
Individual submission W. Handte
Internet-Draft Facebook, Inc.
Intended status: Informational October 29, 2019
Expires: May 1, 2020

Security Considerations Regarding Compression Dictionaries
draft-handte-httpbis-dict-sec-00

Abstract

 Dictionary-based compression enables better performance, but brings
 state into the process of compression, with all the complexities that
 follow. This document explores the security implications of this
 technique in the context of internet protocols and enumerates known
 risks and mitigations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 1, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Handte Expires May 1, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Compression Dictionary Security October 2019

Table of Contents

1. Introduction . 3
2. Basis . 3
2.1. Compression Environments 3
2.2. Security Properties 4
2.3. Threat Model . 4
2.4. Existing Attacks . 4

3. Dictionaries . 5
3.1. Dictionary Compression 5
3.2. Dictionary Contents 5
3.2.1. Unstructured Dictionaries 5
3.2.2. Structured Dictionaries 6

3.3. Using Dictionaries 6
3.3.1. Generating Dictionaries 6
3.3.2. Identifying Dictionaries 7
3.3.3. Distributing Dictionaries 9
3.3.4. Selecting Dictionaries 9
3.3.5. Using Dictionaries 10
3.3.6. Deleting Dictionaries 10

4. Risks . 11
4.1. Revealing Message Content 11
4.1.1. By Observing Which Dictionary is Used 11
4.1.2. By Observing Message Size 12
4.1.3. By Observing Timing 13

4.2. Revealing Dictionary Content 14
4.2.1. By Observing Message Size 14
4.2.2. In Compression 14
4.2.3. In Decompression 14

4.3. Manipulating Message Content 15
4.3.1. By Manipulating Message Content 16
4.3.2. By Manipulating Dictionary Content 16
4.3.3. By Manipulating Dictionary Identifiers 17

4.4. Obfuscating Message Content 17
4.4.1. From Intermediaries 17
4.4.2. Multiple Representations 18

4.5. Tracking Users . 18
4.5.1. Through Dictionary Negotiation 18
4.5.2. Through Dictionary Retrieval 19

4.6. Denial of Service . 19
4.7. Resource Exhaustion 19
4.7.1. Resources . 19
4.7.2. Targets . 22

4.8. Generating Dictionaries 24
4.8.1. Handling Samples 24
4.8.2. Tagging Mitigations 24
4.8.3. Probabilistic Mitigations 25

4.9. Complexity . 25

Handte Expires May 1, 2020 [Page 2]

Internet-Draft Compression Dictionary Security October 2019

5. Conclusions . 25
6. IANA Considerations . 26
7. Security Considerations 26
8. References . 26
8.1. Normative References 26
8.2. Other Examples of Dictionary-Like Compression 26
8.3. Informative References 27

Appendix A. Acknowledgements 30
 Author's Address . 30

1. Introduction

 General-purpose data compression algorithms are designed to achieve
 good performance on many different kinds of data. However, that
 general-purpose nature makes them, to a certain extent, jacks of all
 trades and masters of none: a compressor that has been tuned for a
 specific use case can always perform better than a generic
 equivalent.

 In response, a number of modern compression algorithms (including
 DEFLATE [DEFLATE], Brotli [BROTLI], and Zstandard [ZSTD]) have
 developed a generic capability to specialize themselves. In addition
 to the actual message to be processed, these compressors allow users
 to provide additional context information, which the compressor and
 decompressor can use to tailor their internal states to that
 particular use case. To the extent that this auxiliary data matches
 the nature of the message being compressed, the compressor can use it
 to produce a smaller compressed representation of the message. This
 auxiliary data can include various things, but it has come to be
 known as a "dictionary."

 As dictionary-based compression has been adopted, it has been found
 that its use can present security challenges. This document is a
 collection of those challenges. As future use cases for dictionaries
 are contemplated, this document can be used as a checklist to ensure
 that the protocols, their specifications, and their implementations
 have been appropriately evaluated against these concerns.

2. Basis

2.1. Compression Environments

 The security of any use of compression depends greatly on the
 environment in which it is deployed, and the threats it is subjected
 to. This document analyzes dictionary-based compression as it might
 be used by a generic internet protocol, in which:

Handte Expires May 1, 2020 [Page 3]

Internet-Draft Compression Dictionary Security October 2019

 o Agents exchange messages over possibly-trusted, possibly-
 authenticated, possibly-encrypted channels, which are vulnerable
 to some combination of traffic analysis, eavesdropping, and
 manipulation.

 o Agents exchange messages with parties they may not trust.

 o Agents may take protocol actions (generating, sending, receiving,
 and interpreting messages) in response to triggers other than user
 action. Some examples include:

 * Replying automatically to received messages.

 * Relaying or forwarding received messages to other agents (e.g.,
 an SMTP relay).

 * Exchanging messages at the behest of trusted or untrusted code
 (e.g., trusted: a website codebase generating responses to HTTP
 requests, untrusted: a website's JavaScript code running in a
 browser.

 This document aims to enumerate all security risks raised when using
 dictionary-based compression in this baseline environment. In
 addition to attempting an exhaustive list of possible security risks,
 this document will identify desirable properties of the protocol
 stack and environment in which the compression is used and other
 methods with which individual concerns can be obviated or mitigated.

2.2. Security Properties

 [TODO]

2.3. Threat Model

 [TODO]

2.4. Existing Attacks

 This document excludes from its analysis security risks that are
 already present without the use of dictionary compression.

 In particular, compression as it broadly used today--without
 dictionaries--is known to introduce vulnerabilities. The most well
 known series of these attacks ([CRIME] et al.) recovers message
 content of inaccessible or encrypted traffic by observing message
 sizes while manipulating other parts of the message or traffic
 stream.

Handte Expires May 1, 2020 [Page 4]

Internet-Draft Compression Dictionary Security October 2019

3. Dictionaries

3.1. Dictionary Compression

 Classically, compression algorithms operate as stateless, pure
 functions. In that mode, their output depends solely on the input
 message and the algorithm's implementation details. Dictionaries
 break that paradigm, introducing an additional input to the
 compression and decompression operations. Compressors may then
 leverage the contents of that additional input--the dictionary--to
 produce more compact representations of their inputs.

 +--------- dictionary ----------+
 | |
 V V
 +------------+ compressed +--------------+
 message -> | compressor | --> message --> | decompressor | -> message
 +------------+ representation +--------------+

 In introducing this other element, the interpretation of the
 compressed message becomes dependent on the content of the
 dictionary, and therefore same dictionary that was used to compress a
 message must be presented at decompression time. In this way,
 dictionaries are in effect an out-of-band communication or pre-shared
 key between the compressor and decompressor.

3.2. Dictionary Contents

 In principle, the contents of a dictionary are solely the concern of
 the compressor and decompressor, and implementations should be free
 to treat them as opaque blobs. However, when analyzing their
 security characteristics, it's useful to understand the data that is
 actually present in a dictionaries.

 Dictionaries take two broad forms.

3.2.1. Unstructured Dictionaries

 Some compressors (e.g., DEFLATE [DEFLATE] and Zstandard [ZSTD])
 accept arbitrary, unstructured bytestreams as dictionaries. In these
 cases, the dictionary is used purely as a buffer in which LZ77-style
 content matches can be found [LZ77]. That is, when the dictionary
 contains some sequence of bytes that is also present in the message,
 the compressor can choose to represent those bytes by referencing
 them in the dictionary, rather than by representing them literally.

Handte Expires May 1, 2020 [Page 5]

Internet-Draft Compression Dictionary Security October 2019

3.2.2. Structured Dictionaries

 Some compressors (e.g., Brotli [BROTLI] and Zstandard [ZSTD]) accept
 dictionaries that conform to a specific and defined format. In these
 cases, the dictionary data can consist of multiple components, each
 of which is used in different ways.

 metadata: The dictionary may contain metadata that identifies the
 dictionary. For example, Zstandard dictionaries include a 32-bit
 integer ID field.

 statistics: The dictionary may contain frequency distributions of
 various kinds of symbols, which the compressor can use to more
 efficiently encode the corresponding streams instead of using a
 default frequency distribution.

 initial values: For example, Zstandard allows the dictionary to
 initialize certain parts of the compressor's internal state (in
 particular, the initial values of Repeated_Offset1,
 Repeated_Offset2, and Repeated_Offset3) [ZSTD].

 instructions: The dictionary may describe preprocessing or
 transformation steps to be taken on the input. [TODO: expand]

 corpus content:

 untokenized: For LZ77-style compressors [LZ77], the structured
 dictionaries may still contain unstructured content for the
 compressor to make matches against.

 tokenized: Alternatively, for LZ78-style compressors [LZ78], the
 match content is tokenized (i.e., it consists of a collection
 of independent strings, serialized in some form).

3.3. Using Dictionaries

 In order to use compression dictionaries in a system, it is not only
 the internals and integration points of the compressor and
 decompressor whose behavior must change. Dictionaries make
 compression stateful, and applications that use dictionaries must
 therefore participate in the whole lifecycle of state management.

3.3.1. Generating Dictionaries

 As noted in Section 3.2.1, some compression algorithms can accept
 arbitrary, unstructured inputs as dictionaries. These unstructured
 dictionaries do not require an explicit generation step; users can
 simply repurpose existing messages as dictionaries. This potentially

Handte Expires May 1, 2020 [Page 6]

Internet-Draft Compression Dictionary Security October 2019

 avoids the need to perform additional coordination and communication
 to distribute purpose-built dictionaries. See for example the
 Compression Dictionaries for HTTP/2 proposal
 [I-D.vkrasnov-h2-compression-dictionaries].

 Alternatively, the dictionary may be a separate object, purpose-built
 for the task. Generating such a dictionary may be desirable for a
 number of reasons, including:

 o Building a dictionary is necessary to produce the structure in a
 structured dictionary.

 o Trained dictionaries generally perform better than using raw
 content. The training process selects the parts of the sample
 corpus that are useful for compression and discard the parts that
 are not, producing a more compact and more effective dictionary.

 o The training process is an opportunity to sanitize the content
 that ends up being used as a dictionary, potentially enhancing
 security and privacy (see Section 4.8).

 In general, an algorithm is run over a corpus of sample messages
 (such as the COVER algorithm [COVER] in Zstandard), which selects
 commonly occurring substrings and bundles them together.

 Any structured metadata (e.g., symbol distribution statistics) can
 then be calculated. For example, Zstandard then compresses some of
 the sample messages it was given with the dictionary and aggregates
 the statistics resulting from those compressions and writes them into
 the dictionary's header.

3.3.2. Identifying Dictionaries

 If freedom exists in a system as to which dictionary is to be used
 for a given message, there must be some way to distinguish which
 dictionary to use, so that decompressors can use the same one. In
 practice, this means associating each dictionary with an identifier.

 Popular methods to do this include:

 Identity ID: The "identifier" for the dictionary is the dictionary
 itself. This is not really very popular, since information theory
 strongly suggests that a compressed message without a dictionary
 will always be smaller than a message compressed with a dictionary
 plus the dictionary.

 Arbitrary IDs: The scheme associates an arbitrary identifier (e.g.,
 a number or string) with this dictionary. This can have the

Handte Expires May 1, 2020 [Page 7]

Internet-Draft Compression Dictionary Security October 2019

 advantage of being the most compact, but has the disadvantage that
 it neither describes the content of the dictionary nor where to
 get it.

 Content-Derived IDs: Identifiers that are deterministically derived
 from the content they identify (such as hashes), when designed
 well, have the benefit that they can validate the associated
 dictionary without requiring trusting the dictionary source.
 (Though they are of course vulnerable to collision attacks.) They
 have the disadvantage that they do not describe where to source
 the dictionary. In order to be secure, they may also have to be
 relatively verbose.

 Location-Based IDs: Identifiers of this form (notably, URLs) do not
 identify the content directly, but rather describe where to get
 it. They are suitable insofar as that source can be trusted to
 reliably serve the same content to different participants.

3.3.2.1. Existing Systems

 Existing compression schemes have selected the following
 identification systems:

 DEFLATE: DEFLATE writes an Adler32 checksum of the dictionary into
 its compressed message header and checks it at decompression-time.

 Brotli: Brotli always implicitly uses a single static dictionary.
 As such, no identifier is needed or provided [BROTLI].

 Shared Brotli: Shared Brotli uses either a 256-bit Highwayhash
 digest of the dictionary or a direct pointer to the dictionary
 when it is included in the same compressed stream
 [I-D.vandevenne-shared-brotli-format].

 Zstandard: Zstandard uses 32-bit integers to identify dictionaries
 [ZSTD].

 SDCH: SDCH uses a URL to describe how to fetch a dictionary and then
 a hash (a 96-bit prefix of the SHA-256 digest of the dictionary)
 in negotiations [I-D.lee-sdch-spec].

 CDH2: Compression Dictionaries for HTTP/2 uses an 8-bit integer
 [I-D.vkrasnov-h2-compression-dictionaries].

Handte Expires May 1, 2020 [Page 8]

Internet-Draft Compression Dictionary Security October 2019

3.3.3. Distributing Dictionaries

 Dictionaries must themselves be made accessible to participants.
 There are several possible approaches to doing this:

 static: The protocol defines the set of dictionaries. Protocol
 implementations can statically include or independently generate
 these dictionaries. No further distribution mechanism is
 required.

 local: When dictionaries are not specified by the protocol, but are
 derived locally or provided by the user, no dictionary
 distribution mechanism is required, although a negotiation
 mechanism might be.

 centralized: The set of dictionaries in use by the system changes
 over time, coordinated by and available from a central authority.

 distributed: The set of dictionaries in use by the system changes
 over time. Some or all participants can generate and publish
 dictionaries.

3.3.4. Selecting Dictionaries

 Related to the above, because the same dictionary must be used to
 compress and decompress a particular message, it is necessary for the
 compressor and decompressor to come to an understanding as to which
 dictionary they will use for a given message, presumably based on
 selecting which dictionary of those available to both the sender and
 receiver is most suitable. This selection process can take multiple
 forms:

 implicit: In situations where the compressor or protocol specifies a
 single dictionary that is always used (e.g., Brotli [BROTLI]), no
 particular selection process is required. Use of the compression
 scheme at all (which may or may not itself be negotiated) is
 sufficient to identify the dictionary to use.

 unilateral: When the set of dictionaries available to the
 decompressing agent is known to the compressing agent, the
 compressing agent may unilaterally select a dictionary to use, and
 include an identification of that dictionary in either the
 compressed message itself (e.g., Zstandard's Dictionary_ID field
 in the frame header) or in protocol metadata (e.g., an HTTP
 response header). This mechanism can be applied in simple
 situations, such as when the set of dictionaries used by the
 protocol is fixed and guaranteed to be immediately available to
 all participants (such as by being included in the

Handte Expires May 1, 2020 [Page 9]

Internet-Draft Compression Dictionary Security October 2019

 implementation's installation). It can also be applied to a more
 loose definition of availability, if the decompressing agent is
 known to be capable of retrieving the dictionary based on the
 provided identifier, even if it doesn't have the dictionary at
 present.

 bilateral: When the set of dictionaries available to each party is
 not known to the other, additional messages may be required in
 order for the compressing agent to select a dictionary available
 to both both parties. In particular, while other negotiation
 patterns only require a flow of information from the compressor to
 the decompressor, which matches the flow of the compressed message
 itself, this mechanism requires communication in both directions.

3.3.5. Using Dictionaries

 Having selected and retrieved a dictionary, it remains to actually
 present the dictionary to the compressor or decompressor and perform
 the compression operation.

 Dictionaries, whether structured or not, are flat byte streams. In
 order to be used (especially in compression), most implementations
 require that a preparation step be performed on the content of the
 dictionary, populating the compressor's internal datastructures.

 This materialization of the dictionary can sometimes be performed
 transparently as part of the compression or decompression operation.
 Alternatively, some compressors allow this materialization step to be
 performed separately / explicitly. When this capability is used, the
 work of processing the serialized dictionary into the compressor's
 internal datastructures only needs to be performed once, even when
 this materialized dictionary object is used for many compressions or
 decompressions. This can lead to significant efficiencies.

3.3.6. Deleting Dictionaries

 Dictionary compression inherently entangles the lifetimes of
 different pieces of data. When a dictionary is generated, it
 collects and incorporates information about the data it was trained
 on (whether that be diffuse statistical information, small common
 substrings or tokens, or significant contiguous excerpts of the
 training data). When that dictionary is used to compress a set of
 messages, it must be retained by the system for as long as the system
 desires to be able to decompress any of those messages. The lifetime
 of information derived from individual messages is thus tied to the
 lifetime of many messages, or even the whole system. This introduces
 complexities for systems that wish to minimize or bound the lifetime
 of individual pieces of data.

Handte Expires May 1, 2020 [Page 10]

Internet-Draft Compression Dictionary Security October 2019

4. Risks

 These subsections each describe a class of security issues that have
 been raised concerning dictionary-based compression and the
 surrounding protocol mechanisms. Where possible and known,
 mitigations are described.

4.1. Revealing Message Content

 This section discusses attacks that use dictionary compression to
 recover content in the message.

4.1.1. By Observing Which Dictionary is Used

 Because dictionaries' effectiveness improves the more that they
 target a specific type of data, a protocol may want to use multiple
 dictionaries, each targeting a subclass of the system's traffic.
 Alternatively, a participant may always avoid using a dictionary in
 certain scenarios, such as when reporting an error. When this is the
 case, the use of a particular dictionary or not for a message implies
 that the message belongs to the corresponding subclass of traffic.

 The metadata identifying which dictionary was used to compress a
 message should therefore be protected to the same extent that the
 message content is protected. (Similarly, the choice of dictionary
 and any data exchanged in that selection process may reveal other
 information about the sender and receiver, independent of the content
 of the specific message being handled, which is discussed in

Section 4.5.1.)

 This information may itself be inferred from other signals, and
 therefore serve as a stepping stone connecting those signals to
 conclusions about message content.

 Message Size: Observations of message sizes, especially headers or
 connection negotiations (also discussed in Section 4.1.2), can
 indicate whether a dictionary was used, or even perhaps which
 dictionary was used.

 Timing: Compression with and without a dictionary may take
 observably different amounts of time. This is also discussed in

Section 4.1.3.

 Dictionary Retrieval: When dictionaries are retrieved dynamically,
 another vector for learning this information is simply observing
 whether a message triggers a fetch for a dictionary, and if so,
 which dictionary. (This is also discussed in Section 4.5.2.)
 Protocols should consider decoupling retrieving dictionaries

Handte Expires May 1, 2020 [Page 11]

Internet-Draft Compression Dictionary Security October 2019

 (especially when doing so is easily observable) from using them.
 For example, SDCH advertises and retrieves dictionaries
 independently of using them [I-D.lee-sdch-spec].

4.1.2. By Observing Message Size

 By manipulating a portion of the message and observing the overall
 size of the compressed message, the attacker can recover information
 about the portions of the message not under its control [BREACH]
 [CRIME] [HEIST]. Given that dictionary-based compression is an
 extension of dictionary-less compression, it is certainly also
 vulnerable to this attack.

 In particular, the dictionary itself can be used in this sort of
 attack, to the extent that its contents are attacker-controlled.
 Note that the ability to control which dictionary is used may
 indirectly give an attacker the effective ability to modify the
 contents of the dictionary.

 Protocol designers should therefore prevent parties that will not
 have access to the message content from being able to influence the
 dictionary used to compress the message.

 In settings where the dictionary that is used is derived from
 previous traffic, especially if previous traffic is directly used as
 a dictionary, the problem of ensuring that private data and attacker-
 controlled data grows in complexity. In such a scheme, the attacker
 may also be able to exercise more control over the content of the
 dictionary if they can influence the order in which messages are
 exchanged. Protocols of this sort may wish to place strong controls
 on the kinds of messages that can be included in the dictionary. See
 for example [I-D.vkrasnov-h2-compression-dictionaries].

 The remaining question is whether the dictionary constitutes a third
 class of data (fixed, known data), with distinct security properties.
 That is, even if the dictionary is neither under attacker control nor
 does it contain private information, can its use still reveal
 information about the contents of the message under compression.

4.1.2.1. Mitigating with Padding

 One possible mitigation of the compressed message size oracle is to
 add padding to messages, either at the compression level or at the
 transport layer (e.g., [I-D.pironti-tls-length-hiding]). Even simple
 padding schemes can significantly inflate the cost of mounting such
 an attack, if not mitigate it completely.

Handte Expires May 1, 2020 [Page 12]

Internet-Draft Compression Dictionary Security October 2019

4.1.2.2. Mitigating by Separating Content

 Another possible strategy to mitigate this attack is to avoid letting
 attacker-controlled data be matched against private data. This can
 be accomplished by avoiding compressing one or the other, or by
 compressing them independently of each other. See, e.g.,
 [CLOUDFLARE-NO-COMPRESS].

4.1.2.3. Mitigating by Avoiding Repeated Compressions

 A crucial feature of these attacks is that they require the message
 under attack to be re-compressed many times (proportional to the
 amount of information being extracted). The attack can therefore be
 mitigated either by limiting the number of times the same message can
 be compressed (rate-limiting), or by making sure that it is not the
 same message that is compressed every time.

 That is to say, these attacks are most effective when the attacker-
 controlled data is the only thing that is changing between
 compressions. Changing or randomizing content (ideally, including
 the secrets in question) in the message on each compression can make
 it much harder to extract information.

4.1.3. By Observing Timing

 Timing is another classic side-channel through which information can
 leak. An attacker could potentially observe the time taken during
 compression or decompression, and draw conclusions about the contents
 of a message. As discussed in Section 4.7.1.3.1, it is possible that
 a dictionary could affect the efficiency of compression and
 decompression.

 In addition, timing can act as a vector for extracting information
 from another side-channel. As described in the HEIST attack [HEIST],
 compression ratio information can be leaked by counting round-trip
 latencies.

 Alternatively, while compression and decompression are usually
 relatively fast and fairly content-insensitive operations, retrieving
 and initializing a dictionary might be a high-latency operation, and
 therefore may be identifiable by observing timing. Timing is
 therefore another potential avenue to observe which dictionary is
 used, which may in turn reveal information about the message being
 processed (Section 4.1.1).

Handte Expires May 1, 2020 [Page 13]

Internet-Draft Compression Dictionary Security October 2019

4.2. Revealing Dictionary Content

 This section investigates the ability to leverage dictionary-based
 compression to reveal data other than the message content being
 compressed (i.e., revealing content used as the dictionary). Note
 that this is only of interest when there are secrets in the
 dictionary, which violates the common model that is mostly analyzed
 in this document, in which the dictionary is assumed to be a shared,
 public resource.

 In systems with multiple privacy domains, the ability to nominate
 arbitrary resources in that system as dictionaries poses a risk.

 Protocol designers and implementors should ensure that compressing
 and decompressing agents cannot use as dictionaries resources from
 privacy domains that either agent does not have access to.

 A corollary is that a transport system that mixes resources from
 multiple privacy domains into the same compression context through
 dictionary-based compression should not reveal the compressed
 representation of messages (or information derived from the
 compressed representation, such as its size) to other components of
 the system that are only trusted in a particular privacy domain.

4.2.1. By Observing Message Size

 Analogously to Section 4.1.2, an attacker can exploit knowledge about
 the contents of a message and its compressed size to draw conclusions
 about the contents of the dictionary.

4.2.2. In Compression

 If an attacker can inspect the compressed representation of a
 message, they may be able to draw conclusions about the contents of
 the dictionary that was used to compress it. This is especially the
 case if the attacker knows the original message that was compressed
 (i.e., a known-plaintext attack) or if the attacker can supply the
 message to be compressed (i.e., a chosen-plaintext attack), and is
 helped if the attacker can cause the message to be compressed
 multiple times while varying some aspect of the compression.

4.2.3. In Decompression

 In compression schemes that support the use of dictionaries, and
 especially unstructured dictionaries, it is possible to craft
 compressed messages independent of a dictionary in such a way that,
 when decompressed with a provided dictionary, the decompressed
 message that is produced will reveal information about the contents

Handte Expires May 1, 2020 [Page 14]

Internet-Draft Compression Dictionary Security October 2019

 of the dictionary that was not known by the compressor (possibly
 trivially, by directly reproducing some or all of the dictionary's
 contents).

 Consider a protocol that allows a compressing agent to freely
 identify any other resource in the system as the dictionary for a
 message. The compressing agent could select as a dictionary some
 resource to which the decompressing agent has access, but to which it
 does not. Without access to that resource, it could nonetheless
 generate a compressed message the effect of which would be to
 reproduce that resource in part or in its entirety. This message,
 decompressed by the target, would cause a resource in the compressing
 agent's trust domain to appear to have the contents of a resource it
 does not itself have access to.

 This could cause the decompressing agent to take some action that the
 compressing agent would not otherwise have had the authority to
 initiate. Alternatively, with some additional mechanism, the
 compressing agent could then cause the decompressing agent to reveal
 the uncompressed message (i.e., the selected third-party resource)
 back to the compressing agent.

4.3. Manipulating Message Content

 When the decompressing agent uses a different dictionary to
 decompress a message than was used to compress the message (which is
 possible due to confusion on the part of either the compressing or
 decompressing agent), the reconstituted message produced by
 decompression may differ from the original message the compressing
 agent intended.

 An attacker that can induce this situation can therefore use
 dictionary compression to manipulate the perceived content of
 messages, even when they cannot directly manipulate the contents of
 the messages themselves.

 A particular implication of this is that a compressed message may
 have multiple interpretations. In one context (with one dictionary),
 the message can be constructed so as to appear benign or to pass a
 validation or authentication step when decompressed. Later, if a
 different component or agent can be induced to decompress the same
 message with a different dictionary, the reconstructed message may be
 completely different.

 A general mitigation against this attack is to specify mechanisms to
 validate the integrity of the message. In particular, it may be
 desirable to validate the ultimate, uncompressed message, rather than
 validating the various components that the decompressing agent relies

Handte Expires May 1, 2020 [Page 15]

Internet-Draft Compression Dictionary Security October 2019

 on to reconstitute the uncompressed message--the compressed message,
 the metadata identifying the dictionary, the associated dictionary
 contents, etc. (However, this has its own problems
 [ENCRYPT-THEN-AUTHENTICATE].)

4.3.1. By Manipulating Message Content

 The degenerate version of this attack is to manipulate the
 uncompressed message by directly manipulating the compressed
 representation of the message. In such a scenario, the presence or
 absence of a dictionary is irrelevant. In most cases, this attack is
 defended against by some scheme that protects the integrity of the
 compressed message.

 However, it is useful to point this attack out, as the other attacks
 in this space aim to achieve the same result indirectly, and may do
 so by exploiting protocols which protect the integrity of the
 compressed message, but perhaps not its metadata describing which
 dictionary to use nor the contents of that dictionary, such as might
 arise particularly if dictionary-based compression is an extension to
 an existing protocol.

4.3.2. By Manipulating Dictionary Content

 One possible avenue for this kind of attack is to cause the
 compressing agent and decompressing agent to have differing views of
 the same dictionary (whether by manipulating a participant's local
 copy or by causing a fetch to return different results for different
 users or otherwise).

 Protocol designers should therefore take care to protect the
 integrity of dictionaries. Two broad strategies exist to do so.

4.3.2.1. Mitigating by Validating Dictionary Contents

 In the first, the identifier for the dictionary may itself be used to
 validate the contents that are retrieved, if the identifier scheme
 includes a cryptographically secure digest of the identified
 dictionary's contents (see Section 3.3.2). Alternatively, even if
 the identifier itself does not provide for , designers should specify
 other mechanisms to ensure the integrity and correctness of
 dictionaries (signatures, checksums, etc.). See for example schemes
 like Subresource Integrity [SRI].

Handte Expires May 1, 2020 [Page 16]

Internet-Draft Compression Dictionary Security October 2019

4.3.2.2. Mitigating by Validating Dictionary Sources

 Alternatively, participants can rely on a secure chain of custody
 from a trusted source. ... [TODO]

 In practice, it is probably advisable to implement both mitigations
 in some form.

4.3.3. By Manipulating Dictionary Identifiers

 Another similar attack is to cause the different agents to have
 differing views of which dictionary to use. That is, even if the
 integrities of compressed messages and dictionary contents are
 protected, if the association between one and the other can be
 manipulated, the same effect can be achieved.

4.4. Obfuscating Message Content

 This section discusses attacks that obfuscate a malicious response's
 content through the use of dictionary-based compression.

4.4.1. From Intermediaries

 Various internet protocols exchange messages through intermediaries
 which inspect or modify the traffic as it passes by (proxies, caches,
 firewalls, etc.), sometimes for reasons that include security. If
 the compressing and decompressing agents on a connection use a
 dictionary to compress the messages they exchange, and the
 intermediaries between them are not themselves capable of processing
 messages compressed this way, the intermediaries may be prevented
 from being able to inspect the traffic, which may harm their ability
 to detect and filter malicious traffic.

 In practice, the relevance of this concern is questionable.
 Intermediaries of this form [PERVASIVE-MONITORING] can be more
 harmful than they are beneficial to the security of participants and
 their traffic. Many protocols are moving towards end-to-end
 encrypted models that preclude intermediaries from interacting with
 messages in this way.

 Nonetheless, designers of protocols that involve intermediaries that
 might not support dictionary based compression should give those
 intermediaries the ability to downgrade the message exchange to not
 use dictionaries. Intermediaries which inspect messages in the
 course of their business should either implement the dictionary based
 compression scheme in question or downgrade the message exchange to
 avoid its use.

Handte Expires May 1, 2020 [Page 17]

Internet-Draft Compression Dictionary Security October 2019

4.4.2. Multiple Representations

 Although the majority (if not the entirety) of compression schemes do
 not guarantee determinism in compression, many implementations are
 deterministic in practice (under fixed parameters). Experience has
 demonstrated that this state of affairs sometimes entices
 implementors into confusing equality-of-message comparison with
 equality-of-representation comparison. Representing the same message
 in a new way can therefore violate assumptions and potentially be
 used as a vector for exploitation. Dictionaries potentially
 contribute to this issue, by introducing a new vector for non-
 determinacy in the compressed representation of a message.

 Users of compression should therefore avoid assumptions that a
 message will always be transformed into the same compressed
 representation.

4.5. Tracking Users

 This section discusses attacks that identify users through their
 negotiation and use of dictionaries.

 Like any other protocol extension or option, the use or advertisement
 of dictionaries, may allow observers to distinguish participants that
 do and do not support the feature.

4.5.1. Through Dictionary Negotiation

 In systems which distribute dictionaries dynamically, a participant
 or observer may be able to learn about the past actions of other
 participants by observing the dictionaries they advertise or select.

 For example, if a user exchanged messages with some site
 (www.mybank.com), and in doing so acquired dictionaries published by
 that operator, and then sometime later negotiated a connection with
 some other site (www.curiousaboutyou.com), in which the user
 advertised the dictionaries in their possession, the second operator
 could reasonably conclude that the user had a bank account at MyBank.

 Designers of protocols that use dynamically distributed and
 negotiated dictionaries should therefore take care that dictionaries
 distributed in one privacy domain are not advertised or used in
 others without reason.

Handte Expires May 1, 2020 [Page 18]

Internet-Draft Compression Dictionary Security October 2019

4.5.2. Through Dictionary Retrieval

 The distributor of a dictionary may also be able track the
 propagation of traffic amongst participants as it receives requests
 for a particular dictionary, especially if it can collude with the
 party that generated that message to use a unique dictionary
 identifier.

 Dictionaries that are dynamically fetched should therefore be fetched
 from the same privacy domain they are used in.

4.6. Denial of Service

 Because dictionary-based compression introduces additional
 dependencies to the processes of generating and interpreting
 messages, an attacker that cause those dependencies to be unavailable
 can potentially cause participants to fail to process messages.

 Protocols that use dictionary-based compression, especially when the
 dictionaries are retrieved in ways that could fail, should be
 prepared to gracefully degrade when those fetches fail. Designers
 may consider whether messages should only be compressed with
 dictionaries known to already be in the possession of the recipients.

4.7. Resource Exhaustion

 This section discusses attacks that use dictionaries and dictionary-
 based compression to induce failures through the exhaustion of
 various resources.

 Aside from more specific concerns and corresponding protections
 discussed in the following sections, implementors should take care to
 apply at least the same resource usage constraints to dictionaries
 that they do to the other traffic they handle. Stronger constraints
 may be warranted, in fact, since the goal of dictionaries is to lower
 total resource consumption.

4.7.1. Resources

4.7.1.1. Bandwidth

 Attacks of this form cause the target to consume their network
 resources, resulting in expense and degradation of service.

Handte Expires May 1, 2020 [Page 19]

Internet-Draft Compression Dictionary Security October 2019

4.7.1.1.1. Messages

 If dictionaries can be used to make the compressed representation of
 messages artificially large, it may be possible to cause normal
 traffic to consume disproportionately large bandwidth. With existing
 dictionary schemes, this is unlikely.

 The reverse is also potentially dangerous, though. Systems that are
 accustomed to using dictionary-based compression (and whose resources
 are allocated according to the efficiencies achieved thereby) may be
 vulnerable to resource exhaustion when subjected to downgrade
 attacks. If an attacker can force the system to fall back to not
 using dictionaries, or to using bad dictionaries, or to not using
 compression at all, the system may exceed its allocated network
 resources.

4.7.1.1.2. Dictionaries

 In protocols in which dictionaries are distributed dynamically, it
 may be possible to cause a target to repeatedly attempt to fetch
 dictionaries, whether by causing dictionary fetches to fail,
 triggering retries, or by causing the target to use many new
 dictionaries that it must then load.

 Since dictionaries can be quite large relative to the messages they
 are used to compress, this could potentially be an effective
 amplification attack.

4.7.1.2. Storage

 Attacks of this form target the storage resources of a participant
 (any of main memory, cache, disk space, etc.).

4.7.1.2.1. Message Size

 The same concerns apply here as in Section 4.7.1.1.1.

 Additionally, if dictionaries can be used to make the compressed
 representation of a message extremely small relative to the its
 uncompressed size, they may play a role in enabling a "zip bomb" type
 attack, in which a specially crafted, small (and therefore cheap to
 send) message causes the recipient to consume a huge amount of
 storage space after decompression.

 Implementors should therefore apply storage quotas to messages based
 on the size of the representation in which they will actually be
 stored. Implementors may also wish to consider rejecting messages

Handte Expires May 1, 2020 [Page 20]

Internet-Draft Compression Dictionary Security October 2019

 whose compressed representation is significantly larger than the
 message represented.

4.7.1.2.2. Message Duplication

 Obviously, flooding a target with messages is an easy way exhaust
 that participant's resources. Using a dictionary does not natively
 affect that brute force strategy. However, simple mitigations to
 this sort of attack sometimes leave chinks in systems' armor, which
 dictionaries might play a role in exploiting.

 For example, if an attacker can cause a participant to receive and
 store a single logical message more than once, with different
 metadata (such as the dictionary used) or with a different compressed
 representation (as a result of using a different dictionary), the
 participant may not be able or willing to deduplicate the message.
 For example, an HTTP Cache may be forced to store the same resource
 multiple times, compressed with different dictionaries, if the choice
 of dictionary is part of the cache's secondary key [HTTP-CACHING].

4.7.1.2.3. Dictionaries

 Another possible avenue of attack would be to cause a participant to
 consume space by storing the dictionaries themselves. The
 effectiveness of attacks of this form are driven by the product of
 (1) the number of dictionaries stored, (2) their size, and (3) how
 long they are retained.

 Dictionaries may themselves be fairly large. But one thing to note
 in particular is that, when in use, the space consumed by a
 dictionary may be significantly greater than its raw size. In order
 to be used in compression or decompression (but particularly in
 compression), the dictionary contents must be loaded into the
 compressor's internal datastructures. This can be done at
 compression-time, for every compression, using the datastructures
 already allocated for that compression.

 Alternatively, some compression algorithms allow the user to do this
 preparation step separately, producing a materialized representation
 of the dictionary in memory that can be reused across a number of
 compression operations (e.g., a ZSTD_CDict). While this avoids
 duplicated work (processing the dictionary for each compression),
 applications which cache these materialized dictionaries can
 accidentally consume a lot of memory. In addition to the factors
 mentioned above that control the total size of stored dictionaries,
 the expansion factor as those dictionaries are materialized is
 controlled by the compression settings (and potentially instructions
 in the dictionary).

Handte Expires May 1, 2020 [Page 21]

Internet-Draft Compression Dictionary Security October 2019

 Applications that allow other participants to influence the contents,
 number, size, retention period, or compression settings of
 dictionaries should take care to constrain the total at rest and in-
 memory footprints of those dictionaries.

4.7.1.3. Computation

 Attacks of this form target the computational resources (and by
 extension, the time and energy) of a participant in the protocol.

4.7.1.3.1. Using a Dictionary

 For existing compressors that support dictionaries, compression and
 decompression with a dictionary is usually faster than without one.

 However, as the kinds of information captured in dictionaries grows,
 as described in Section 3.2.2, dictionaries may come to include
 instructions that significantly influence the speed of the
 compressor. For example, dictionaries might specify a particularly
 laborious transformation to be performed on the input. Or they might
 specify internal compression parameters, which might instruct the
 compressor to do huge amounts of work during compression.

 If dictionary-based compressions systems evolve to include these
 sorts of features, care should be taken to avoid allowing
 dictionaries from untrusted sources to influence compression behavior
 or parameters. Note: this is not a concern for existing
 dictionaries.

 Analogously, care should be taken to avoid allowing dictionaries to
 influence decompression performance.

4.7.1.3.2. Generating Dictionaries

 Training a dictionary, depending on the methodology, can be a very
 expensive computation (building an optimal dictionary is NP-hard).
 Designers of protocols that involve creating new dictionaries on the
 fly should constrain either or both of (1) who can cause a
 participant to train a new dictionary and (2) the computational cost
 of training a new dictionary (by selecting a fast algorithm or by
 limiting the amount of data over which the algorithm is run).

4.7.2. Targets

 In addition to the immediate compressing and decompressing agents,
 the mechanisms surrounding dictionary-based compression may allow for
 the targeting of other agents.

Handte Expires May 1, 2020 [Page 22]

Internet-Draft Compression Dictionary Security October 2019

4.7.2.1. An Intermediary

 Insofar as intermediaries in internet protocols are often responsible
 for handling a much higher volume of traffic in a much lighter-weight
 way than protocol endpoints, any additional per-message or per-
 connection burden has the potential to significantly increase the
 workload of the intermediary. Retrieving, caching, and processing
 dictionaries, especially when the set of dictionaries is unbounded,
 is potentially untenable for intermediaries of that type.

4.7.2.2. A Third Party

 The mechanisms surrounding dictionary-based compression potentially
 also enable attacks against third parties, including parties with
 whom the attacker cannot exchange messages directly.

 If a recipient can be induced to relay messages to a third-party, or
 to generate new messages directed at a third-party, a third party can
 become the effective recipient of dictionary-compressed traffic. If
 the dictionaries used to compress these messages are hard or slow to
 load (or even non-existent), the work of handling these messages
 could be significant. This is especially a risk when decompression
 of the message is required before it can be evaluated against an
 access-control policy or otherwise distinguished from legitimate
 traffic.

 Protocol designers should therefore consider carefully the risks of
 using dictionary-based compression on (the parts of) messages that
 are used for authentication.

 Another possible attack, when dictionaries are distributed
 dynamically, arises from the ability for compressed messages to
 trigger the retrieval of a dictionary from a third party. This is
 especially a risk when the source for a dictionary can be arbitrarily
 specified (as, for example, a URL).

 These approaches potentially allow an attacker to amplify their
 efforts and turn their attack into a distributed one.

 Protocol designers should consider how the source for the retrieval
 of a dictionary is derived, who can influence that derivation, and
 whether it should be constrained to preclude nominating a third
 party.

 Protocol designers and implementors who relay messages should also
 consider whether those messages should be relayed compressed with the
 same dictionary, or whether dictionary selection and negotiation
 should occur for each hop in the path of a message.

Handte Expires May 1, 2020 [Page 23]

Internet-Draft Compression Dictionary Security October 2019

4.8. Generating Dictionaries

 This section discusses the potential for inadvertent leakage of
 private information in the creation of dictionaries.

 As described in Section 3.3.1, dictionaries are commonly generated by
 an algorithm run over a corpus sampled from the application's
 traffic. For systems which wish to publish dictionaries publicly
 (or, at any rate, with less strict access controls than the traffic
 on which they are trained), it is important to prevent the leakage of
 private information in the creation of dictionaries.

 The output of this training process, the dictionary, as described in
Section 3.2, may be composed of several different kinds of data.

 Some of these pieces, like statistical summaries around symbol
 frequencies, are unlikely to represent vectors for leaking useful
 information about the corpus they were trained on. Other components,
 however, directly represent substrings found in the input corpus.

 Protocol designers, implementors, and participants that construct
 their own dictionaries should take care to do so in a way that does
 not reproduce private data in the produced dictionaries' contents.

4.8.1. Handling Samples

 Since dictionaries are generally produced from a collection of sample
 data, implementing a dictionary training capability may require
 storing or otherwise handling message traffic in ways it would
 otherwise not. This in itself can create an attack surface, for
 example if secrets that would normally exist only in transit or in
 memory are persisted or passed to other systems.

 Care should be taken by implementors to protect the security of
 messages that are selected as samples for future use in dictionary
 training. Protections should be implemented both at rest and in
 transit, including retention limits, so as to limit the window of
 compromise.

4.8.2. Tagging Mitigations

 One strategy for ensuring that private data does not appear in
 dictionaries is to avoid presenting private data to the training
 algorithm at all. This sanitization of the training samples can be
 accomplished either by removing just the specific parts of samples
 that are private or by entirely removing samples that contain any
 private data in them.

Handte Expires May 1, 2020 [Page 24]

Internet-Draft Compression Dictionary Security October 2019

 This discrimination of private and public content can rely on being
 able to identify private information on sight (e.g.,
 [CLOUDFLARE-NO-COMPRESS]).

 Alternatively, the trainer can rely on explicit signals, provided
 alongside the messages, to perform that discrimination.

4.8.3. Probabilistic Mitigations

 Another strategy relies on a statistical approach for the
 identification and removal of private information.

 In building the dictionary's contents, the goal of the dictionary
 training algorithm is to collect the set of strings that most
 effectively improve the compression ratio of messages in the corpus.
 This goal is best served by including strings that appear frequently
 in the sample corpus and rejecting strings that appear rarely.

 In a loose way, it is reasonable to expect that commonly occurring
 substrings are less private, and rarely occurring substrings may be
 more private. So the dictionary trainer's interests are broadly
 aligned with this goal of not including private information in the
 dictionary.

 While existing public dictionary training algorithms largely do not
 include specific protections or offer hard guarantees to prevent the
 inclusion of private data in their output, there is ongoing research
 in this area. Future algorithms may be able to provide confidence
 that private data (that is not somehow overrepresented in the
 training corpus) will be filtered out of the produced dictionary.

4.9. Complexity

 Complexity is ever the enemy of security. It is unavoidably the case
 that dictionary-based compression is more complicated than stateless
 compression.

5. Conclusions

 This document attempts to analyze risks and responses at the
 intersection of several widely varying factors--the protocol, the
 environment, the threat model--and its conclusions are necessarily
 situational.

 From that space of configurations, some broad conclusions can
 nonetheless be drawn. Much of the complexity and risk in
 implementing dictionary-based compression comes from its surrounding
 apparatus: creating dictionaries, handling them, distributing them,

Handte Expires May 1, 2020 [Page 25]

Internet-Draft Compression Dictionary Security October 2019

 storing them, identifying them, and so on. A significant distinction
 can therefore be drawn between systems that have to grapple with
 those challenges versus those that don't.

 [TODO]

6. IANA Considerations

 This document includes no actions for IANA.

 [RFC Editor: Please remove this section before publication.]

7. Security Considerations

 This document enumerates known security considerations about a space
 that is under development. The list of issues discussed above may
 not be exhaustive, but it is hopefully complete enough to aid in the
 design and implementation of future systems and protocols.

8. References

8.1. Normative References

 [BROTLI] Alakuijala, J. and Z. Szabadka, "Brotli Compressed Data
 Format", RFC 7932, DOI 10.17487/RFC7932, July 2016,
 <https://www.rfc-editor.org/info/rfc7932>.

 [DEFLATE] Deutsch, P., "DEFLATE Compressed Data Format Specification
 version 1.3", RFC 1951, DOI 10.17487/RFC1951, May 1996,
 <https://www.rfc-editor.org/info/rfc1951>.

 [ZSTD] Collet, Y. and M. Kucherawy, Ed., "Zstandard Compression
 and the application/zstd Media Type", RFC 8478,
 DOI 10.17487/RFC8478, October 2018,
 <https://www.rfc-editor.org/info/rfc8478>.

8.2. Other Examples of Dictionary-Like Compression

 [HPACK] Peon, R. and H. Ruellan, "HPACK: Header Compression for
 HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,
 <https://www.rfc-editor.org/info/rfc7541>.

 [HTTP-DELTA-ENCODING]
 Mogul, J., Krishnamurthy, B., Douglis, F., Feldmann, A.,
 Goland, Y., van Hoff, A., and D. Hellerstein, "Delta
 encoding in HTTP", RFC 3229, DOI 10.17487/RFC3229, January
 2002, <https://www.rfc-editor.org/info/rfc3229>.

https://datatracker.ietf.org/doc/html/rfc7932
https://www.rfc-editor.org/info/rfc7932
https://datatracker.ietf.org/doc/html/rfc1951
https://www.rfc-editor.org/info/rfc1951
https://datatracker.ietf.org/doc/html/rfc8478
https://www.rfc-editor.org/info/rfc8478
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc3229
https://www.rfc-editor.org/info/rfc3229

Handte Expires May 1, 2020 [Page 26]

Internet-Draft Compression Dictionary Security October 2019

 [I-D.ietf-quic-qpack]
 Krasic, C., Bishop, M., and A. Frindell, Ed., "QPACK:
 Header Compression for HTTP/3", draft-ietf-quic-qpack-10
 (work in progress), 2019.

 [I-D.lee-sdch-spec]
 Butler, J., Lee, W., McQuade, B., and K. Mixter, "A
 Proposal for Shared Dictionary Compression over HTTP",

draft-lee-sdch-spec-00 (work in progress), October 2016.

 [I-D.reschke-http-oob-encoding]
 Reschke, J. and S. Loreto, "'Out-Of-Band' Content Coding
 for HTTP", draft-reschke-http-oob-encoding-12 (work in
 progress), 2017.

 [I-D.vandevenne-shared-brotli-format]
 Alakuijala, J., Duong, T., Kliuchnikov, E., Obryk, R.,
 Szabadka, Z., and L. Vandevenne, Ed., "Shared Brotli
 Compressed Data Format", draft-vandevenne-shared-brotli-

format-04 (work in progress), August 2019.

 [I-D.vkrasnov-h2-compression-dictionaries]
 Krasnov, V. and Y. Weiss, "Compression Dictionaries for
 HTTP/2", draft-vkrasnov-h2-compression-dictionaries-03
 (work in progress), 2018.

8.3. Informative References

 [BREACH] Prado, A., Harris, N., and Y. Gluck, "BREACH: SSL, Gone in
 30 Seconds", 2013, <https://breachattack.com/>.

 [CLOUDFLARE-NO-COMPRESS]
 Loring, B., "A Solution to Compression Oracles on the
 Web", March 2018, <https://blog.cloudflare.com/

a-solution-to-compression-oracles-on-the-web/>.

 [COOKIES] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

 [COVER] Liao, K., Petri, M., Moffat, A., and A. Wirth, "Effective
 Construction of Relative Lempel-Ziv Dictionaries",
 DOI 10.1145/2872427.2883042, 2016,
 <https://doi.org/10.1145/2872427.2883042>.

 [CRIME] Rizzo, J. and T. Duong, "Compression Ratio Info-leak Made
 Easy", 2012, <https://www.ekoparty.org/archive/2012/

CRIME_ekoparty2012.pdf>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-qpack-10
https://datatracker.ietf.org/doc/html/draft-lee-sdch-spec-00
https://datatracker.ietf.org/doc/html/draft-reschke-http-oob-encoding-12
https://datatracker.ietf.org/doc/html/draft-vandevenne-shared-brotli-format-04
https://datatracker.ietf.org/doc/html/draft-vandevenne-shared-brotli-format-04
https://datatracker.ietf.org/doc/html/draft-vkrasnov-h2-compression-dictionaries-03
https://breachattack.com/
https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/
https://blog.cloudflare.com/a-solution-to-compression-oracles-on-the-web/
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://doi.org/10.1145/2872427.2883042
https://www.ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf
https://www.ekoparty.org/archive/2012/CRIME_ekoparty2012.pdf

Handte Expires May 1, 2020 [Page 27]

Internet-Draft Compression Dictionary Security October 2019

 [ENCRYPT-THEN-AUTHENTICATE]
 Krawczyk, H., "The Order of Encryption and Authentication
 for Protecting Communications (Or: How Secure is SSL?)",
 2001, <https://iacr.org/archive/crypto2001/21390309.pdf>.

 [HEIST] Vanhoef, M. and T. Van Goethem, "HEIST: HTTP Encrypted
 Information can be Stolen through TCP-windows", 2016,
 <https://tom.vg/papers/heist_blackhat2016.pdf>.

 [HTTP-CACHING]
 Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

 [I-D.arkko-arch-internet-threat-model]
 Arkko, J., "Changes in the Internet Threat Model", draft-

arkko-arch-internet-threat-model-01 (work in progress),
 July 2019.

 [I-D.draft-farrell-etm]
 Farrell, S., "We're gonna need a bigger threat model",

draft-farrell-etm-03 (work in progress), July 2019.

 [I-D.draft-kucherawy-httpbis-dict-sec]
 Kucherawy, M., "Security Considerations Regarding
 Compression Dictionaries", draft-kucherawy-httpbis-dict-

sec-00 (work in progress), November 2018.

 [I-D.pironti-tls-length-hiding]
 Pironti, A. and N. Mavrogiannopoulos, "Length Hiding
 Padding for the Transport Layer Security Protocol", draft-

pironti-tls-length-hiding-02 (work in progress), September
 2013.

 [LZ77] Ziv, J. and A. Lempel, "A Universal Algorithm for
 Sequential Data Compression",
 DOI 10.1109/TIT.1977.1055714, May 1977,
 <https://ieeexplore.ieee.org/document/1055714>.

 [LZ78] Ziv, J. and A. Lempel, "Compression of individual
 sequences via variable-rate coding",
 DOI 10.1109/TIT.1978.1055934, September 1978,
 <https://ieeexplore.ieee.org/document/1055934>.

https://iacr.org/archive/crypto2001/21390309.pdf
https://tom.vg/papers/heist_blackhat2016.pdf
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234
https://datatracker.ietf.org/doc/html/draft-arkko-arch-internet-threat-model-01
https://datatracker.ietf.org/doc/html/draft-arkko-arch-internet-threat-model-01
https://datatracker.ietf.org/doc/html/draft-farrell-etm
https://datatracker.ietf.org/doc/html/draft-farrell-etm-03
https://datatracker.ietf.org/doc/html/draft-kucherawy-httpbis-dict-sec
https://datatracker.ietf.org/doc/html/draft-kucherawy-httpbis-dict-sec-00
https://datatracker.ietf.org/doc/html/draft-kucherawy-httpbis-dict-sec-00
https://datatracker.ietf.org/doc/html/draft-pironti-tls-length-hiding-02
https://datatracker.ietf.org/doc/html/draft-pironti-tls-length-hiding-02
https://ieeexplore.ieee.org/document/1055714
https://ieeexplore.ieee.org/document/1055934

Handte Expires May 1, 2020 [Page 28]

Internet-Draft Compression Dictionary Security October 2019

 [PERVASIVE-MONITORING]
 Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
 Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
 2014, <https://www.rfc-editor.org/info/rfc7258>.

 [PRIVACY] Cooper, A., Tschofenig, H., Aboba, B., Peterson, J.,
 Morris, J., Hansen, M., and R. Smith, "Privacy
 Considerations for Internet Protocols", RFC 6973,
 DOI 10.17487/RFC6973, July 2013,
 <https://www.rfc-editor.org/info/rfc6973>.

 [RFC2360] Scott, G., "Guide for Internet Standards Writers", BCP 22,
RFC 2360, DOI 10.17487/RFC2360, June 1998,

 <https://www.rfc-editor.org/info/rfc2360>.

 [SECURITY-GUIDELINES]
 Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [SRI] Akhawe, D., Braun, F., Marier, F., and J. Weinberger,
 "Subresource Integrity", March 2014,
 <https://www.w3.org/TR/SRI/>.

 [ZSTD-DICTS]
 Collet, Y., Handte, W., and N. Terrell, "5 ways Facebook
 improved compression at scale with Zstandard", December
 2018, <https://code.fb.com/core-data/zstandard/>.

https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258
https://datatracker.ietf.org/doc/html/rfc6973
https://www.rfc-editor.org/info/rfc6973
https://datatracker.ietf.org/doc/html/bcp22
https://datatracker.ietf.org/doc/html/rfc2360
https://www.rfc-editor.org/info/rfc2360
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.w3.org/TR/SRI/
https://code.fb.com/core-data/zstandard/

Handte Expires May 1, 2020 [Page 29]

Internet-Draft Compression Dictionary Security October 2019

Appendix A. Acknowledgements

 The author wishes to acknowledge the following for their help in
 writing and improving this document: Murray Kucherawy, Yann Collet,
 Nick Terrell, ... [TODO]

Author's Address

 W. Felix P. Handte
 Facebook, Inc.
 770 Broadway
 New York, NY 10003
 US

 EMail: felixh@fb.com

Handte Expires May 1, 2020 [Page 30]

