
Internet Engineering Task Force A. Wright, Ed.
Internet-Draft
Intended status: Informational H. Andrews, Ed.
Expires: March 19, 2020
 B. Hutton, Ed.
 Wellcome Sanger Institute
 September 16, 2019

JSON Schema Validation: A Vocabulary for Structural Validation of JSON
draft-handrews-json-schema-validation-02

Abstract

 JSON Schema (application/schema+json) has several purposes, one of
 which is JSON instance validation. This document specifies a
 vocabulary for JSON Schema to describe the meaning of JSON documents,
 provide hints for user interfaces working with JSON data, and to make
 assertions about what a valid document must look like.

Note to Readers

 The issues list for this draft can be found at <https://github.com/
json-schema-org/json-schema-spec/issues>.

 For additional information, see <https://json-schema.org/>.

 To provide feedback, use this issue tracker, the communication
 methods listed on the homepage, or email the document editors.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 19, 2020.

Wright, et al. Expires March 19, 2020 [Page 1]

https://github.com/json-schema-org/json-schema-spec/issues
https://github.com/json-schema-org/json-schema-spec/issues
https://json-schema.org/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft JSON Schema Validation September 2019

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 4
3. Overview . 4
4. Interoperability Considerations 4
4.1. Validation of String Instances 4
4.2. Validation of Numeric Instances 5
4.3. Regular Expressions 5

5. Meta-Schema . 5
6. A Vocabulary for Structural Validation 5
6.1. Validation Keywords for Any Instance Type 6
6.1.1. type . 6
6.1.2. enum . 6
6.1.3. const . 6

 6.2. Validation Keywords for Numeric Instances (number and
 integer) . 6

6.2.1. multipleOf . 6
6.2.2. maximum . 7
6.2.3. exclusiveMaximum 7
6.2.4. minimum . 7
6.2.5. exclusiveMinimum 7

6.3. Validation Keywords for Strings 7
6.3.1. maxLength . 7
6.3.2. minLength . 8
6.3.3. pattern . 8

6.4. Validation Keywords for Arrays 8
6.4.1. maxItems . 8
6.4.2. minItems . 8
6.4.3. uniqueItems . 8
6.4.4. maxContains . 9
6.4.5. minContains . 9

6.5. Validation Keywords for Objects 9

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Wright, et al. Expires March 19, 2020 [Page 2]

Internet-Draft JSON Schema Validation September 2019

6.5.1. maxProperties . 9
6.5.2. minProperties . 9
6.5.3. required . 10
6.5.4. dependentRequired 10

7. A Vocabulary for Semantic Content With "format" 10
7.1. Foreword . 10
7.2. Implementation Requirements 11
7.2.1. As an annotation 11
7.2.2. As an assertion 12
7.2.3. Custom format attributes 13

7.3. Defined Formats . 13
7.3.1. Dates, Times, and Duration 14
7.3.2. Email Addresses 14
7.3.3. Hostnames . 15
7.3.4. IP Addresses . 15
7.3.5. Resource Identifiers 15
7.3.6. uri-template . 16
7.3.7. JSON Pointers . 16
7.3.8. regex . 16

8. A Vocabulary for the Contents of String-Encoded Data 17
8.1. Foreword . 17
8.2. Implementation Requirements 17
8.3. contentEncoding . 18
8.4. contentMediaType . 18
8.5. contentSchema . 18
8.6. Example . 19

9. A Vocabulary for Basic Meta-Data Annotations 20
9.1. "title" and "description" 21
9.2. "default" . 21
9.3. "deprecated" . 21
9.4. "readOnly" and "writeOnly" 22
9.5. "examples" . 22

10. Security Considerations 23
11. References . 23
11.1. Normative References 23
11.2. Informative References 25

Appendix A. Keywords Moved from Validation to Core 26
Appendix B. Acknowledgments 26
Appendix C. ChangeLog . 27

 Authors' Addresses . 30

1. Introduction

 JSON Schema can be used to require that a given JSON document (an
 instance) satisfies a certain number of criteria. These criteria are
 asserted by using keywords described in this specification. In
 addition, a set of keywords is also defined to assist in interactive
 user interface instance generation.

Wright, et al. Expires March 19, 2020 [Page 3]

Internet-Draft JSON Schema Validation September 2019

 This specification will use the concepts, syntax, and terminology
 defined by the JSON Schema core [json-schema] specification.

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This specification uses the term "container instance" to refer to
 both array and object instances. It uses the term "children
 instances" to refer to array elements or object member values.

 Elements in an array value are said to be unique if no two elements
 of this array are equal [json-schema].

3. Overview

 JSON Schema validation asserts constraints on the structure of
 instance data. An instance location that satisfies all asserted
 constraints is then annotated with any keywords that contain non-
 assertion information, such as descriptive metadata and usage hints.
 If all locations within the instance satisfy all asserted
 constraints, then the instance is said to be valid against the
 schema.

 Each schema object is independently evaluated against each instance
 location to which it applies. This greatly simplifies the
 implementation requirements for validators by ensuring that they do
 not need to maintain state across the document-wide validation
 process.

 This specification defines a set of assertion keywords, as well as a
 small vocabulary of metadata keywords that can be used to annotate
 the JSON instance with useful information. The Section 7 keyword is
 intended primarily as an annotation, but can optionally be used as an
 assertion. The Section 8 keywords are annotations for working with
 documents embedded as JSON strings.

4. Interoperability Considerations

4.1. Validation of String Instances

 It should be noted that the nul character (\u0000) is valid in a JSON
 string. An instance to validate may contain a string value with this
 character, regardless of the ability of the underlying programming
 language to deal with such data.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wright, et al. Expires March 19, 2020 [Page 4]

Internet-Draft JSON Schema Validation September 2019

4.2. Validation of Numeric Instances

 The JSON specification allows numbers with arbitrary precision, and
 JSON Schema does not add any such bounds. This means that numeric
 instances processed by JSON Schema can be arbitrarily large and/or
 have an arbitrarily long decimal part, regardless of the ability of
 the underlying programming language to deal with such data.

4.3. Regular Expressions

 Keywords that use regular expressions, or constrain the instance
 value to be a regular expression, are subject to the interoperability
 considerations for regular expressions in the JSON Schema Core
 [json-schema] specification.

5. Meta-Schema

 The current URI for the default JSON Schema meta-schema is
 <http://json-schema.org/draft/2019-09/schema>. For schema author
 convenience, this meta-schema describes all vocabularies defined in
 this specification and the JSON Schema Core specification, as well as
 two former keywords which are reserved for a transitional period.
 Individual vocabulary and vocabulary meta-schema URIs are given for
 each section below. Certain vocabularies are optional to support,
 which is explained in detail in the relevant sections.

 Updated vocabulary and meta-schema URIs MAY be published between
 specification drafts in order to correct errors. Implementations
 SHOULD consider URIs dated after this specification draft and before
 the next to indicate the same syntax and semantics as those listed
 here.

6. A Vocabulary for Structural Validation

 Validation keywords in a schema impose requirements for successful
 validation of an instance. These keywords are all assertions without
 any annotation behavior.

 Meta-schemas that do not use "$vocabulary" SHOULD be considered to
 require this vocabulary as if its URI were present with a value of
 true.

 The current URI for this vocabulary, known as the Validation
 vocabulary, is: <https://json-schema.org/draft/2019-09/vocab/

validation>.

 The current URI for the corresponding meta-schema is: <https://json-
schema.org/draft/2019-09/meta/validation>.

http://json-schema.org/draft/2019-09/schema
https://json-schema.org/draft/2019-09/vocab/validation
https://json-schema.org/draft/2019-09/vocab/validation
https://json-schema.org/draft/2019-09/meta/validation
https://json-schema.org/draft/2019-09/meta/validation

Wright, et al. Expires March 19, 2020 [Page 5]

Internet-Draft JSON Schema Validation September 2019

6.1. Validation Keywords for Any Instance Type

6.1.1. type

 The value of this keyword MUST be either a string or an array. If it
 is an array, elements of the array MUST be strings and MUST be
 unique.

 String values MUST be one of the six primitive types ("null",
 "boolean", "object", "array", "number", or "string"), or "integer"
 which matches any number with a zero fractional part.

 An instance validates if and only if the instance is in any of the
 sets listed for this keyword.

6.1.2. enum

 The value of this keyword MUST be an array. This array SHOULD have
 at least one element. Elements in the array SHOULD be unique.

 An instance validates successfully against this keyword if its value
 is equal to one of the elements in this keyword's array value.

 Elements in the array might be of any type, including null.

6.1.3. const

 The value of this keyword MAY be of any type, including null.

 Use of this keyword is functionally equivalent to an "enum"
 (Section 6.1.2) with a single value.

 An instance validates successfully against this keyword if its value
 is equal to the value of the keyword.

6.2. Validation Keywords for Numeric Instances (number and integer)

6.2.1. multipleOf

 The value of "multipleOf" MUST be a number, strictly greater than 0.

 A numeric instance is valid only if division by this keyword's value
 results in an integer.

Wright, et al. Expires March 19, 2020 [Page 6]

Internet-Draft JSON Schema Validation September 2019

6.2.2. maximum

 The value of "maximum" MUST be a number, representing an inclusive
 upper limit for a numeric instance.

 If the instance is a number, then this keyword validates only if the
 instance is less than or exactly equal to "maximum".

6.2.3. exclusiveMaximum

 The value of "exclusiveMaximum" MUST be number, representing an
 exclusive upper limit for a numeric instance.

 If the instance is a number, then the instance is valid only if it
 has a value strictly less than (not equal to) "exclusiveMaximum".

6.2.4. minimum

 The value of "minimum" MUST be a number, representing an inclusive
 lower limit for a numeric instance.

 If the instance is a number, then this keyword validates only if the
 instance is greater than or exactly equal to "minimum".

6.2.5. exclusiveMinimum

 The value of "exclusiveMinimum" MUST be number, representing an
 exclusive lower limit for a numeric instance.

 If the instance is a number, then the instance is valid only if it
 has a value strictly greater than (not equal to) "exclusiveMinimum".

6.3. Validation Keywords for Strings

6.3.1. maxLength

 The value of this keyword MUST be a non-negative integer.

 A string instance is valid against this keyword if its length is less
 than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 8259 [RFC8259].

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 7]

Internet-Draft JSON Schema Validation September 2019

6.3.2. minLength

 The value of this keyword MUST be a non-negative integer.

 A string instance is valid against this keyword if its length is
 greater than, or equal to, the value of this keyword.

 The length of a string instance is defined as the number of its
 characters as defined by RFC 8259 [RFC8259].

 Omitting this keyword has the same behavior as a value of 0.

6.3.3. pattern

 The value of this keyword MUST be a string. This string SHOULD be a
 valid regular expression, according to the ECMA 262 regular
 expression dialect.

 A string instance is considered valid if the regular expression
 matches the instance successfully. Recall: regular expressions are
 not implicitly anchored.

6.4. Validation Keywords for Arrays

6.4.1. maxItems

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "maxItems" if its size is less
 than, or equal to, the value of this keyword.

6.4.2. minItems

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "minItems" if its size is greater
 than, or equal to, the value of this keyword.

 Omitting this keyword has the same behavior as a value of 0.

6.4.3. uniqueItems

 The value of this keyword MUST be a boolean.

 If this keyword has boolean value false, the instance validates
 successfully. If it has boolean value true, the instance validates
 successfully if all of its elements are unique.

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 8]

Internet-Draft JSON Schema Validation September 2019

 Omitting this keyword has the same behavior as a value of false.

6.4.4. maxContains

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "maxContains" if the number of
 elements that are valid against the schema for "contains"
 [json-schema] is less than, or equal to, the value of this keyword.

 If "contains" is not present within the same schema object, then this
 keyword has no effect.

6.4.5. minContains

 The value of this keyword MUST be a non-negative integer.

 An array instance is valid against "minContains" if the number of
 elements that are valid against the schema for "contains"
 [json-schema] is greater than, or equal to, the value of this
 keyword.

 A value of 0 is allowed, but is only useful for setting a range of
 occurrences from 0 to the value of "maxContains". A value of 0 with
 no "maxContains" causes "contains" to always pass validation.

 If "contains" is not present within the same schema object, then this
 keyword has no effect.

 Omitting this keyword has the same behavior as a value of 1.

6.5. Validation Keywords for Objects

6.5.1. maxProperties

 The value of this keyword MUST be a non-negative integer.

 An object instance is valid against "maxProperties" if its number of
 properties is less than, or equal to, the value of this keyword.

6.5.2. minProperties

 The value of this keyword MUST be a non-negative integer.

 An object instance is valid against "minProperties" if its number of
 properties is greater than, or equal to, the value of this keyword.

 Omitting this keyword has the same behavior as a value of 0.

Wright, et al. Expires March 19, 2020 [Page 9]

Internet-Draft JSON Schema Validation September 2019

6.5.3. required

 The value of this keyword MUST be an array. Elements of this array,
 if any, MUST be strings, and MUST be unique.

 An object instance is valid against this keyword if every item in the
 array is the name of a property in the instance.

 Omitting this keyword has the same behavior as an empty array.

6.5.4. dependentRequired

 The value of this keyword MUST be an object. Properties in this
 object, if any, MUST be arrays. Elements in each array, if any, MUST
 be strings, and MUST be unique.

 This keyword specifies properties that are required if a specific
 other property is present. Their requirement is dependent on the
 presence of the other property.

 Validation succeeds if, for each name that appears in both the
 instance and as a name within this keyword's value, every item in the
 corresponding array is also the name of a property in the instance.

 Omitting this keyword has the same behavior as an empty object.

7. A Vocabulary for Semantic Content With "format"

7.1. Foreword

 Structural validation alone may be insufficient to allow an
 application to correctly utilize certain values. The "format"
 annotation keyword is defined to allow schema authors to convey
 semantic information for a fixed subset of values which are
 accurately described by authoritative resources, be they RFCs or
 other external specifications.

 Implementations MAY treat "format" as an assertion in addition to an
 annotation, and attempt to validate the value's conformance to the
 specified semantics. See the Implementation Requirements below for
 details.

 The value of this keyword is called a format attribute. It MUST be a
 string. A format attribute can generally only validate a given set
 of instance types. If the type of the instance to validate is not in
 this set, validation for this format attribute and instance SHOULD
 succeed. All format attributes defined in this section apply to
 strings, but a format attribute can be specified to apply to any

Wright, et al. Expires March 19, 2020 [Page 10]

Internet-Draft JSON Schema Validation September 2019

 instance types defined in the data model defined in the core JSON
 Schema. [json-schema] [[CREF1: Note that the "type" keyword in this
 specification defines an "integer" type which is not part of the data
 model. Therefore a format attribute can be limited to numbers, but
 not specifically to integers. However, a numeric format can be used
 alongside the "type" keyword with a value of "integer", or could be
 explicitly defined to always pass if the number is not an integer,
 which produces essentially the same behavior as only applying to
 integers.]]

 Meta-schemas that do not use "$vocabulary" SHOULD be considered to
 utilize this vocabulary as if its URI were present with a value of
 false. See the Implementation Requirements below for details.

 The current URI for this vocabulary, known as the Format vocabulary,
 is: <https://json-schema.org/draft/2019-09/vocab/format>.

 The current URI for the corresponding meta-schema is: <https://json-
schema.org/draft/2019-09/meta/format>.

7.2. Implementation Requirements

 The "format" keyword functions as an annotation, and optionally as an
 assertion. [[CREF2: This is due to the keyword's history, and is not
 in line with current keyword design principles.]] In order to manage
 this ambiguity, the "format" keyword is defined in its own separate
 vocabulary, as noted above. The true or false value of the
 vocabulary declaration governs the implementation requirements
 necessary to process a schema that uses "format", and the behaviors
 on which schema authors can rely.

7.2.1. As an annotation

 The value of format MUST be collected as an annotation, if the
 implementation supports annotation collection. This enables
 application-level validation when schema validation is unavailable or
 inadequate.

 This requirement is not affected by the boolean value of the
 vocabulary declaration, nor by the configuration of "format"'s
 assertion behavior described in the next section. [[CREF3: Requiring
 annotation collection even when the vocabulary is declared with a
 value of false is atypical, but necessary to ensure that the best
 practice of performing application-level validation is possible even
 when assertion evaluation is not implemented. Since "format" has
 always been a part of this specification, requiring implementations
 to be aware of it even with a false vocabulary declaration is deemed
 to not be a burden.]]

https://json-schema.org/draft/2019-09/vocab/format
https://json-schema.org/draft/2019-09/meta/format
https://json-schema.org/draft/2019-09/meta/format

Wright, et al. Expires March 19, 2020 [Page 11]

Internet-Draft JSON Schema Validation September 2019

7.2.2. As an assertion

 Regardless of the boolean value of the vocabulary declaration, an
 implementation that can evaluate "format" as an assertion MUST
 provide options to enable and disable such evaluation. The assertion
 evaluation behavior when the option is not explicitly specified
 depends on the vocabulary declaration's boolean value.

 When implementing this entire specification, this vocabulary MUST be
 supported with a value of false (but see details below), and MAY be
 supported with a value of true.

 When the vocabulary is declared with a value of false, an
 implementation:

 MUST NOT evaluate "format" as an assertion unless it is explicitly
 configured to do so;

 SHOULD provide an implementation-specific best effort validation
 for each format attribute defined below;

 MAY choose to implement validation of any or all format attributes
 as a no-op by always producing a validation result of true;

 SHOULD document its level of support for validation.

 [[CREF4: This matches the current reality of implementations, which
 provide widely varying levels of validation, including no validation
 at all, for some or all format attributes. It is also designed to
 encourage relying only on the annotation behavior and performing
 semantic validation in the application, which is the recommended best
 practice.]]

 When the vocabulary is declared with a value of true, an
 implementation that supports this form of the vocabulary:

 MUST evaluate "format" as an assertion unless it is explicitly
 configured not to do so;

 MUST implement syntactic validation for all format attributes
 defined in this specification, and for any additional format
 attributes that it recognizes, such that there exist possible
 instance values of the correct type that will fail validation.

 The requirement for minimal validation of format attributes is
 intentionally vague and permissive, due to the complexity involved in
 many of the attributes. Note in particular that the requirement is
 limited to syntactic checking; it is not to be expected that an

Wright, et al. Expires March 19, 2020 [Page 12]

Internet-Draft JSON Schema Validation September 2019

 implementation would send an email, attempt to connect to a URL, or
 otherwise check the existence of an entity identified by a format
 instance. [[CREF5: The expectation is that for simple formats such
 as date-time, syntactic validation will be thorough. For a complex
 format such as email addresses, which are the amalgamation of various
 standards and numerous adjustments over time, with obscure and/or
 obsolete rules that may or may not be restricted by other
 applications making use of the value, a minimal validation is
 sufficient. For example, an instance string that does not contain an
 "@" is clearly not a valid email address, and an "email" or
 "hostname" containing characters outside of 7-bit ASCII is likewise
 clearly invalid.]]

 It is RECOMMENDED that implementations use a common parsing library
 for each format, or a well-known regular expression. Implementations
 SHOULD clearly document how and to what degree each format attribute
 is validated.

 The standard core and validation meta-schema (Section 5) includes
 this vocabulary in its "$vocabulary" keyword with a value of false,
 since by default implementations are not required to support this
 keyword as an assertion. Supporting the format vocabulary with a
 value of true is understood to greatly increase code size and in some
 cases execution time, and will not be appropriate for all
 implementations.

7.2.3. Custom format attributes

 Implementations MAY support custom format attributes. Save for
 agreement between parties, schema authors SHALL NOT expect a peer
 implementation to support such custom format attributes. An
 implementation MUST NOT fail validation or cease processing due to an
 unknown format attribute. When treating "format" as an annotation,
 implementations SHOULD collect both known and unknown format
 attribute values.

 Vocabularies do not support specifically declaring different value
 sets for keywords. Due to this limitation, and the historically
 uneven implementation of this keyword, it is RECOMMENDED to define
 additional keywords in a custom vocabulary rather than additional
 format attributes if interoperability is desired.

7.3. Defined Formats

Wright, et al. Expires March 19, 2020 [Page 13]

Internet-Draft JSON Schema Validation September 2019

7.3.1. Dates, Times, and Duration

 These attributes apply to string instances.

 Date and time format names are derived from RFC 3339, section 5.6
 [RFC3339]. The duration format is from the ISO 8601 ABNF as given in

Appendix A of RFC 3339.

 Implementations supporting formats SHOULD implement support for the
 following attributes:

 date-time: A string instance is valid against this attribute if it
 is a valid representation according to the "date-time" production.

 date: A string instance is valid against this attribute if it is a
 valid representation according to the "full-date" production.

 time: A string instance is valid against this attribute if it is a
 valid representation according to the "full-time" production.

 duration: A string instance is valid against this attribute if it is
 a valid representation according to the "duration" production.

 Implementations MAY support additional attributes using the other
 production names defined in that section. If "full-date" or "full-
 time" are implemented, the corresponding short form ("date" or "time"
 respectively) MUST be implemented, and MUST behave identically.
 Implementations SHOULD NOT define extension attributes with any name
 matching an RFC 3339 production unless it validates according to the
 rules of that production. [[CREF6: There is not currently consensus
 on the need for supporting all RFC 3339 formats, so this approach of
 reserving the namespace will encourage experimentation without
 committing to the entire set. Either the format implementation
 requirements will become more flexible in general, or these will
 likely either be promoted to fully specified attributes or dropped.
]]

7.3.2. Email Addresses

 These attributes apply to string instances.

 A string instance is valid against these attributes if it is a valid
 Internet email address as follows:

 email: As defined by RFC 5322, section 3.4.1 [RFC5322].

 idn-email: As defined by RFC 6531 [RFC6531]

https://datatracker.ietf.org/doc/html/rfc3339#section-5.6
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339#appendix-A
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5322#section-3.4.1
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc6531
https://datatracker.ietf.org/doc/html/rfc6531

Wright, et al. Expires March 19, 2020 [Page 14]

Internet-Draft JSON Schema Validation September 2019

 Note that all strings valid against the "email" attribute are also
 valid against the "idn-email" attribute.

7.3.3. Hostnames

 These attributes apply to string instances.

 A string instance is valid against these attributes if it is a valid
 representation for an Internet hostname as follows:

 hostname: As defined by RFC 1123, section 2.1 [RFC1123], including
 host names produced using the Punycode algorithm specified in RFC

5891, section 4.4 [RFC5891].

 idn-hostname: As defined by either RFC 1123 as for hostname, or an
 internationalized hostname as defined by RFC 5890, section 2.3.2.3
 [RFC5890].

 Note that all strings valid against the "hostname" attribute are also
 valid against the "idn-hostname" attribute.

7.3.4. IP Addresses

 These attributes apply to string instances.

 A string instance is valid against these attributes if it is a valid
 representation of an IP address as follows:

 ipv4: An IPv4 address according to the "dotted-quad" ABNF syntax as
 defined in RFC 2673, section 3.2 [RFC2673].

 ipv6: An IPv6 address as defined in RFC 4291, section 2.2 [RFC4291].

7.3.5. Resource Identifiers

 These attributes apply to string instances.

 uri: A string instance is valid against this attribute if it is a
 valid URI, according to [RFC3986].

 uri-reference: A string instance is valid against this attribute if
 it is a valid URI Reference (either a URI or a relative-
 reference), according to [RFC3986].

 iri: A string instance is valid against this attribute if it is a
 valid IRI, according to [RFC3987].

https://datatracker.ietf.org/doc/html/rfc1123#section-2.1
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5891
https://datatracker.ietf.org/doc/html/rfc5891#section-4.4
https://datatracker.ietf.org/doc/html/rfc1123
https://datatracker.ietf.org/doc/html/rfc5890#section-2.3.2.3
https://datatracker.ietf.org/doc/html/rfc5890
https://datatracker.ietf.org/doc/html/rfc2673#section-3.2
https://datatracker.ietf.org/doc/html/rfc2673
https://datatracker.ietf.org/doc/html/rfc4291#section-2.2
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987

Wright, et al. Expires March 19, 2020 [Page 15]

Internet-Draft JSON Schema Validation September 2019

 iri-reference: A string instance is valid against this attribute if
 it is a valid IRI Reference (either an IRI or a relative-
 reference), according to [RFC3987].

 uuid: A string instance is valid against this attribute if it is a
 valid string representation of a UUID, according to [RFC4122].

 Note that all valid URIs are valid IRIs, and all valid URI References
 are also valid IRI References.

 Note also that the "uuid" format is for plain UUIDs, not UUIDs in
 URNs. An example is "f81d4fae-7dec-11d0-a765-00a0c91e6bf6". For
 UUIDs as URNs, use the "uri" format, with a "pattern" regular
 expression of "^urn:uuid:" to indicate the URI scheme and URN
 namespace.

7.3.6. uri-template

 This attribute applies to string instances.

 A string instance is valid against this attribute if it is a valid
 URI Template (of any level), according to [RFC6570].

 Note that URI Templates may be used for IRIs; there is no separate
 IRI Template specification.

7.3.7. JSON Pointers

 These attributes apply to string instances.

 json-pointer: A string instance is valid against this attribute if
 it is a valid JSON string representation of a JSON Pointer,
 according to RFC 6901, section 5 [RFC6901].

 relative-json-pointer: A string instance is valid against this
 attribute if it is a valid Relative JSON Pointer
 [relative-json-pointer].

 To allow for both absolute and relative JSON Pointers, use "anyOf" or
 "oneOf" to indicate support for either format.

7.3.8. regex

 This attribute applies to string instances.

 A regular expression, which SHOULD be valid according to the ECMA 262
 [ecma262] regular expression dialect.

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc4122
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc6901#section-5
https://datatracker.ietf.org/doc/html/rfc6901

Wright, et al. Expires March 19, 2020 [Page 16]

Internet-Draft JSON Schema Validation September 2019

 Implementations that validate formats MUST accept at least the subset
 of ECMA 262 defined in the Regular Expressions (Section 4.3) section
 of this specification, and SHOULD accept all valid ECMA 262
 expressions.

8. A Vocabulary for the Contents of String-Encoded Data

8.1. Foreword

 Annotations defined in this section indicate that an instance
 contains non-JSON data encoded in a JSON string.

 These properties provide additional information required to interpret
 JSON data as rich multimedia documents. They describe the type of
 content, how it is encoded, and/or how it may be validated. They do
 not function as validation assertions; a malformed string-encoded
 document MUST NOT cause the containing instance to be considered
 invalid.

 Meta-schemas that do not use "$vocabulary" SHOULD be considered to
 require this vocabulary as if its URI were present with a value of
 true.

 The current URI for this vocabulary, known as the Content vocabulary,
 is: <https://json-schema.org/draft/2019-09/vocab/content>.

 The current URI for the corresponding meta-schema is: <https://json-
schema.org/draft/2019-09/meta/content>.

8.2. Implementation Requirements

 Due to security and performance concerns, as well as the open-ended
 nature of possible content types, implementations MUST NOT
 automatically decode, parse, and/or validate the string contents by
 default. This additionally supports the use case of embedded
 documents intended for processing by a different consumer than that
 which processed the containing document.

 All keywords in this section apply only to strings, and have no
 effect on other data types.

 Implementations MAY offer the ability to decode, parse, and/or
 validate the string contents automatically. However, it MUST NOT
 perform these operations by default, and MUST provide the validation
 result of each string-encoded document separately from the enclosing
 document. This process SHOULD be equivalent to fully evaluating the
 instance against the original schema, followed by using the
 annotations to decode, parse, and/or validate each string-encoded

https://json-schema.org/draft/2019-09/vocab/content
https://json-schema.org/draft/2019-09/meta/content
https://json-schema.org/draft/2019-09/meta/content

Wright, et al. Expires March 19, 2020 [Page 17]

Internet-Draft JSON Schema Validation September 2019

 document. [[CREF7: For now, the exact mechanism of performing and
 returning parsed data and/or validation results from such an
 automatic decoding, parsing, and validating feature is left
 unspecified. Should such a feature prove popular, it may be
 specified more thoroughly in a future draft.]]

 See also the Security Considerations (Section 10) sections for
 possible vulnerabilities introduced by automatically processing the
 instance string according to these keywords.

8.3. contentEncoding

 If the instance value is a string, this property defines that the
 string SHOULD be interpreted as binary data and decoded using the
 encoding named by this property.

 Possible values for this property are listed in RFC 2045, Sec 6.1
 [RFC2045] and RFC 4648 [RFC4648]. For "base64", which is defined in
 both RFCs, the definition in RFC 4648, which removes line length
 limitations, SHOULD be used, as various other specifications have
 mandated different lengths. Note that line lengths within a string
 can be constrained using the "pattern" (Section 6.3.3) keyword.

 If this keyword is absent, but "contentMediaType" is present, this
 indicates that the media type could be encoded into UTF-8 like any
 other JSON string value, and does not require additional decoding.

 The value of this property MUST be a string.

8.4. contentMediaType

 If the instance is a string, this property indicates the media type
 of the contents of the string. If "contentEncoding" is present, this
 property describes the decoded string.

 The value of this property MUST be a string, which MUST be a media
 type, as defined by RFC 2046 [RFC2046].

8.5. contentSchema

 If the instance is a string, and if "contentMediaType" is present,
 this property contains a schema which describes the structure of the
 string.

 This keyword MAY be used with any media type that can be mapped into
 JSON Schema's data model.

https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc2045
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc2046
https://datatracker.ietf.org/doc/html/rfc2046

Wright, et al. Expires March 19, 2020 [Page 18]

Internet-Draft JSON Schema Validation September 2019

 The value of this property SHOULD be ignored if "contentMediaType" is
 not present.

8.6. Example

 Here is an example schema, illustrating the use of "contentEncoding"
 and "contentMediaType":

 {
 "type": "string",
 "contentEncoding": "base64",
 "contentMediaType": "image/png"
 }

 Instances described by this schema are expected to be strings, and
 their values should be interpretable as base64-encoded PNG images.

 Another example:

 {
 "type": "string",
 "contentMediaType": "text/html"
 }

 Instances described by this schema are expected to be strings
 containing HTML, using whatever character set the JSON string was
 decoded into. Per section 8.1 of RFC 8259 [RFC8259], outside of an
 entirely closed system, this MUST be UTF-8.

https://datatracker.ietf.org/doc/html/rfc8259#section-8.1
https://datatracker.ietf.org/doc/html/rfc8259

Wright, et al. Expires March 19, 2020 [Page 19]

Internet-Draft JSON Schema Validation September 2019

 This example describes a JWT that is MACed using the HMAC SHA-256
 algorithm, and requires the "iss" and "exp" fields in its claim set.

 {
 "type": "string",
 "contentMediaType": "application/jwt",
 "contentSchema": {
 "type": "array",
 "minItems": 2,
 "items": [
 {
 "const": {
 "typ": "JWT",
 "alg": "HS256"
 }
 },
 {
 "type": "object",
 "required": ["iss", "exp"],
 "properties": {
 "iss": {"type": "string"},
 "exp": {"type": "integer"}
 }
 }
]
 }
 }

 Note that "contentEncoding" does not appear. While the "application/
 jwt" media type makes use of base64url encoding, that is defined by
 the media type, which determines how the JWT string is decoded into a
 list of two JSON data structures: first the header, and then the
 payload. Since the JWT media type ensures that the JWT can be
 represented in a JSON string, there is no need for further encoding
 or decoding.

9. A Vocabulary for Basic Meta-Data Annotations

 These general-purpose annotation keywords provide commonly used
 information for documentation and user interface display purposes.
 They are not intended to form a comprehensive set of features.
 Rather, additional vocabularies can be defined for more complex
 annotation-based applications.

 Meta-schemas that do not use "$vocabulary" SHOULD be considered to
 require this vocabulary as if its URI were present with a value of
 true.

Wright, et al. Expires March 19, 2020 [Page 20]

Internet-Draft JSON Schema Validation September 2019

 The current URI for this vocabulary, known as the Meta-Data
 vocabulary, is: <https://json-schema.org/draft/2019-09/vocab/meta-

data>.

 The current URI for the corresponding meta-schema is: <https://json-
schema.org/draft/2019-09/meta/meta-data>.

9.1. "title" and "description"

 The value of both of these keywords MUST be a string.

 Both of these keywords can be used to decorate a user interface with
 information about the data produced by this user interface. A title
 will preferably be short, whereas a description will provide
 explanation about the purpose of the instance described by this
 schema.

9.2. "default"

 There are no restrictions placed on the value of this keyword. When
 multiple occurrences of this keyword are applicable to a single sub-
 instance, implementations SHOULD remove duplicates.

 This keyword can be used to supply a default JSON value associated
 with a particular schema. It is RECOMMENDED that a default value be
 valid against the associated schema.

9.3. "deprecated"

 The value of this keyword MUST be a boolean. When multiple
 occurrences of this keyword are applicable to a single sub-instance,
 applications SHOULD consider the instance location to be deprecated
 if any occurrence specifies a true value.

 If "deprecated" has a value of boolean true, it indicates that
 applications SHOULD refrain from usage of the declared property. It
 MAY mean the property is going to be removed in the future.

 A root schema containing "deprecated" with a value of true indicates
 that the entire resource being described MAY be removed in the
 future.

 When the "deprecated" keyword is applied to an item in an array by
 means of "items", if "items" is a single schema, the deprecation
 relates to the whole array, while if "items" is an array of schemas,
 the deprecation relates to the corrosponding item according to the
 subschemas position.

https://json-schema.org/draft/2019-09/vocab/meta-data
https://json-schema.org/draft/2019-09/vocab/meta-data
https://json-schema.org/draft/2019-09/meta/meta-data
https://json-schema.org/draft/2019-09/meta/meta-data

Wright, et al. Expires March 19, 2020 [Page 21]

Internet-Draft JSON Schema Validation September 2019

 Omitting this keyword has the same behavior as a value of false.

9.4. "readOnly" and "writeOnly"

 The value of these keywords MUST be a boolean. When multiple
 occurrences of these keywords are applicable to a single sub-
 instance, the resulting behavior SHOULD be as for a true value if any
 occurrence specifies a true value, and SHOULD be as for a false value
 otherwise.

 If "readOnly" has a value of boolean true, it indicates that the
 value of the instance is managed exclusively by the owning authority,
 and attempts by an application to modify the value of this property
 are expected to be ignored or rejected by that owning authority.

 An instance document that is marked as "readOnly for the entire
 document MAY be ignored if sent to the owning authority, or MAY
 result in an error, at the authority's discretion.

 If "writeOnly" has a value of boolean true, it indicates that the
 value is never present when the instance is retrieved from the owning
 authority. It can be present when sent to the owning authority to
 update or create the document (or the resource it represents), but it
 will not be included in any updated or newly created version of the
 instance.

 An instance document that is marked as "writeOnly" for the entire
 document MAY be returned as a blank document of some sort, or MAY
 produce an error upon retrieval, or have the retrieval request
 ignored, at the authority's discretion.

 For example, "readOnly" would be used to mark a database-generated
 serial number as read-only, while "writeOnly" would be used to mark a
 password input field.

 These keywords can be used to assist in user interface instance
 generation. In particular, an application MAY choose to use a widget
 that hides input values as they are typed for write-only fields.

 Omitting these keywords has the same behavior as values of false.

9.5. "examples"

 The value of this keyword MUST be an array. There are no
 restrictions placed on the values within the array. When multiple
 occurrences of this keyword are applicable to a single sub-instance,
 implementations MUST provide a flat array of all values rather than
 an array of arrays.

Wright, et al. Expires March 19, 2020 [Page 22]

Internet-Draft JSON Schema Validation September 2019

 This keyword can be used to provide sample JSON values associated
 with a particular schema, for the purpose of illustrating usage. It
 is RECOMMENDED that these values be valid against the associated
 schema.

 Implementations MAY use the value(s) of "default", if present, as an
 additional example. If "examples" is absent, "default" MAY still be
 used in this manner.

10. Security Considerations

 JSON Schema validation defines a vocabulary for JSON Schema core and
 concerns all the security considerations listed there.

 JSON Schema validation allows the use of Regular Expressions, which
 have numerous different (often incompatible) implementations. Some
 implementations allow the embedding of arbitrary code, which is
 outside the scope of JSON Schema and MUST NOT be permitted. Regular
 expressions can often also be crafted to be extremely expensive to
 compute (with so-called "catastrophic backtracking"), resulting in a
 denial-of-service attack.

 Implementations that support validating or otherwise evaluating
 instance string data based on "contentEncoding" and/or
 "contentMediaType" are at risk of evaluating data in an unsafe way
 based on misleading information. Applications can mitigate this risk
 by only performing such processing when a relationship between the
 schema and instance is established (e.g., they share the same
 authority).

 Processing a media type or encoding is subject to the security
 considerations of that media type or encoding. For example, the
 security considerations of RFC 4329 Scripting Media Types [RFC4329]
 apply when processing JavaScript or ECMAScript encoded within a JSON
 string.

11. References

11.1. Normative References

 [ecma262] "ECMA 262 specification", <http://www.ecma-
international.org/publications/files/ECMA-ST/
Ecma-262.pdf>.

 [json-schema]
 Wright, A. and H. Andrews, "JSON Schema: A Media Type for
 Describing JSON Documents", draft-handrews-json-schema-02
 (work in progress), November 2017.

https://datatracker.ietf.org/doc/html/rfc4329
https://datatracker.ietf.org/doc/html/rfc4329
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-262.pdf
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-02

Wright, et al. Expires March 19, 2020 [Page 23]

Internet-Draft JSON Schema Validation September 2019

 [relative-json-pointer]
 Luff, G. and H. Andrews, "Relative JSON Pointers", draft-

handrews-relative-json-pointer-01 (work in progress),
 November 2017.

 [RFC1123] Braden, R., Ed., "Requirements for Internet Hosts -
 Application and Support", STD 3, RFC 1123,
 DOI 10.17487/RFC1123, October 1989,
 <https://www.rfc-editor.org/info/rfc1123>.

 [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part One: Format of Internet Message
 Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996,
 <https://www.rfc-editor.org/info/rfc2045>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/info/rfc2046>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2673] Crawford, M., "Binary Labels in the Domain Name System",
RFC 2673, DOI 10.17487/RFC2673, August 1999,

 <https://www.rfc-editor.org/info/rfc2673>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
 January 2005, <https://www.rfc-editor.org/info/rfc3987>.

 [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally
 Unique IDentifier (UUID) URN Namespace", RFC 4122,
 DOI 10.17487/RFC4122, July 2005,
 <https://www.rfc-editor.org/info/rfc4122>.

https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-01
https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-01
https://datatracker.ietf.org/doc/html/rfc1123
https://www.rfc-editor.org/info/rfc1123
https://datatracker.ietf.org/doc/html/rfc2045
https://www.rfc-editor.org/info/rfc2045
https://datatracker.ietf.org/doc/html/rfc2046
https://www.rfc-editor.org/info/rfc2046
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2673
https://www.rfc-editor.org/info/rfc2673
https://datatracker.ietf.org/doc/html/rfc3339
https://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://datatracker.ietf.org/doc/html/rfc4122
https://www.rfc-editor.org/info/rfc4122

Wright, et al. Expires March 19, 2020 [Page 24]

Internet-Draft JSON Schema Validation September 2019

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, DOI 10.17487/RFC4291, February
 2006, <https://www.rfc-editor.org/info/rfc4291>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <https://www.rfc-editor.org/info/rfc5322>.

 [RFC5890] Klensin, J., "Internationalized Domain Names for
 Applications (IDNA): Definitions and Document Framework",

RFC 5890, DOI 10.17487/RFC5890, August 2010,
 <https://www.rfc-editor.org/info/rfc5890>.

 [RFC5891] Klensin, J., "Internationalized Domain Names in
 Applications (IDNA): Protocol", RFC 5891,
 DOI 10.17487/RFC5891, August 2010,
 <https://www.rfc-editor.org/info/rfc5891>.

 [RFC6531] Yao, J. and W. Mao, "SMTP Extension for Internationalized
 Email", RFC 6531, DOI 10.17487/RFC6531, February 2012,
 <https://www.rfc-editor.org/info/rfc6531>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <https://www.rfc-editor.org/info/rfc6570>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

11.2. Informative References

 [RFC4329] Hoehrmann, B., "Scripting Media Types", RFC 4329,
 DOI 10.17487/RFC4329, April 2006,
 <https://www.rfc-editor.org/info/rfc4329>.

https://datatracker.ietf.org/doc/html/rfc4291
https://www.rfc-editor.org/info/rfc4291
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://datatracker.ietf.org/doc/html/rfc5890
https://www.rfc-editor.org/info/rfc5890
https://datatracker.ietf.org/doc/html/rfc5891
https://www.rfc-editor.org/info/rfc5891
https://datatracker.ietf.org/doc/html/rfc6531
https://www.rfc-editor.org/info/rfc6531
https://datatracker.ietf.org/doc/html/rfc6570
https://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://datatracker.ietf.org/doc/html/rfc4329
https://www.rfc-editor.org/info/rfc4329

Wright, et al. Expires March 19, 2020 [Page 25]

Internet-Draft JSON Schema Validation September 2019

Appendix A. Keywords Moved from Validation to Core

 Several keywords have been moved from this document into the Core
 Specification [json-schema] as of this draft, in some cases with re-
 naming or other changes. This affects the following former
 validation keywords:

 "definitions" Renamed to "$defs" to match "$ref" and be shorter to
 type. Schema vocabulary authors SHOULD NOT define a "definitions"
 keyword with different behavior in order to avoid invalidating
 schemas that still use the older name. While "definitions" is
 absent in the single-vocabulary meta-schemas referenced by this
 document, it remains present in the default meta-schema, and
 implementations SHOULD assume that "$defs" and "definitions" have
 the same behavior when that meta-schema is used.

 "allOf", "anyOf", "oneOf", "not", "if", "then", "else",
 "items", "additionalItems",
 "contains", "propertyNames",
 "properties", "patternProperties", "additionalProperties"
 All of these keywords apply subschemas to the instance and combine
 their results, without asserting any conditions of their own.
 Without assertion keywords, these applicators can only cause
 assertion failures by using the false boolean schema, or by
 inverting the result of the true boolean schema (or equivalent
 schema objects). For this reason, they are better defined as a
 generic mechanism on which validation, hyper-schema, and extension
 vocabularies can all be based.

 "dependencies" This keyword had two different modes of behavior,
 which made it relatively challenging to implement and reason
 about. The schema form has been moved to Core and renamed to
 "dependentSchemas", as part of the applicator vocabulary. It is
 analogous to "properties", except that instead of applying its
 subschema to the property value, it applies it to the object
 containing the property. The property name array form is retained
 here and renamed to "dependentRequired", as it is an assertion
 which is a shortcut for the conditional use of the "required"
 assertion keyword.

Appendix B. Acknowledgments

 Thanks to Gary Court, Francis Galiegue, Kris Zyp, and Geraint Luff
 for their work on the initial drafts of JSON Schema.

 Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Ben Hutton,
 Evgeny Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave

Wright, et al. Expires March 19, 2020 [Page 26]

Internet-Draft JSON Schema Validation September 2019

 Finlay, and Denis Laxalde for their submissions and patches to the
 document.

Appendix C. ChangeLog

 [[CREF8: This section to be removed before leaving Internet-Draft
 status.]]

draft-handrews-json-schema-validation-02

 * Grouped keywords into formal vocabuarlies

 * Update "format" implementation requirements in terms of
 vocabularies

 * By default, "format" MUST NOT be validated, although validation
 can be enabled

 * A vocabulary declaration can be used to require "format"
 validation

 * Moved "definitions" to the core spec as "$defs"

 * Moved applicator keywords to the core spec

 * Renamed the array form of "dependencies" to
 "dependentRequired", moved the schema form to the core spec

 * Specified all "content*" keywords as annotations, not
 assertions

 * Added "contentSchema" to allow applying a schema to a string-
 encoded document

 * Also allow RFC 4648 encodings in "contentEncoding"

 * Added "minContains" and "maxContains"

 * Update RFC reference for "hostname" and "idn-hostname"

 * Add "uuid" and "duration" formats

draft-handrews-json-schema-validation-01

 * This draft is purely a clarification with no functional changes

 * Provided the general principle behind ignoring annotations
 under "not" and similar cases

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-02
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-01

Wright, et al. Expires March 19, 2020 [Page 27]

Internet-Draft JSON Schema Validation September 2019

 * Clarified "if"/"then"/"else" validation interactions

 * Clarified "if"/"then"/"else" behavior for annotation

 * Minor formatting and cross-referencing improvements

draft-handrews-json-schema-validation-00

 * Added "if"/"then"/"else"

 * Classify keywords as assertions or annotations per the core
 spec

 * Warn of possibly removing "dependencies" in the future

 * Grouped validation keywords into sub-sections for readability

 * Moved "readOnly" from hyper-schema to validation meta-data

 * Added "writeOnly"

 * Added string-encoded media section, with former hyper-schema
 "media" keywords

 * Restored "regex" format (removal was unintentional)

 * Added "date" and "time" formats, and reserved additional RFC
3339 format names

 * I18N formats: "iri", "iri-reference", "idn-hostname", "idn-
 email"

 * Clarify that "json-pointer" format means string encoding, not
 URI fragment

 * Fixed typo that inverted the meaning of "minimum" and
 "exclusiveMinimum"

 * Move format syntax references into Normative References

 * JSON is a normative requirement

draft-wright-json-schema-validation-01

 * Standardized on hyphenated format names with full words
 ("uriref" becomes "uri-reference")

 * Add the formats "uri-template" and "json-pointer"

https://datatracker.ietf.org/doc/html/draft-handrews-json-schema-validation-00
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-01

Wright, et al. Expires March 19, 2020 [Page 28]

Internet-Draft JSON Schema Validation September 2019

 * Changed "exclusiveMaximum"/"exclusiveMinimum" from boolean
 modifiers of "maximum"/"minimum" to independent numeric fields.

 * Split the additionalItems/items into two sections

 * Reworked properties/patternProperties/additionalProperties
 definition

 * Added "examples" keyword

 * Added "contains" keyword

 * Allow empty "required" and "dependencies" arrays

 * Fixed "type" reference to primitive types

 * Added "const" keyword

 * Added "propertyNames" keyword

draft-wright-json-schema-validation-00

 * Added additional security considerations

 * Removed reference to "latest version" meta-schema, use numbered
 version instead

 * Rephrased many keyword definitions for brevity

 * Added "uriref" format that also allows relative URI references

draft-fge-json-schema-validation-00

 * Initial draft.

 * Salvaged from draft v3.

 * Redefine the "required" keyword.

 * Remove "extends", "disallow"

 * Add "anyOf", "allOf", "oneOf", "not", "definitions",
 "minProperties", "maxProperties".

 * "dependencies" member values can no longer be single strings;
 at least one element is required in a property dependency
 array.

https://datatracker.ietf.org/doc/html/draft-wright-json-schema-validation-00
https://datatracker.ietf.org/doc/html/draft-fge-json-schema-validation-00

Wright, et al. Expires March 19, 2020 [Page 29]

Internet-Draft JSON Schema Validation September 2019

 * Rename "divisibleBy" to "multipleOf".

 * "type" arrays can no longer have schemas; remove "any" as a
 possible value.

 * Rework the "format" section; make support optional.

 * "format": remove attributes "phone", "style", "color"; rename
 "ip-address" to "ipv4"; add references for all attributes.

 * Provide algorithms to calculate schema(s) for array/object
 instances.

 * Add interoperability considerations.

Authors' Addresses

 Austin Wright (editor)

 EMail: aaa@bzfx.net

 Henry Andrews (editor)

 EMail: andrews_henry@yahoo.com

 Ben Hutton (editor)
 Wellcome Sanger Institute

 EMail: bh7@sanger.ac.uk
 URI: https://jsonschema.dev

https://jsonschema.dev

Wright, et al. Expires March 19, 2020 [Page 30]

