfc6901#section-5
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc3986

Andrews & Wright Expires July 23, 2018 [Page 9]

Internet-Draft JSON Hyper-Schema January 2018

 syntax for application/json means that it is usually not possible to
 change the context within a JSON instance using a URI.

 Even in "+json" media types that define JSON Pointer as a fragment
 identifier syntax, if the default context is nested within an array,
 it is not possible to obtain the index of the default context's
 position in that array in order to construct a pointer to another
 property in that same nested JSON object. This will be demonstrated
 in the examples.

 The result of processing this keyword SHOULD be a URI fragment if the
 media type of the instance allows for such a fragment. Otherwise it
 MUST be a string-encoded JSON Pointer.

6.2. Link Relation Type

 The link's relation type identifies its semantics. It is the primary
 means of conveying how an application can interact with a resource.

 Relationship definitions are not normally media type dependent, and
 users are encouraged to utilize the most suitable existing accepted
 relation definitions.

6.2.1. rel

 The value of this property MUST be a string, and MUST be a single
 Link Relation Type as defined in RFC 8288, Section 2.1.

 This property is required.

6.2.2. "self" Links

 A "self" link, as originally defined by Section 4.2.7.2 of RFC 4287
 [RFC4287], indicates that the target URI identifies a resource
 equivalent to the link context. In JSON Hyper-Schema, a "self" link
 MUST be resolvable from the instance, and therefore "hrefSchema" MUST
 NOT be present.

 Hyper-schema authors SHOULD use "templateRequired" to ensure that the
 "self" link has all instance data that is needed for use.

 A hyper-schema implementation MUST recognize that a link with
 relation type "self" that has the entire current instance document as
 its context describes how a user agent can interact with the resource
 represented by that instance document.

https://datatracker.ietf.org/doc/html/rfc8288#section-2.1
https://datatracker.ietf.org/doc/html/rfc4287#section-4.2.7.2
https://datatracker.ietf.org/doc/html/rfc4287

Andrews & Wright Expires July 23, 2018 [Page 10]

Internet-Draft JSON Hyper-Schema January 2018

6.2.3. "collection" and "item" Links

RFC 6573 [RFC6573] defines and registers the "item" and "collection"
 link relation types. JSON Hyper-Schema imposes additional semantics
 on collection resources indicated by these types.

 Implementations MUST recognize the target of a "collection" link and
 the context of an "item" link as collections.

 A well-known design pattern in hypermedia is to use a collection
 resource to create a member of the collection and give it a server-
 assigned URI. If the protocol indicated by the URI scheme defines a
 specific method that is suited to creating a resource with a server-
 assigned URI, then a collection resource, as identified by these link
 relation types, MUST NOT define semantics for that method that
 conflict with the semantics of creating a collection member.
 Collection resources MAY implement item creation via such a protocol
 method, and user agents MAY assume that any such operation, if it
 exists, has item creation semantics.

 As such a method would correspond to JSON Hyper-Schema's data
 submission concept, the "submissionSchema" (Section 6.6.4.2) field
 for the link SHOULD be compatible with the schema of the
 representation of the collection's items, as indicated by the "item"
 link's target resource or the "self" link of the "collection" link's
 context resource.

6.2.4. Using Extension Relation Types

 When no registered relation (aside from "related") applies, users are
 encouraged to mint their own extension relation types, as described
 in section 2.1.2 of RFC 8288 [RFC8288]. The simplest approaches for
 choosing link relation type URIs are to either use a URI scheme that
 is already in use to identify the system's primary resources, or to
 use a human-readable, non-dereferenceable URI scheme such as "tag",
 defined by RFC 4151 [RFC4151].

 Extension relation type URIs need not be dereferenceable, even when
 using a scheme that allows it.

6.3. Link Target

 The target URI template is used to identify the link's target,
 potentially making use of instance data. Additionally, with
 "hrefSchema" (Section 6.6.1), this template can identify a set of
 possible target resources to use based on client input. The full
 process of resolving the URI template, with or without client input,
 is covered in the URI Templating (Section 7.2) section.

https://datatracker.ietf.org/doc/html/rfc6573
https://datatracker.ietf.org/doc/html/rfc6573
https://datatracker.ietf.org/doc/html/rfc8288#section-2.1.2
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc4151
https://datatracker.ietf.org/doc/html/rfc4151

Andrews & Wright Expires July 23, 2018 [Page 11]

Internet-Draft JSON Hyper-Schema January 2018

6.3.1. href

 The value of the "href" link description property is a template used
 to determine the target URI of the related resource. The value of
 the instance property MUST be resolved as a URI-reference [RFC3986]
 against the base URI of the instance.

 This property is REQUIRED.

6.4. Adjusting URI Template Resolution

 The keywords in this section are used when resolving all URI
 Templates involved in hyper-schema: "base", "anchor", and "href".
 See the URI Templating (Section 7.2) section for the complete
 template resolution algorithm.

 Note that when resolving a "base" template, the attachment point from
 which resolution begins is the attachment point of the "href" or
 "anchor" keyword being resolved which requires "base" templates to be
 resolved, not the attachment point of the "base" keyword itself.

6.4.1. templatePointers

 The value of the "templatePointers" link description property MUST be
 an object. Each property value in the object MUST be a valid JSON
 Pointer [RFC6901], or a valid Relative JSON Pointer
 [relative-json-pointer] which is evaluated relative to the attachment
 point of the link for which the template is being resolved.

 For each property name in the object that matches a variable name in
 the template being resolved, the value of that property adjusts the
 starting position of variable resolution for that variable.
 Properties which do not match template variable names in the template
 being resolved MUST be ignored.

6.4.2. templateRequired

 The value of this keyword MUST be an array, and the elements MUST be
 unique. Each element SHOULD match a variable in the link's URI
 Template, without percent-encoding. After completing the entire URI
 Template resolution process, if any variable that is present in this
 array does not have a value, the link MUST NOT be used.

6.5. Link Target Attributes

 All properties in this section are advisory only. While keywords
 such as "title" and "description" are used primarily to present the
 link to users, those keywords that predict the nature of a link

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6901

Andrews & Wright Expires July 23, 2018 [Page 12]

Internet-Draft JSON Hyper-Schema January 2018

 interaction or response MUST NOT be considered authoritative. The
 runtime behavior of the target resource MUST be respected whenever it
 conflicts with the target attributes in the LDO.

6.5.1. title

 This property defines a title for the link. The value MUST be a
 string.

 User agents MAY use this title when presenting the link to the user.

6.5.2. description

 This property provides additional information beyond what is present
 in the title. The value MUST be a string. While a title is
 preferably short, a description can be used to go into more detail
 about the purpose and usage of the link.

 User agents MAY use this description when presenting the link to the
 user.

6.5.3. targetMediaType

 The value of this property represents the media type RFC 2046
 [RFC2046], that is expected to be returned when fetching this
 resource. This property value MAY be a media range instead, using
 the same pattern defined in RFC 7231, section 5.3.2 - HTTP "Accept"
 header [RFC7231].

 This property is analogous to the "type" property of other link
 serialization formats. User agents MAY use this information to
 inform the interface they present to the user before the link is
 followed, but MUST NOT use this information in the interpretation of
 the resulting data. Instead, a user agent MUST use the media type
 given by the response for run-time interpretation. See the section
 on "Security Concerns" (Section 10) for a detailed examination of
 mis-use of "targetMediaType".

 For protocols supporting content-negotiation, implementations MAY
 choose to describe possible target media types using protocol-
 specific information in "headerSchema" (Section 6.6.2). If both
 protocol-specific information and "targetMediaType" are present, then
 the value of "targetMediaType" MUST be compatible with the protocol-
 specific information, and SHOULD indicate the media type that will be
 returned in the absence of content negotiation.

https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.2
https://datatracker.ietf.org/doc/html/rfc7231

Andrews & Wright Expires July 23, 2018 [Page 13]

Internet-Draft JSON Hyper-Schema January 2018

 When no such protocol-specific information is available, or when the
 implementation does not recognize the protocol involved, then the
 value SHOULD be taken to be "application/json".

6.5.4. targetSchema

 This property provides a schema that is expected to describe the link
 target's representation. Depending on the protocol, the schema may
 or may not describe the request or response to any particular
 operation performed with the link. See the JSON Hyper-Schema and
 HTTP (Section 8) section for an in-depth discussion of how this
 keyword is used with HTTP.

6.5.5. targetHints

 [[CREF1: This section attempts to strike a balance between
 comprehensiveness and flexibility by deferring most of its structure
 to the protocol indicated by the URI scheme. Note that a resource
 can be identified by a URI with a dereferenceable scheme, yet not be
 accessible over that protocol. While currently very loose, this
 section is expected to become more well-defined based on draft
 feedback, and may change significantly in future drafts.]]

 The value of this property is advisory only. It represents
 information that is expected to be discoverable through interacting
 with the target resource, typically in the form of protocol-specific
 control information or meta-data such as headers returned in response
 to an HTTP HEAD or OPTIONS request. The protocol is determined by
 the "href" URI scheme, although note that resources are not
 guaranteed to be accessible over such a protocol.

 The value of this property SHOULD be an object. The keys to this
 object SHOULD be lower-cased forms of the control data field names.
 Each value SHOULD be an array, in order to uniformly handle multi-
 valued fields. Multiple values MUST be presented as an array, and
 not as a single string.

 Protocols with control information not suitable for representation as
 a JSON object MAY be represented by another data type, such as an
 array.

 Values that cannot be understood as part of the indicated protocol
 MUST be ignored by a JSON Hyper-Schema implementation. Applications
 MAY make use of such values, but MUST NOT assume interoperability
 with other implementations.

Andrews & Wright Expires July 23, 2018 [Page 14]

Internet-Draft JSON Hyper-Schema January 2018

 Implementations MUST NOT assume that all discoverable information is
 accounted for in this object. Client applications MUST properly
 handle run-time responses that contradict this property's values.

 Client applications MUST NOT assume that an implementation will
 automatically take any action based on the value of this property.

 See "JSON Hyper-Schema and HTTP" (Section 8) for guidance on using
 this keyword with HTTP and analogous protocols.

6.6. Link Input

 There are four ways to use client input with a link, and each is
 addressed by a separate link description object keyword. When
 performing operations, user agents SHOULD ignore schemas that are not
 relevant to their semantics.

6.6.1. hrefSchema

 The value of the "hrefSchema" link description property MUST be a
 valid JSON Schema. This schema is used to validate user input or
 other user agent data for filling out the URI Template in "href"
 (Section 6.3.1).

 Omitting "hrefSchema" or setting the entire schema to "false"
 prevents any user agent data from being accepted.

 Setting any subschema that applies to a particular variable to the
 JSON literal value "false" prevents any user agent data from being
 accepted for that single variable.

 For template variables that can be resolved from the instance data,
 if the instance data is valid against all applicable subschemas in
 "hrefSchema", then it MUST be used to pre-populate the input data set
 for that variable.

 Note that even when data is pre-populated from the instance, the
 validation schema for that variable in "hrefSchema" need not be
 identical to the validation schema(s) that apply to the instance
 data's location. This allows for different validation rules for user
 agent data, such as supporting spelled-out months for date-time
 input, but using the standard date-time format for storage.

 After input is accepted, potentially overriding the pre-populated
 instance data, the resulting data set MUST successfully validate
 against the value of "hrefSchema". If it does not then the link MUST
 NOT be used. If it is valid, then the process given in the "URI
 Templating" section continues with this updated data set.

Andrews & Wright Expires July 23, 2018 [Page 15]

Internet-Draft JSON Hyper-Schema January 2018

6.6.2. headerSchema

 [[CREF2: As with "targetHints", this keyword is somewhat under-
 specified to encourage experimentation and feedback as we try to
 balance flexibility and clarity.]]

 If present, this property is a schema for protocol-specific request
 headers or analogous control and meta-data. The value of this object
 MUST be a valid JSON Schema. The protocol is determined by the
 "href" URI scheme, although note that resources are not guaranteed to
 be accessible over such a protocol. The schema is advisory only; the
 target resource's behavior is not constrained by its presence.

 The purpose of this keyword is to advertise target resource
 interaction features, and indicate to user agents and client
 applications what headers and header values are likely to be useful.
 User agents and client applications MAY use the schema to validate
 relevant headers, but MUST NOT assume that missing headers or values
 are forbidden from use. While schema authors MAY set
 "additionalProperties" to false, this is NOT RECOMMENDED and MUST NOT
 prevent client applications or user agents from supplying additional
 headers when requests are made.

 The exact mapping of the JSON data model into the headers is
 protocol-dependent. However, in most cases this schema SHOULD
 specify a type of "object", and the property names SHOULD be lower-
 cased forms of the control data field names. See the "JSON Hyper-
 Schema and HTTP" (Section 8) section for detailed guidance on using
 this keyword with HTTP and analogous protocols.

 "headerSchema" is applicable to any request method or command that
 the protocol supports. When generating a request, user agents and
 client applications SHOULD ignore schemas for headers that are not
 relevant to that request.

6.6.3. Manipulating the Target Resource Representation

 In JSON Hyper-Schema, "targetSchema" (Section 6.5.4) supplies a non-
 authoritative description of the target resource's representation. A
 client application can use "targetSchema" to structure input for
 replacing or modifying the representation, or as the base
 representation for building a patch document based on a patch media
 type.

 Alternatively, if "targetSchema" is absent or if the client
 application prefers to only use authoritative information, it can
 interact with the target resource to confirm or discover its
 representation structure.

Andrews & Wright Expires July 23, 2018 [Page 16]

Internet-Draft JSON Hyper-Schema January 2018

 "targetSchema" is not intended to describe link operation responses,
 except when the response semantics indicate that it is a
 representation of the target resource. In all cases, the schema
 indicated by the response itself is authoritative. See "JSON Hyper-
 Schema and HTTP" (Section 8) for detailed examples.

6.6.4. Submitting Data for Processing

 The "submissionSchema" (Section 6.6.4.2) and "submissionMediaType"
 (Section 6.6.4.1) keywords describe the domain of the processing
 function implemented by the target resource. Otherwise, as noted
 above, the submission schema and media type are ignored for
 operations to which they are not relevant.

6.6.4.1. submissionMediaType

 If present, this property indicates the media type format the client
 application and user agent should use for the request payload
 described by "submissionSchema" (Section 6.6.4.2).

 Omitting this keyword has the same behavior as a value of
 application/json.

 Note that "submissionMediaType" and "submissionSchema" are not
 restricted to HTTP URIs. [[CREF3: This statement might move to
 wherever the example ends up.]]

6.6.4.2. submissionSchema

 This property contains a schema which defines the acceptable
 structure of the document to be encoded according to the
 "submissionMediaType" property and sent to the target resource for
 processing. This can be viewed as describing the domain of the
 processing function implemented by the target resource.

 This is a separate concept from the "targetSchema" (Section 6.5.4)
 property, which describes the target information resource (including
 for replacing the contents of the resource in a PUT request), unlike
 "submissionSchema" which describes the user-submitted request data to
 be evaluated by the resource. "submissionSchema" is intended for use
 with requests that have payloads that are not necessarily defined in
 terms of the target representation.

 Omitting "submissionSchema" has the same behavior as a value of
 "true".

Andrews & Wright Expires July 23, 2018 [Page 17]

Internet-Draft JSON Hyper-Schema January 2018

7. Implementation Requirements

 At a high level, a conforming implementation will meet the following
 requirements. Each of these requirements is covered in more detail
 in the individual keyword sections and keyword group overviews.

 Note that the requirements around how an implementation MUST
 recognize "self", "collection", and "item" links are thoroughly
 covered in the link relation type (Section 6.2) section and are not
 repeated here.

 While it is not a mandatory format for implementations, the output
 format used in the test suite summarizes what needs to be computed
 for each link before it can be used:

 contextUri The fully resolved URI (with scheme) of the context
 resource. If the context is not the entire resource and there is
 a usable fragment identifier syntax, then the URI includes a
 fragment. Note that there is no such syntax for application/json.

 contextPointer The JSON Pointer for the location within the instance
 of the context resource. If the instance media type supports JSON
 Pointers as fragment identifiers, this pointer will be the same as
 the one encoded in the fragment of the "contextUri" field.

 rel The link relation type, as it appears in the LDO.

 targetUri The fully resolved URI (with a scheme) of the target
 resource. If the link accepts input, this can only be produced
 once the input has been supplied.

 hrefInputTemplates The list of partially resolved URI references for
 a link that accepts input. The first entry in the list is the
 partially resolved "href". The additional entries, if any, are
 the partially resolved "base" values ordered from the most
 immediate out to the root of the schema. Template variables that
 are pre-populated in the input are not resolved at this stage, as
 the pre-populated value can be overridden.

 hrefPrepopulatedInput The data set that the user agent should use to
 prepopulate any input mechanism before accepting client input. If
 input is to be accepted but no fields are to be pre-populated,
 then this will be an empty object.

 attachmentPointer The JSON Pointer for the location within the
 instance to which the link is attached. By default, "contextUri"
 and "attachmentUri" are the same, but "contextUri" can be changed
 by LDO keywords, while "attachmentUri" cannot.

Andrews & Wright Expires July 23, 2018 [Page 18]

Internet-Draft JSON Hyper-Schema January 2018

 Other LDO keywords that are not involved in producing the above
 information are included exactly as they appear when producing output
 for the test suite. Those fields will not be further discussed here
 unless specifically relevant.

7.1. Link Discovery and Look-Up

 Before links can be used, they must be discovered by applying the
 hyper-schema to the instance and finding all applicable and valid
 links. Note that in addition to collecting valid links, any "base"
 (Section 5.1) values necessary to resolve each LDO's URI Templates
 must also be located and associated with the LDO through whatever
 mechanism is most useful for the implementation's URI Template
 resolution process.

 And implementation MUST support looking up links by either their
 attachment pointer or context pointer, either by performing the look-
 up or by providing the set of all links with both pointers determined
 so that user agents can implement the look-up themselves.

 When performing look-ups by context pointer, links that are attached
 to elements of the same array MUST be returned in the same order as
 the array elements to which they are attached.

7.2. URI Templating

 Three hyper-schema keywords are URI Templates [RFC6570]: "base",
 "anchor", and "href". Each are resolved separately to URI-
 references, and then the anchor or href URI-reference is resolved
 against the base (which is itself resolved against earlier bases as
 needed, each of which was first resolved from a URI Template to a
 URI-reference).

 All three keywords share the same algorithm for resolving variables
 from instance data, which makes use of the "templatePointers" and
 "templateRequired" keywords. When resolving "href", both it and any
 "base" templates needed for resolution to an absolute URI, the
 algorithm is modified to optionally accept user input based on the
 "hrefSchema" keyword.

 For each URI Template (T), the following pseudocode describes an
 algorithm for resolving T into a URI-reference (R). For the purpose
 of this algorithm:

 o "ldo.templatePointers" is an empty object if the keyword was not
 present and "ldo.templateRequired" is likewise an empty array.

https://datatracker.ietf.org/doc/html/rfc6570

Andrews & Wright Expires July 23, 2018 [Page 19]

Internet-Draft JSON Hyper-Schema January 2018

 o "attachmentPointer" is the absolute JSON Pointer for the
 attachment location of the LDO.

 o "getApplicableSchemas()" returns an iterable set of all
 (sub)schemas that apply to the attachment point in the instance.

 This algorithm should be applied first to either "href" or "anchor",
 and then as needed to each successive "base". The order is
 important, as it is not always possible to tell whether a template
 will resolve to a full URI or a URI-reference.

 In English, the high-level algorithm is:

 1. Populate template variable data from the instance

 2. If input is desired, accept input

 3. Check that all required variables have a value

 4. Encode values into strings and fill out the template

 This is the high-level algorithm as pseudocode. "T" comes from
 either "href" or "anchor" within the LDO, or from "base" in a
 containing schema. Pseudocode for each step follows.
 "initialTemplateKeyword" indicates which of the two started the
 process (since "base" is always resolved in order to finish resolving
 one or the other of those keywords).

 templateData = populateDataFromInstance(T, ldo, instance)

 if initialTemplateKeyword == "href" and ldo.hrefSchema exists:
 inputData = acceptInput(ldo, instance, templateData)
 for varname in inputData:
 templateData[varname] = inputData[varname]

 for varname in ldo.templateRequired:
 if not exists templateData[varname]
 fatal("Missing required variable(s)")

 templateData = stringEncode(templateData)
 R = rfc6570ResolutionAlgorithm(T, templateData)

Andrews & Wright Expires July 23, 2018 [Page 20]

Internet-Draft JSON Hyper-Schema January 2018

7.2.1. Populating Template Data From the Instance

 This step looks at various locations in the instance for variable
 values. For each variable:

 1. Use "templatePointers" to find a value if the variable appears in
 that keyword's value

 2. Otherwise, look for a property name matching the variable in the
 instance location to which the link is attached

 3. In either case, if there is a value at the location, put it in
 the template resolution data set

 for varname in T:
 varname = rfc3986PercentDecode(varname)
 if varname in ldo.templatePointers:
 valuePointer = templatePointers[varname]
 if valuePointer is relative:
 valuePointer = resolveRelative(attachmentPointer,
 valuePointer)
 else
 valuePointer = attachmentPointer + "/" + varname

 value = instance.valueAt(valuePointer)
 if value is defined:
 templateData[varname] = value

7.2.2. Accepting Input for Template Data

 This step is relatively complex, as there are several cases to
 support. Some variables will forbid input and some will allow it.
 Some will have initial values that need to be presented in the input
 interface, and some will not.

 1. Determine which variables can accept input

 2. Pre-populate the input data set if the template resolution data
 set has a value

 3. Accept input (present a web form, make a callback, etc.)

 4. Validate the input data set, (not the template resolution data
 set)

Andrews & Wright Expires July 23, 2018 [Page 21]

Internet-Draft JSON Hyper-Schema January 2018

 5. Put the input in the template resolution data set, overriding any
 existing values

 "InputForm" represents whatever sort of input mechanism is
 appropriate. This may be a literal web form, or may be a more
 programmatic construct such as a callback function accepting specific
 fields and data types, with the given initial values, if any.

 form = new InputForm()
 for varname in T:
 useField = true
 useInitialData = true
 for schema in getApplicableSchemas(ldo.hrefSchema,
 "/" + varname):
 if schema is false:
 useField = false
 break

 if varname in templateData and
 not isValid(templateData[varname], schema)):
 useInitialData = false
 break

 if useField:
 if useInitialData:
 form.addInputFieldFor(varname, ldo.hrefSchema,
 templateData[varname])
 else:
 form.addInputFieldFor(varname, ldo.hrefSchema)

 inputData = form.acceptInput()

 if not isValid(inputData, hrefSchema):
 fatal("Input invalid, link is not usable")

 return inputData:

7.2.3. Encoding Data as Strings

 This section is straightforward, converting literals to their names
 as strings, and converting numbers to strings in the most obvious
 manner, and percent-encoding as needed for use in the URI.

Andrews & Wright Expires July 23, 2018 [Page 22]

Internet-Draft JSON Hyper-Schema January 2018

 for varname in templateData:
 value = templateData[varname]
 if value is true:
 templateData[varname] = "true"
 else if value is false:
 temlateData[varname] = "false"
 else if value is null:
 templateData[varname] = "null"
 else if value is a number:
 templateData[varname] =
 bestEffortOriginalJsonString(value)
 else:
 templateData[varname] = rfc3986PercentEncode(value)

 In some software environments the original JSON representation of a
 number will not be available (there is no way to tell the difference
 between 1.0 and 1), so any reasonable representation should be used.
 Schema and API authors should bear this in mind, and use other types
 (such as string or boolean) if the exact representation is important.
 If the number was provide as input in the form of a string, the
 string used as input SHOULD be used.

7.3. Providing Access to LDO Keywords

 For a given link, an implementation MUST make the values of all
 target attribute keywords directly available to the user agent.
 Implementations MAY provide additional interfaces for using this
 information, as discussed in each keyword's section.

 For a given link, an implementation MUST make the value of each input
 schema keyword directly available to the user agent.

 To encourage encapsulation of the URI Template resolution process,
 implementations MAY omit the LDO keywords that are used only to
 construct URIs. However, implementations MUST provide access to the
 link relation type.

 Unrecognized keywords SHOULD be made available to the user agent, and
 MUST otherwise be ignored.

7.4. Requests

 A hyper-schema implementation SHOULD provide access to all
 information needed to construct any valid request to the target
 resource.

Andrews & Wright Expires July 23, 2018 [Page 23]

Internet-Draft JSON Hyper-Schema January 2018

 The LDO can express all information needed to perform any operation
 on a link. This section explains what hyper-schema fields a user
 agent should examine to build requests from any combination of
 instance data and client input. A hyper-schema implementation is not
 itself expected to construct and send requests.

 Target URI construction rules, including "hrefSchema" for accepting
 input, are identical for all possible requests.

 Requests that do not carry a body payload do not require additional
 keyword support.

 Requests that take a target representation as a payload SHOULD use
 the "targetSchema" and "targetMediaType" keywords for input
 description and payload validation. If a protocol allows an
 operation taking a payload that is based on the representation as
 modified by a media type (such as a patch media type), then such a
 media type SHOULD be indicated through "targetHints" in a protocol-
 specific manner.

 Requests that take a payload that is not derived from the target
 resource's representation SHOULD use the "submissionSchema" and
 "submissionMediaType" keywords for input description and payload
 validation. Protocols used in hypermedia generally only support one
 such non-representation operation per link.

 RPC systems that pipe many application operations with arbitrarily
 different request structures through a single hypermedia protocol
 operation are outside of the scope of a hypermedia format such as
 JSON Hyper-Schema.

7.5. Responses

 As a hypermedia format, JSON Hyper-Schema is concerned with
 describing a resource, including describing its links in sufficient
 detail to make all valid requests. It is not concerned with directly
 describing all possible responses for those requests.

 As in any hypermedia system, responses are expected to be self-
 describing. In the context of hyper-schema, this means that each
 response MUST link its own hyper-schema(s). While responses that
 consist of a representation of the target resource are expected to be
 valid against "targetSchema" and "targetMediaType", those keywords
 are advisory only and MUST be ignored if contradicted by the response
 itself.

 Other responses, including error responses, complex redirections, and
 processing status representations SHOULD also link to their own

Andrews & Wright Expires July 23, 2018 [Page 24]

Internet-Draft JSON Hyper-Schema January 2018

 schemas and use appropriate media types (e.g. "application/
 problem+json" [RFC7807] for errors). Certain errors might not link a
 schema due to being generated by an intermediary that is not aware of
 hyper-schema, rather than by the origin.

 User agents are expected to understand protocol status codes and
 response media types well enough to handle common situations, and
 provide enough information to client applications to handle domain-
 specific responses.

 Statically mapping all possible responses and their schemas at design
 time is outside of the scope of JSON Hyper-Schema, but may be within
 the scope of other JSON Schema vocabularies which build on hyper-
 schema (see Appendix A.3).

7.6. Streaming Parsers

 The requirements around discovering links based on their context, or
 using the context of links to identify collections, present unique
 challenges when used with streaming parsers. It is not possible to
 authoritatively fulfill these requirements without processing the
 entire schema and instance documents.

 Such implementations MAY choose to return non-authoritative answers
 based on data processed to date. When offering this approach,
 implementations MUST be clear on the nature of the response, and MUST
 offer an option to block and wait until all data is processed and an
 authoritative answer can be returned.

8. JSON Hyper-Schema and HTTP

 While JSON Hyper-Schema is a hypermedia format and therefore
 protocol-independent, it is expected that its most common use will be
 in HTTP systems, or systems using protocols such as CoAP that are
 explicitly analogous to HTTP.

 This section provides guidance on how to use each common HTTP method
 with a link, and how collection resources impose additional
 constraints on HTTP POST. Additionally, guidance is provided on
 hinting at HTTP response header values and describing possible HTTP
 request headers that are relevant to the given resource.

Section 11 of the JSON Schema core specification [json-schema]
 provides guidance on linking instances in a hypermedia system to
 their schemas. This may be done with network-accessible schemas, or
 may simply identify schemas which were pre-packaged within the client
 application. JSON Hyper-Schema intentionally does not constrain this

https://datatracker.ietf.org/doc/html/rfc7807

Andrews & Wright Expires July 23, 2018 [Page 25]

Internet-Draft JSON Hyper-Schema January 2018

 mechanism, although it is RECOMMENDED that the techniques outlined in
 the core specification be used to whatever extent is possible.

8.1. One Link Per Target and Relation Type

 Link Description Objects do not directly indicate what operations,
 such as HTTP methods, are supported by the target resource. Instead,
 operations should be inferred primarily from link relation types
 (Section 6.2.1) and URI schemes.

 This means that for each target resource and link relation type pair,
 schema authors SHOULD only define a single LDO. While it is possible
 to use "allow" with "targetHints" to repeat a relation type and
 target pair with different HTTP methods marked as allowed, this is
 NOT RECOMMENDED and may not be well-supported by conforming
 implementations.

 All information necessary to use each HTTP method can be conveyed in
 a single LDO as explained in this section. The "allow" field in
 "targetHints" is intended simply to hint at which operations are
 supported, not to separately define each operation.

 Note, however, that a resource may always decline an operation at
 runtime, for instance due to authorization failure, or due to other
 application state that controls the operation's availability.

8.2. "targetSchema" and HTTP

 "targetSchema" describes the resource on the target end of the link,
 while "targetMediaType" defines that resource's media type. With
 HTTP links, "headerSchema" can also be used to describe valid values
 for use in an "Accept" request header, which can support multiple
 media types or media ranges. When both ways of indicating the target
 media type are present, "targetMediaType" SHOULD indicate the default
 representation media type, while the schema for "accept" in
 "headerSchema" SHOULD include the default as well as any alternate
 media types or media ranges that can be requested.

 Since the semantics of many HTTP methods are defined in terms of the
 target resource, "targetSchema" is used for requests and/or responses
 for several HTTP methods. In particular, "targetSchema" suggests
 what a client application can expect for the response to an HTTP GET
 or any response for which the "Content-Location" header is equal to
 the request URI, and what a client application should send if it
 replaces the resource in an HTTP PUT request. These correlations are
 defined by RFC 7231, section 4.3.1 - "GET", section 4.3.4 "PUT", and

section 3.1.4.2, "Content-Location" [RFC7231].

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.1
https://datatracker.ietf.org/doc/html/rfc7231

Andrews & Wright Expires July 23, 2018 [Page 26]

Internet-Draft JSON Hyper-Schema January 2018

 Per RFC 5789 [RFC5789], the request structure for an HTTP PATCH is
 determined by the combination of "targetSchema" and the request media
 type, which is conveyed by the "Accept-Patch" header, which may be
 included in "targetHints". Media types that are suitable for PATCH-
 ing define a syntax for expressing changes to a document, which can
 be applied to the representation described by "targetSchema" to
 determine the set of syntactically valid request payloads. Often,
 the simplest way to validate a PATCH request is to apply it and
 validate the result as a normal representation.

8.3. HTTP POST and the "submission*" keywords

 JSON Hyper-Schema allows for resources that process arbitrary data in
 addition to or instead of working with the target's representation.
 This arbitrary data is described by the "submissionSchema" and
 "submissionMediaType" keywords. In the case of HTTP, the POST method
 is the only one that handles such data. While there are certain
 conventions around using POST with collections, the semantics of a
 POST request are defined by the target resource, not HTTP.

 In addition to the protocol-neutral "submission*" keywords (see
Section 9.3 for a non-HTTP example), the "Accept-Post" header can be

 used to specify the necessary media type, and MAY be advertised via
 the "targetHints" field. [[CREF4: What happens if both are used?
 Also, "submissionSchema" is a MUST to support, while "targetHints"
 are at most a SHOULD. But forbidding the use of "Accept-Post" in
 "targetHints" seems incorrect.]]

 Successful responses to POST other than a 201 or a 200 with "Content-
 Location" set likewise have no HTTP-defined semantics. As with all
 HTTP responses, any representation in the response should link to its
 own hyper-schema to indicate how it may be processed. As noted in

Appendix A.2, connecting hyperlinks with all possible operation
 responses is not within the scope of JSON Hyper-Schema.

8.4. Optimizing HTTP Discoverability With "targetHints"

 [[CREF5: It would be good to also include a section with CoAP
 examples.]]

 JSON serializations of HTTP response header information SHOULD follow
 the guidelines established by the work in progress "A JSON Encoding
 for HTTP Header Field Values" [I-D.reschke-http-jfv]. Approaches
 shown in that document's examples SHOULD be applied to other
 similarly structured headers wherever possible.

 Headers for all possible HTTP method responses all share
 "headerSchema". In particular, both headers that appear in a HEAD

https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc5789

Andrews & Wright Expires July 23, 2018 [Page 27]

Internet-Draft JSON Hyper-Schema January 2018

 response and those that appear in an OPTIONS response can appear. No
 distinction is made within "headerSchema" as to which method response
 contains which header.

 It is RECOMMENDED that schema authors provide hints for the values of
 the following types of HTTP headers whenever applicable:

 o Method allowance

 o Method-specific request media types

 o Authentication challenges

 In general, headers that are likely to have different values at
 different times SHOULD NOT be included in "targetHints".

8.5. Advertising HTTP Features With "headerSchema"

 Schemas SHOULD be written to describe JSON serializations that follow
 guidelines established by the work in progress "A JSON Encoding for
 HTTP Header Field Values" [I-D.reschke-http-jfv] Approaches shown in
 that document's examples SHOULD be applied to other similarly
 structured headers wherever possible.

 It is RECOMMENDED that schema authors describe the available usage of
 the following types of HTTP headers whenever applicable:

 o Content negotiation

 o Authentication and authorization

 o Range requests

 o The "Prefer" header

 Headers such as cache control and conditional request headers are
 generally implemented by intermediaries rather than the resource, and
 are therefore not generally useful to describe. While the resource
 must supply the information needed to use conditional requests, the
 runtime handling of such headers and related responses is not
 resource-specific.

8.6. Creating Resources Through Collections

 When using HTTP, or a protocol such as CoAP that is explicitly
 analogous to HTTP, this is done by POST-ing a representation of the
 individual resource to be created to the collection resource. The

Andrews & Wright Expires July 23, 2018 [Page 28]

Internet-Draft JSON Hyper-Schema January 2018

 process for recognizing collection and item resources is described in
Section 6.2.3.

8.7. Content Negotiation and Schema Evolution

 JSON Hyper-Schema facilitates HTTP content negotiation, and allows
 for a hybrid of the proactive and reactive strategies. As mentioned
 above, a hyper-schema can include a schema for HTTP headers such as
 "Accept", "Accept-Charset", "Accept-Language", etc with the
 "headerSchema" keyword. A user agent or client application can use
 information in this schema, such as an enumerated list of supported
 languages, in lieu of making an initial request to start the reactive
 negotiation process.

 In this way, the proactive content negotiation technique of setting
 these headers can be informed by server information about what values
 are possible, similar to examining a list of alternatives in reactive
 negotiation.

 For media types that allow specifying a schema as a media type
 parameter, the "Accept" values sent in a request or advertised in
 "headerSchema" can include the URI(s) of the schema(s) to which the
 negotiated representation is expected to conform. One possible use
 for schema parameters in content negotiation is if the resource has
 conformed to several different schema versions over time. The client
 application can indicate what version(s) it understands in the
 "Accept" header in this way.

9. Examples

 This section shows how the keywords that construct URIs and JSON
 Pointers are used. The results are shown in the format used by the
 test suite. [[CREF6: Need to post that and link it, but it should be
 pretty self-explanatory to those of you reviewing things at this
 stage.]]

 Most other keywords are either straightforward ("title" and
 "description"), apply validation to specific sorts of input,
 requests, or responses, or have protocol-specific behavior. Examples
 demonstrating HTTP usage are available in an Appendix (Section 8).

9.1. Entry Point Links, No Templates

 For this example, we will assume an example API with a documented
 entry point URI of https://example.com, which is an empty JSON object
 with a link to a schema. Here, the entry point has no data of its
 own and exists only to provide an initial set of links:

Andrews & Wright Expires July 23, 2018 [Page 29]

Internet-Draft JSON Hyper-Schema January 2018

 GET https://api.example.com HTTP/1.1

 200 OK
 Content-Type: application/json
 Link: <https://schema.example.com/entry> rel=describedBy
 {}

 The linked hyper-schema defines the API's base URI and provides two
 links: an "about" link to API documentation, and a "self" link
 indicating that this is a schema for the base URI. In this case the
 base URI is also the entry point URI.

 {
 "$id": "https://schema.example.com/entry",
 "$schema": "http://json-schema.org/draft-07/hyper-schema#",
 "base": "https://api.example.com/",
 "links": [
 {
 "rel": "self",
 "href": ""
 }, {
 "rel": "about",
 "href": "/docs"
 }
]
 }

 These are the simplest possible links, with only a relation type and
 an "href" with no template variables. They resolve as follows:

 [
 {
 "contextUri": "https://api.example.com",
 "contextPointer": "",
 "rel": "self",
 "targetUri": "https://api.example.com",
 "attachmentPointer": ""
 },
 {
 "contextUri": "https://api.example.com",
 "contextPointer": "",
 "rel": "about",
 "targetUri": "https://api.example.com/docs",
 "attachmentPointer": ""
 }
]

Andrews & Wright Expires July 23, 2018 [Page 30]

Internet-Draft JSON Hyper-Schema January 2018

 The attachment pointer is the root pointer (the only possibility with
 an empty object for the instance). The context URI is the default,
 which is the requested document. Since application/json does not
 allow for fragments, the context pointer is necessary to fully
 describe the context. Its default behavior is to be the same as the
 attachment pointer.

9.2. Individually Identified Resources

 Let's add "things" to our system, starting with an individual thing:

 {
 "$id": "https://schema.example.com/thing",
 "$schema": "http://json-schema.org/draft-07/hyper-schema#",
 "base": "https://api.example.com/",
 "type": "object",
 "required": ["data"],
 "properties": {
 "id": {"$ref": "#/definitions/id"},
 "data": true
 },
 "links": [
 {
 "rel": "self",
 "href": "things/{id}",
 "templateRequired": ["id"],
 "targetSchema": {"$ref": "#"}
 }
],
 "definitions": {
 "id": {
 "type": "integer",
 "minimum": 1,
 "readOnly": true
 }
 }
 }

 Our "thing" has a server-assigned id, which is required in order to
 construct the "self" link. It also has a "data" field which can be
 of any type. The reason for the "definitions" section will be clear
 in the next example.

 Note that "id" is not required by the validation schema, but is
 required by the self link. This makes sense: a "thing" only has a
 URI if it has been created, and the server has assigned an id.
 However, you can use this schema with an instance containing only the

Andrews & Wright Expires July 23, 2018 [Page 31]

Internet-Draft JSON Hyper-Schema January 2018

 data field, which allows you to validate "thing" instances that you
 are about to create.

 Let's add a link to our entry point schema that lets you jump
 directly to a particular thing if you can supply it's id as input.
 To save space, only the new LDO is shown. Unlike "self" and "about",
 there is no IANA-registered relationship about hypothetical things,
 so an extension relationship is defined using the "tag:" URI scheme
 [RFC4151]:

 {
 "rel": "tag:rel.example.com,2017:thing",
 "href": "things/{id}",
 "hrefSchema": {
 "required": ["id"],
 "properties": {
 "id": {"$ref": "thing#/definitions/id"}
 }
 },
 "targetSchema": {"$ref": "thing#"}
 }

 The "href" value here is the same, but everything else is different.
 Recall that the instance is an empty object, so "id" cannot be
 resolved from instance data. Instead it is required as client input.
 This LDO could also have used "templateRequired" but with "required"
 in "hrefSchema" it is not strictly necessary. Providing
 "templateRequired" without marking "id" as required in "hrefSchema"
 would lead to errors, as client input is the only possible source for
 resolving this link.

9.3. Submitting a Payload and Accepting URI Input

 This example covers using the "submission" fields for non-
 representation input, as well as using them alongside of resolving
 the URI Template with input. Unlike HTML forms, which require either
 constructing a URI or sending a payload, but do not allow not both at
 once, JSON Hyper-Schema can describe both sorts of input for the same
 operation on the same link.

 The "submissionSchema" and "submissionMediaType" fields are for
 describing payloads that are not representations of the target
 resource. When used with "http(s)://" URIs, they generally refer to
 a POST request payload, as seen in the appendix on HTTP usage
 (Section 8).

 In this case, we use a "mailto:" URI, which, per RFC 6068, Section 3"
 [RFC6068], does not provide any operation for retrieving a resource.

https://datatracker.ietf.org/doc/html/rfc4151
https://datatracker.ietf.org/doc/html/rfc6068#section-3
https://datatracker.ietf.org/doc/html/rfc6068

Andrews & Wright Expires July 23, 2018 [Page 32]

Internet-Draft JSON Hyper-Schema January 2018

 It can only be used to construct a message for sending. Since there
 is no concept of a retrievable, replaceable, or deletable target
 resource, "targetSchema" and "targetMediaType" are not used. Non-
 representation payloads are described by "submissionSchema" and
 "submissionMediaType".

 We use "submissionMediaType" to indicate a multipart/alternative
 payload format, providing two representations of the same data (HTML
 and plain text). Since a multipart/alternative message is an ordered
 sequence (the last part is the most preferred alternative), we model
 the sequence as an array in "submissionSchema". Since each part is
 itself a document with a media type, we model each item in the array
 as a string, using "contentMediaType" to indicate the format within
 the string.

 Note that media types such as multipart/form-data, which associate a
 name with each part and are not ordered, should be modeled as JSON
 objects rather than arrays.

 Note that some lines are wrapped to fit this document's width
 restrictions.

 {
 "$id": "https://schema.example.com/interesting-stuff",
 "$schema": "http://json-schema.org/draft-07/hyper-schema#",
 "required": ["stuffWorthEmailingAbout", "email", "title"],
 "properties": {
 "title": {
 "type": "string"
 },
 "stuffWorthEmailingAbout": {
 "type": "string"
 },
 "email": {
 "type": "string",
 "format": "email"
 },
 "cc": false
 },
 "links": [
 {
 "rel": "author",
 "href": "mailto:{email}?subject={title}{&cc}",
 "templateRequired": ["email"],
 "hrefSchema": {
 "required": ["title"],
 "properties": {
 "title": {

Andrews & Wright Expires July 23, 2018 [Page 33]

Internet-Draft JSON Hyper-Schema January 2018

 "type": "string"
 },
 "cc": {
 "type": "string",
 "format": "email"
 },
 "email": false
 }
 },
 "submissionMediaType":
 "multipart/alternative; boundary=ab2",
 "submissionSchema": {
 "type": "array",
 "items": [
 {
 "type": "string",
 "contentMediaType":
 "text/plain; charset=utf8"
 },
 {
 "type": "string",
 "contentMediaType": "text/html"
 }
],
 "minItems": 2
 }
 }
]
 }

 For the URI parameters, each of the three demonstrates a different
 way of resolving the input:

 email: This variable's presence in "templateRequired" means that it
 must be resolved for the template to be used. Since the "false"
 schema assigned to it in "hrefSchema" excludes it from the input
 data set, it must be resolved from the instance.

 title: The instance field matching this variable is required, and it
 is also allowed in the input data. So its instance value is used
 to pre-populate the input data set before accepting client input.
 The client application can opt to leave the instance value in
 place. Since this field is required in "hrefSchema", the client
 application cannot delete it (although it could set it to an empty
 string).

 cc: The "false" schema set for this in the main schema prevents this
 field from having an instance value. If it is present at all, it

Andrews & Wright Expires July 23, 2018 [Page 34]

Internet-Draft JSON Hyper-Schema January 2018

 must come from client input. As it is not required in
 "hrefSchema", it may not be used at all.

 So, given the following instance retrieved from
 "https://api.example.com/stuff":

 {
 "title": "The Awesome Thing",
 "stuffWorthEmailingAbout": "Lots of text here...",
 "email": "someone@exapmle.com"
 }

 We can partially resolve the link as follows, before asking the
 client application for input.

 {
 "contextUri": "https://api.example.com/stuff",
 "contextPointer": "",
 "rel": "author",
 "hrefInputTemplates": [
 "mailto:someone@example.com?subject={title}{&cc}"
],
 "hrefPrepopulatedInput": {
 "title": "The Really Awesome Thing"
 },
 "attachmentPointer": ""
 }

 Notice the "href*" keywords in place of "targetUri". These are three
 possible kinds of "targetUri" values covering different sorts of
 input. Here are examples of each:

 No additional or changed input: "mailto:someone@example.com?subject=
 The%20Awesome%20Thing"

 Change "title" to "your work": "mailto:someone@example.com?subject=y
 our%20work"

 Change title and add a "cc" of "other@elsewhere.org":
 "mailto:someone@example.com?subject=your%20work&cc=other@elsewhere
 .org"

9.4. "anchor", "base" and URI Template Resolution

 A link is a typed connection from a context resource to a target
 resource. Older link serializations support a "rev" keyword that
 takes a link relation type as "rel" does, but reverses the semantics.
 This has long been deprecated, so JSON Hyper-Schema does not support

Andrews & Wright Expires July 23, 2018 [Page 35]

Internet-Draft JSON Hyper-Schema January 2018

 it. Instead, "anchor"'s ability to change the context URI can be
 used to reverse the direction of a link. It can also be used to
 describe a link between two resources, neither of which is the
 current resource.

 As an example, there is an IANA-registered "up" relation, but there
 is no "down". In an HTTP Link header, you could implement "down" as
 ""rev": "up"".

 First let's look at how this could be done in HTTP, showing a "self"
 link and two semantically identical links, one with "rev": "up" and
 the other using "anchor" with "rel": "up" (line wrapped due to
 formatting limitations).

 GET https://api.example.com/trees/1/nodes/123 HTTP/1.1

 200 OK
 Content-Type: application/json
 Link: <https://api.example.com/trees/1/nodes/123> rel=self
 Link: <https://api.example.com/trees/1/nodes/123> rel=up
 anchor=<https://api.example.com/trees/1/nodes/456>
 Link: <https://api.example.com/trees/1/nodes/456> rev=up
 {
 "id": 123,
 "treeId": 1,
 "childIds": [456]
 }

 Note that the "rel=up" link has a target URI identical to the
 "rel=self" link, and sets "anchor" (which identifies the link's
 context) to the child's URI. This sort of reversed link is easily
 detectable by tools when a "self" link is also present.

Andrews & Wright Expires July 23, 2018 [Page 36]

Internet-Draft JSON Hyper-Schema January 2018

 The following hyper-schema, applied to the instance in the response
 above, would produce the same "self" link and "up" link with
 "anchor". It also shows the use of a templated "base" URI, plus both
 absolute and relative JSON Pointers in "templatePointers".

 {
 "$id": "https://schema.example.com/tree-node",
 "$schema": "http://json-schema.org/draft-07/hyper-schema#",
 "base": "trees/{treeId}/",
 "properties": {
 "id": {"type": "integer"},
 "treeId": {"type": "integer"},
 "childIds": {
 "type": "array",
 "items": {
 "type": "integer",
 "links": [
 {
 "anchor": "nodes/{thisNodeId}",
 "rel": "up",
 "href": "nodes/{childId}",
 "templatePointers": {
 "thisNodeId": "/id",
 "childId": "0"
 }
 }
]
 }
 }
 },
 "links": [
 {
 "rel": "self",
 "href": "nodes/{id}"
 }
]
 }

 The "base" template is evaluated identically for both the target
 ("href") and context ("anchor") URIs.

 Note the two different sorts of templatePointers used. "thisNodeId"
 is mapped to an absolute JSON Pointer, "/id", while "childId" is
 mapped to a relative pointer, "0", which indicates the value of the
 current item. Absolute JSON Pointers do not support any kind of
 wildcarding, so there is no way to specify a concept like "current
 item" without a relative JSON Pointer.

Andrews & Wright Expires July 23, 2018 [Page 37]

Internet-Draft JSON Hyper-Schema January 2018

9.5. Collections

 In many systems, individual resources are grouped into collections.
 Those collections also often provide a way to create individual item
 resources with server-assigned identifiers.

Andrews & Wright Expires July 23, 2018 [Page 38]

Internet-Draft JSON Hyper-Schema January 2018

 For this example, we will re-use the individual thing schema as shown
 in an earlier section. It is repeated here for convenience, with an
 added "collection" link with a "targetSchema" reference pointing to
 the collection schema we will introduce next.

 {
 "$id": "https://schema.example.com/thing",
 "$schema": "http://json-schema.org/draft-07/hyper-schema#",
 "base": "https://api.example.com/",
 "type": "object",
 "required": ["data"],
 "properties": {
 "id": {"$ref": "#/definitions/id"},
 "data": true
 },
 "links": [
 {
 "rel": "self",
 "href": "things/{id}",
 "templateRequired": ["id"],
 "targetSchema": {"$ref": "#"}
 }, {
 "rel": "collection",
 "href": "/things",
 "targetSchema": {"$ref": "thing-collection#"},
 "submissionSchema": {"$ref": "#"}
 }
],
 "definitions": {
 "id": {
 "type": "integer",
 "minimum": 1,
 "readOnly": true
 }
 }
 }

 The "collection" link is the same for all items, so there are no URI
 Template variables. The "submissionSchema" is that of the item
 itself. As described in Section 6.2.3, if a "collection" link
 supports a submission mechanism (POST in HTTP) then it MUST implement
 item creation semantics. Therefore "submissionSchema" is the schema
 for creating a "thing" via this link.

Andrews & Wright Expires July 23, 2018 [Page 39]

Internet-Draft JSON Hyper-Schema January 2018

 Now we want to describe collections of "thing"s. This schema
 describes a collection where each item representation is identical to
 the individual "thing" representation. While many collection
 representations only include subset of the item representations, this
 example uses the entirety to minimize the number of schemas involved.
 The actual collection items appear as an array within an object, as
 we will add more fields to the object in the next example.

 {
 "$id": "https://schema.example.com/thing-collection",
 "$schema": "http://json-schema.org/draft-07/hyper-schema#",
 "base": "https://api.example.com/",
 "type": "object",
 "required": ["elements"],
 "properties": {
 "elements": {
 "type": "array",
 "items": {
 "allOf": [{"$ref": "thing#"}],
 "links": [
 {
 "anchorPointer": "",
 "rel": "item",
 "href": "things/{id}",
 "templateRequired": ["id"],
 "targetSchema": {"$ref": "thing#"}
 }
]
 }
 }
 },
 "links": [
 {
 "rel": "self",
 "href": "things",
 "targetSchema": {"$ref": "#"},
 "submissionSchema": {"$ref": "thing"}
 }
]
 }

Andrews & Wright Expires July 23, 2018 [Page 40]

Internet-Draft JSON Hyper-Schema January 2018

 Here is a simple two-element collection instance:

 {
 "elements": [
 {"id": 12345, "data": {}},
 {"id": 67890, "data": {}}
]
 }

 Here are all of the links that apply to this instance, including
 those that are defined in the referenced individual "thing" schema:

 [
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "",
 "rel": "self",
 "targetUri": "https://api.example.com/things",
 "attachmentPointer": ""
 },
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "/elements/0",
 "rel": "self",
 "targetUri": "https://api.example.com/things/12345",
 "attachmentPointer": "/elements/0"
 },
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "/elements/1",
 "rel": "self",
 "targetUri": "https://api.example.com/things/67890",
 "attachmentPointer": "/elements/1"
 },
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "",
 "rel": "item",
 "targetUri": "https://api.example.com/things/12345",
 "attachmentPointer": "/elements/0"
 },
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "",
 "rel": "item",
 "targetUri": "https://api.example.com/things/67890",
 "attachmentPointer": "/elements/1"
 },

Andrews & Wright Expires July 23, 2018 [Page 41]

Internet-Draft JSON Hyper-Schema January 2018

 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "/elements/0",
 "rel": "collection",
 "targetUri": "https://api.example.com/things",
 "attachmentPointer": "/elements/0"
 },
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "/elements/1",
 "rel": "collection",
 "targetUri": "https://api.example.com/things",
 "attachmentPointer": "/elements/1"
 }
]

 In all cases, the context URI is shown for an instance of media type
 application/json, which does not support fragments. If the instance
 media type was application/instance+json, which supports JSON Pointer
 fragments, then the context URIs would contain fragments identical to
 the context pointer field. For application/json and other media
 types without fragments, it is critically important to consider the
 context pointer as well as the context URI.

 There are three "self" links, one for the collection, and one for
 each item in the "elements" array. The item "self" links are defined
 in the individual "thing" schema which is referenced with "$ref".
 The three links can be distinguished by their context or attachment
 pointers. We will revisit the "submissionSchema" of the collection's
 "self" link in Section 9.5.2.

 There are two "item" links, one for each item in the "elements"
 array. Unlike the "self" links, these are defined only in the
 collection schema. Each of them have the same target URI as the
 corresponding "self" link that shares the same attachment pointer.
 However, each has a different context pointer. The context of the
 "self" link is the entry in "elements", while the context of the
 "item" link is always the entire collection regardless of the
 specific item.

 Finally, there are two "collection" links, one for each item in
 "elements". In the individual item schema, these produce links with
 the item resource as the context. When referenced from the
 collection schema, the context is the location in the "elements"
 array of the relevant "thing", rather than that "thing"'s own
 separate resource URI.

Andrews & Wright Expires July 23, 2018 [Page 42]

Internet-Draft JSON Hyper-Schema January 2018

 The collection links have identical target URIs as there is only one
 relevant collection URI. While calculating both links as part of a
 full set of constructed links may not seem useful, when constructing
 links on an as-needed basis, this arrangement means that there is a
 "collection" link definition close at hand no matter which "elements"
 entry you are processing.

9.5.1. Pagination

 Here we add pagination to our collection. There is a "meta" section
 to hold the information about current, next, and previous pages.
 Most of the schema is the same as in the previous section and has
 been omitted. Only new fields and new or (in the case of the main
 "self" link) changed links are shown in full.

 {
 "properties": {
 "elements": {
 ...
 },
 "meta": {
 "type": "object",
 "properties": {
 "prev": {"$ref": "#/definitions/pagination"},
 "current": {"$ref": "#/definitions/pagination"},
 "next": {"$ref": "#/definitions/pagination"}
 }
 }
 },
 "links": [
 {
 "rel": "self",
 "href": "things{?offset,limit}",
 "templateRequired": ["offset", "limit"],
 "templatePointers": {
 "offset": "/meta/current/offset",
 "limit": "/meta/current/limit"
 },
 "targetSchema": {"$ref": "#"}
 }, {
 "rel": "prev",
 "href": "things{?offset,limit}",
 "templateRequired": ["offset", "limit"],
 "templatePointers": {
 "offset": "/meta/prev/offset",
 "limit": "/meta/prev/limit"
 },
 "targetSchema": {"$ref": "#"}

Andrews & Wright Expires July 23, 2018 [Page 43]

Internet-Draft JSON Hyper-Schema January 2018

 }, {
 "rel": "next",
 "href": "things{?offset,limit}",
 "templateRequired": ["offset", "limit"],
 "templatePointers": {
 "offset": "/meta/next/offset",
 "limit": "/meta/next/limit"
 },
 "targetSchema": {"$ref": "#"}
 }
],
 "definitions": {
 "pagination": {
 "type": "object",
 "properties": {
 "offset": {
 "type": "integer",
 "minimum": 0,
 "default": 0
 },
 "limit": {
 "type": "integer",
 "minimum": 1,
 "maximum": 100,
 "default": 10
 }
 }
 }
 }
 }

 Notice that the "self" link includes the pagination query that
 produced the exact representation, rather than being a generic link
 to the collection allowing selecting the page via input.

Andrews & Wright Expires July 23, 2018 [Page 44]

Internet-Draft JSON Hyper-Schema January 2018

 Given this instance:

 {
 "elements": [
 {"id": 12345, "data": {}},
 {"id": 67890, "data": {}}
],
 "meta": {
 "current": {
 "offset": 0,
 "limit": 2
 },
 "next": {
 "offset": 3,
 "limit": 2
 }
 }
 }

 Here are all of the links that apply to this instance that either did
 not appear in the previous example or have been changed with
 pagination added.

 [
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "",
 "rel": "self",
 "targetUri":
 "https://api.example.com/things?offset=20,limit=2",
 "attachmentPointer": ""
 },
 {
 "contextUri": "https://api.example.com/things",
 "contextPointer": "",
 "rel": "next",
 "targetUri":
 "https://api.example.com/things?offset=22,limit=2",
 "attachmentPointer": ""
 }
]

 Note that there is no "prev" link in the output, as we are looking at
 the first page. The lack of a "prev" field under "meta", together
 with the "prev" link's "templateRequired" values, means that the link
 is not usable with this particular instance.

Andrews & Wright Expires July 23, 2018 [Page 45]

Internet-Draft JSON Hyper-Schema January 2018

 [[CREF7: It's not clear how pagination should work with the link from
 the "collection" links in the individual "thing" schema.
 Technically, a link from an item to a paginated or filtered
 collection should go to a page/filter that contains the item (in this
 case the "thing") that is the link context. See GitHub issue #421
 for more discussion.]]

 Let's add a link for this collection to the entry point schema
 (Section 9.1), including pagination input in order to allow client
 applications to jump directly to a specific page. Recall that the
 entry point schema consists only of links, therefore we only show the
 newly added link:

 {
 "rel": "tag:rel.example.com,2017:thing-collection",
 "href": "/things{?offset,limit}",
 "hrefSchema": {
 "$ref": "thing-collection#/definitions/pagination"
 },
 "submissionSchema": {
 "$ref": "thing#"
 },
 "targetSchema": {
 "$ref": "thing-collection#"
 }
 }

 Now we see the pagination parameters being accepted as input, so we
 can jump to any page within the collection. The link relation type
 is a custom one as the generic "collection" link can only be used
 with an item as its context, not an entry point or other resource.

9.5.2. Creating the First Item

 When we do not have any "thing"s, we do not have any resources with a
 relevant "collection" link. Therefore we cannot use a "collection"
 link's submission keywords to create the first "thing"; hyper-schemas
 must be evaluated with respect to an instance. Since the "elements"
 array in the collection instance would be empty, it cannot provide us
 with a collection link either.

 However, our entry point link can take us to the empty collection,
 and we can use the presence of "item" links in the hyper-schema to
 recognize that it is a collection. Since the context of the "item"
 link is the collection, we simply look for a "self" link with the
 same context, which we can then treat as collection for the purposes
 of a creation operation.

Andrews & Wright Expires July 23, 2018 [Page 46]

Internet-Draft JSON Hyper-Schema January 2018

 Presumably, our custom link relation type in the entry point schema
 was sufficient to ensure that we have found the right collection. A
 client application that recognizes that custom link relation type may
 know that it can immediately assume that the target is a collection,
 but a generic user agent cannot do so. Despite the presence of a
 "-collection" suffix in our example, a generic user agent would have
 no way of knowing whether that substring indicates a hypermedia
 resource collection, or some other sort of collection.

 Once we have recognized the "self" link as being for the correct
 collection, we can use its "submissionSchema" and/or
 "submissionMediaType" keywords to perform an item creation operation.
 [[CREF8: This works perfectly if the collection is unfiltered and
 unpaginated. However, one should generally POST to a collection that
 will contain the created resource, and a "self" link MUST include any
 filters, pagination, or other query parameters. Is it still valid to
 POST to such a "self" link even if the resulting item would not match
 the filter or appear within that page? See GitHub issue #421 for
 further discussion.]] [[CREF9: Draft-04 of Hyper-Schema defined a
 "create" link relation that had the schema, rather than the instance,
 as its context. This did not fit into the instance-based link model,
 and incorrectly used an operation name for a link relation type.
 However, defining a more correctly designed link from the schema to
 the collection instance may be one possible approach to solving this.
 Again, see GitHub issue #421 for more details.]]

10. Security Considerations

 JSON Hyper-Schema defines a vocabulary for JSON Schema core and
 concerns all the security considerations listed there. As a link
 serialization format, the security considerations of RFC 8288 Web
 Linking [RFC8288] also apply, with appropriate adjustments (e.g.
 "anchor" as an LDO keyword rather than an HTTP Link header
 attribute).

10.1. Target Attributes

 As stated in Section 6.5, all LDO keywords describing the target
 resource are advisory and MUST NOT be used in place of the
 authoritative information supplied by the target resource in response
 to an operation. Target resource responses SHOULD indicate their own
 hyper-schema, which is authoritative.

 If the hyper-schema in the target response matches (by "$id") the
 hyper-schema in which the current LDO was found, then the target
 attributes MAY be considered authoritative. [[CREF10: Need to add
 something about the risks of spoofing by "$id", but given that other

https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288

Andrews & Wright Expires July 23, 2018 [Page 47]

Internet-Draft JSON Hyper-Schema January 2018

 parts of the specification discourage always re-downloading the
 linked schema, the risk mitigation options are unclear.]]

 User agents or client applications MUST NOT use the value of
 "targetSchema" to aid in the interpretation of the data received in
 response to following the link, as this leaves "safe" data open to
 re-interpretation.

 When choosing how to interpret data, the type information provided by
 the server (or inferred from the filename, or any other usual method)
 MUST be the only consideration, and the "targetMediaType" property of
 the link MUST NOT be used. User agents MAY use this information to
 determine how they represent the link or where to display it (for
 example hover-text, opening in a new tab). If user agents decide to
 pass the link to an external program, they SHOULD first verify that
 the data is of a type that would normally be passed to that external
 program.

 This is to guard against re-interpretation of "safe" data, similar to
 the precautions for "targetSchema".

 Protocol meta-data values conveyed in "targetHints" MUST NOT be
 considered authoritative. Any security considerations defined by the
 protocol that may apply based on incorrect assumptions about meta-
 data values apply.

 Even when no protocol security considerations are directly
 applicable, implementations MUST be prepared to handle responses that
 do not match the link's "targetHints" values.

10.2. "self" Links

 When link relation of "self" is used to denote a full representation
 of an object, the user agent SHOULD NOT consider the representation
 to be the authoritative representation of the resource denoted by the
 target URI if the target URI is not equivalent to or a sub-path of
 the URI used to request the resource representation which contains
 the target URI with the "self" link. [[CREF11: It is no longer
 entirely clear what was intended by the "sub-path" option in this
 paragraph. It may have been intended to allow "self" links for
 embedded item representations in a collection, which usually have
 target URIs that are sub-paths of that collection's URI, to be
 considered authoritative. However, this is simply a common design
 convention and does not appear to be based in RFC 3986 or any other
 guidance on URI usage. See GitHub issue #485 for further discussion.
]]

https://datatracker.ietf.org/doc/html/rfc3986

Andrews & Wright Expires July 23, 2018 [Page 48]

Internet-Draft JSON Hyper-Schema January 2018

11. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave
 Finlay, and Denis Laxalde for their submissions and patches to the
 document.

12. References

12.1. Normative References

 [json-schema]
 Wright, A. and H. Andrews, "JSON Schema: A Media Type for
 Describing JSON Documents", draft-handrews-json-schema-00
 (work in progress), November 2017.

 [json-schema-validation]
 Wright, A., Andrews, H., and G. Luff, "JSON Schema
 Validation: A Vocabulary for Structural Validation of
 JSON", draft-handrews-json-schema-validation-00 (work in
 progress), November 2017.

 [relative-json-pointer]
 Luff, G. and H. Andrews, "Relative JSON Pointers", draft-

handrews-relative-json-pointer-01 (work in progress),
 January 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <https://www.rfc-editor.org/info/rfc4287>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-00
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-01
https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4287
https://www.rfc-editor.org/info/rfc4287
https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570

Andrews & Wright Expires July 23, 2018 [Page 49]

Internet-Draft JSON Hyper-Schema January 2018

 [RFC6573] Amundsen, M., "The Item and Collection Link Relations",
RFC 6573, DOI 10.17487/RFC6573, April 2012,

 <https://www.rfc-editor.org/info/rfc6573>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

12.2. Informative References

 [I-D.reschke-http-jfv]
 Reschke, J., "A JSON Encoding for HTTP Header Field
 Values", draft-reschke-http-jfv-06 (work in progress),
 June 2017.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC4151] Kindberg, T. and S. Hawke, "The 'tag' URI Scheme",
RFC 4151, DOI 10.17487/RFC4151, October 2005,

 <https://www.rfc-editor.org/info/rfc4151>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, DOI 10.17487/RFC5789, March 2010,

 <https://www.rfc-editor.org/info/rfc5789>.

 [RFC6068] Duerst, M., Masinter, L., and J. Zawinski, "The 'mailto'
 URI Scheme", RFC 6068, DOI 10.17487/RFC6068, October 2010,
 <https://www.rfc-editor.org/info/rfc6068>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

https://datatracker.ietf.org/doc/html/rfc6573
https://www.rfc-editor.org/info/rfc6573
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://datatracker.ietf.org/doc/html/draft-reschke-http-jfv-06
https://datatracker.ietf.org/doc/html/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://datatracker.ietf.org/doc/html/rfc4151
https://www.rfc-editor.org/info/rfc4151
https://datatracker.ietf.org/doc/html/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://datatracker.ietf.org/doc/html/rfc6068
https://www.rfc-editor.org/info/rfc6068
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231

Andrews & Wright Expires July 23, 2018 [Page 50]

Internet-Draft JSON Hyper-Schema January 2018

 [RFC7807] Nottingham, M. and E. Wilde, "Problem Details for HTTP
 APIs", RFC 7807, DOI 10.17487/RFC7807, March 2016,
 <https://www.rfc-editor.org/info/rfc7807>.

Andrews & Wright Expires July 23, 2018 [Page 51]

https://datatracker.ietf.org/doc/html/rfc7807
https://www.rfc-editor.org/info/rfc7807

Internet-Draft JSON Hyper-Schema January 2018

Appendix A. Using JSON Hyper-Schema in APIs

 Hypermedia APIs, which follow the constraints of the REST
 architectural style, enable the creation of generic user agents.
 Such a user agent has no application-specific knowledge. Rather, it
 understands pre-defined media types, URI schemes, protocols, and link
 relations, often by recognizing these and coordinating the use of
 existing software that implements support for them. Client
 applications can then be built on top of such a user agent, focusing
 on their own semantics and logic rather than the mechanics of the
 interactions.

 Hyper-schema is only concerned with one resource and set of
 associated links at a time. Just as a web browser works with only
 one HTML page at a time, with no concept of whether or how that page
 functions as part of a "site", a hyper-schema-aware user agent works
 with one resource at a time, without any concept of whether or how
 that resource fits into an API.

 Therefore, hyper-schema is suitable for use within an API, but is not
 suitable for the description of APIs as complete entities in their
 own right. There is no way to describe concepts at the API scope,
 rather than the resource and link scope, and such descriptions are
 outside of the boundaries of JSON Hyper-Schema.

A.1. Resource Evolution With Hyper-Schema

 Since a given JSON Hyper-Schema is used with a single resource at a
 single point in time, it has no inherent notion of versioning.
 However, a given resource can change which schema or schemas it uses
 over time, and the URIs of these schemas can be used to indicate
 versioning information. When used with a media type that supports
 indicating a schema with a media type parameter, these versioned
 schema URIs can be used in content negotiation.

 A resource can indicate that it is an instance of multiple schemas,
 which allows supporting multiple compatible versions simultaneously.
 A client application can then make use of the hyper-schema that it
 recognizes, and ignore newer or older versions.

A.2. Responses and Errors

 Because a hyper-schema represents a single resource at a time, it
 does not provide for an enumeration of all possible responses to
 protocol operations performed with links. Each response, including
 errors, is considered its own (possibly anonymous) resource, and
 should identify its own hyper-schema, and optionally use an
 appropriate media type such as RFC 7807's "application/problem+json"

https://datatracker.ietf.org/doc/html/rfc7807

Andrews & Wright Expires July 23, 2018 [Page 52]

Internet-Draft JSON Hyper-Schema January 2018

 [RFC7807], to allow the user agent or client application to interpret
 any information that is provided beyond the protocol's own status
 reporting.

A.3. Static Analysis of an API's Hyper-Schemas

 It is possible to statically analyze a set of hyper-schemas without
 instance data in order to generate output such as documentation or
 code. However, the full feature set of both validation and hyper-
 schema cannot be accessed without runtime instance data.

 This is an intentional design choice to provide the maximum runtime
 flexibility for hypermedia systems. JSON Schema as a media type
 allows for establishing additional vocabularies for static analysis
 and content generation, which are not addressed in this
 specification. Additionally, individual systems may restrict their
 usage to subsets that can be analyzed statically if full design-time
 description is a goal. [[CREF12: Vocabularies for API documentation
 and other purposes have been proposed, and contributions are welcome
 at https://github.com/json-schema-org/json-schema-vocabularies]]

Appendix B. ChangeLog

 [[CREF13: This section to be removed before leaving Internet-Draft
 status.]]

draft-handrews-json-schema-hyperschema-01

 * This draft is purely a bug fix with no functional changes

 * Fixed erroneous meta-schema URI (draft-07, not draft-07-wip)

 * Removed stray "work in progress" language left over from review
 period

 * Fixed missing trailing "/" in various "base" examples

 * Fixed incorrect draft name in changelog (luff-*-00, not -01)

 * Update relative pointer ref to handrews-*-01, also purely a bug
 fix

draft-handrews-json-schema-hyperschema-00

 * Top to bottom reorganization and rewrite

 * Group keywords per RFC 8288 context/relation/target/target
 attributes

https://datatracker.ietf.org/doc/html/rfc7807
https://github.com/json-schema-org/json-schema-vocabularies
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-01
https://datatracker.ietf.org/doc/html/draft-07
https://datatracker.ietf.org/doc/html/draft-07-wip
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-hyperschema-00
https://datatracker.ietf.org/doc/html/rfc8288

Andrews & Wright Expires July 23, 2018 [Page 53]

Internet-Draft JSON Hyper-Schema January 2018

 * Additional keyword groups for template resolution and
 describing input

 * Clarify implementation requirements with a suggested output
 format

 * Expanded overview to provide context

 * Consolidated examples into their own section, illustrate real-
 world patterns

 * Consolidated HTTP guidance in its own section

 * Added a subsection on static analysis of hyper-schemas

 * Consolidated security concerns in their own section

 * Added an appendix on usage in APIs

 * Moved "readOnly" to the validation specification

 * Moved "media" to validation as
 "contentMediaType"/"contentEncoding"

 * Renamed "submissionEncType" to "submissionMediaType"

 * Renamed "mediaType" to "targetMediaType"

 * Added "anchor" and "anchorPointer"

 * Added "templatePointers" and "templateRequired"

 * Clarified how "hrefSchema" is used

 * Added "targetHints" and "headerSchema"

 * Added guidance on "self", "collection" and "item" link usage

 * Added "description" as an LDO keyword

 * Added "$comment" in LDOs to match the schema keyword

draft-wright-json-schema-hyperschema-01

 * Fixed examples

 * Added "hrefSchema" for user input to "href" URI Templates

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-hyperschema-01

Andrews & Wright Expires July 23, 2018 [Page 54]

Internet-Draft JSON Hyper-Schema January 2018

 * Removed URI Template pre-processing

 * Clarified how links and data submission work

 * Clarified how validation keywords apply hyper-schema keywords
 and links

 * Clarified HTTP use with "targetSchema"

 * Renamed "schema" to "submissionSchema"

 * Renamed "encType" to "submissionEncType"

 * Removed "method"

draft-wright-json-schema-hyperschema-00

 * "rel" is now optional

 * rel="self" no longer changes URI base

 * Added "base" keyword to change instance URI base

 * Removed "root" link relation

 * Removed "create" link relation

 * Removed "full" link relation

 * Removed "instances" link relation

 * Removed special behavior for "describedBy" link relation

 * Removed "pathStart" keyword

 * Removed "fragmentResolution" keyword

 * Updated references to JSON Pointer, HTML

 * Changed behavior of "method" property to align with hypermedia
 best current practices

draft-luff-json-hyper-schema-00

 * Split from main specification.

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-hyperschema-00
https://datatracker.ietf.org/doc/html/draft-luff-json-hyper-schema-00

Andrews & Wright Expires July 23, 2018 [Page 55]

Internet-Draft JSON Hyper-Schema January 2018

Authors' Addresses

 Henry Andrews (editor)
 Cloudflare, Inc.
 San Francisco, CA
 USA

 EMail: henry@cloudflare.com

 Austin Wright (editor)

 EMail: aaa@bzfx.net

Andrews & Wright Expires July 23, 2018 [Page 56]

