
Workgroup: moq

Internet-Draft:

draft-hang-moq-design-space-analysis-of-moq-00

Published: 21 October 2022

Intended Status: Informational

Expires: 24 April 2023

Authors: H. Shi, Ed.

Huawei Technologies

Y. Cui

Tsinghua University

Design Space Analysis of MoQ

Abstract

This document investigates potential solution directions within the

charter scope of MoQ WG. MoQ aims to provide low-latency, efficient

media delivery solution for use cases including live streaming,

gaming and video conferencing. To achieve low-latency media transfer

efficiently, the network topology of relay nodes and the computation

done at the relay nodes should be considered carefully. This

document provides the analysis of those factors which can help the

design of the MoQ protocols.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Requirements Language

3. Design Choice 1: Static Tree Topology versus Dynamic Mesh

Topology

4. Design Choice 2: Stateless HTTP versus Stateful pub/sub

5. Design Choice 3: QUIC hop-by-hop versus end-to-end

6. Security Considerations

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

Media over QUIC aims to provide low-latency, efficient media

delivery solution for use cases including live streaming, gaming,

and video conferencing. The latency requirement and the transmission

pattern are analyzed in [moq-req]. To scale efficiently, relay can

be used to optimize the delivery performance by caching, selective

dropping, etc. However, how to accomplish that remains unclear. Lots

of factors of the relay and protocol design choice can affect the

performance gain of leveraging relay. This document aims to provide

analysis of those design choices.

2. Terminology

Relay: An element which participates in the forwarding of the

media content. Possibly support caching, selective dropping to

optimize the media transmission performance.

Producer: An endpoint which generate the media stream. Could be

the original content producer (a live streaming uploader) or the

re-encoder in the cloud.

Consumer: An endpoint which receive the media stream. Could be

the live stream viewer or the re-encoder in the cloud.

2.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

*

¶

*

¶

*

¶

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Design Choice 1: Static Tree Topology versus Dynamic Mesh Topology

The first question of using relay to forward the media between the

producer and the consumer is the topology of relays. In traditional

CDN network, each CDN site can be viewed as a relay. Those relays

are organized in a tree (see Figure 1). The producer and the

consumer are usually connected to the edge node of the CDN which is

the leaf node in the tree. In this case, the path for media in live

streaming is usually producer - edge node 1 (relay 1) - parent node

1 (relay 2) - origin node (relay 3) - parent node 2 (relay 4) - edge

node 2 (relay 5) - consumer, i.e. the media need to first go up to

the root of the tree, then go down to another leaf node, traversing

multiple (at least 3) relays if the CDN hierarchy is deep or the

producer and the consumer is highly distributed. The tree topology

is simple to build since the path of the stream is fixed and the

leaf node can be lightweight and deployed closely to user. The

computing intensive process can be put in the much more powerful

root servers.

[QUICR-arch] is similar to the tree topology of CDN with one

improvement: the relay can shortcut the media transmission. If the

producer and the consumer share a parent relay, the media will be

forwarded in the relay instead of the root of the tree (called

Origin in QUICR's term).

Figure 1: static tree topology

¶

¶

¶

 +----------+

 +----------->| Root +-----------+

 | +----------+ |

 | |

 +----+-----+ +----v-----+

 +----->| Parent-1 | | Parent-2 +--------+

 | +----------+ +----------+ |

 | |

 +----+-----+ +----v-----+

 | Edge-1 | | Edge-2 |

 +----^-----+ +----------+

 | |

 | |

+-----+----+ +---v------+

| Producer | | Consumer |

+----------+ +----------+

Another approach is to connect the relays in a dynamic mesh instead

of a static hierarchy. Alibaba's low-latency live streaming network

builds on a flat CDN overlay [LiveNet]. A centralized controller

collects the latency between each relay periodically and calculates

the optimal path (latency-wise) for each media stream dynamically.

Alibaba claims the flat topology reduce the latency by half compared

to static hierarchy. An example is shown in Figure 2, the media

stream is forwarded through relay 1 and relay 4, only 2 hops. If the

network path between relay 1 and relay 4 are congested, relay 1 -

relay 2/3 - relay 4 maybe used to provide lower-latency forwarding.

Figure 2: dynamic mesh topology

4. Design Choice 2: Stateless HTTP versus Stateful pub/sub

Traditionally the CDN are using HTTP to support live streaming. The

media stream is broken into a series of chunks which are mapped to

HTTP resources. In this way, the HTTP stack and infrastructure is

reused. Since HTTP is stateless, each relay only need to act as an

HTTP server/client. There is no need to store the relationship

between different HTTP flows hence the relay is easier to implement.

However, such a stateless HTTP server will suffer from the delay of

the chunk because each relay need to download the chunk first before

it can serve the chunk to the downstream node as an HTTP server. The

delay will be stacked along with the relay chain. Reducing the chunk

size can reduce the delay, but the number of chunk will increase

thus brings higher burden of management and signalling.

¶

 +---+

 | Controller |

 +---+

 | |

 | +---------+ |

 | +-------> Relay-2 +---------+ |

 | | +----+----+ path 2 | |

 | | | | |

+----------+ | +----+----+ | +----v----+ | +----------+

| Producer +--+>| Relay-1 +-------+---------> Relay-4 +-+-->| Consumer |

+----------+ | +----+----+ | path 1 +---------+ | +----------+

 | | | | |

 | | | | |

 | | +----+----+ | |

 | +-------+ Relay-3 +---------+ |

 | +---------+ |

 | |

 +---+

¶

Using pub/sub as the metaphor requires that the relay node keeps

track of the mapping between the publisher and subscribers, i.e. the

subscription information state. A packet receive from the publisher

can be duplicated and forwarded to subscribers immediately without

any delay, forming a relay chain for packets instead of chunks. HTTP

can be modified to send partial chunks before a full chunk is

received, then the downstream HTTP stream will bind with the

upstream one, essentially brings back the subscription information

state.

Another way to eliminate the state in the relay node is to encode

the state information on the data-plane. When the producer sends out

the media, it tags the subscriber information in each packet or

flow. The relay forwards the packet or flow based on the tag. The

relay node need to be preloaded the tag forwarding rule. Luckily

this tag forwarding rule is related to the topology which is rather

static comparing to the highly dynamic media stream subscriber

information.

5. Design Choice 3: QUIC hop-by-hop versus end-to-end

The media flow sending from the producer to the consumer will go

through several relays. The media content will be encrypted using

QUIC encryption as requested in charter. But whether the relay node

will terminate the QUIC connection remains open. There are following

two options to implement the MoQ protocol stack.

The first option is to running the entire MoQ protocol inside QUIC

encryption, including the media metadata which is needed by relay

(see Figure 3). Thus the relay has to terminate the QUIC connection,

decrypting the QUIC payload. This will require each relay node hold

a valid CA certificate and run the CA verification process. Just

like what the CDN node does nowadays.

Figure 3: MoQ running over QUIC, like HTTP

The second option is to only encrypt the media content using QUIC

encryption but leave the metadata to other mechanism (see Figure 4).

In this way, the QUIC connection is from producer to consumer. The

relay does not need to decrypt the QUIC, saving the computing power.

As the charter put it: "Even when media content is end-to-end

encrypted, the relays can access metadata. Hence a new mechanism to

¶

¶

¶

¶

 Media (Metadata + Content)

--

 Protocol header | Protocol payload <-------- MoQ

--

 QUIC <-------- Transport

[RFC2119]

[RFC8174]

[LiveNet]

[moq-req]

[QUICR-arch]

convey the metadata to the relay is needed, similar to SDP for RTP,

or m3u8 file for HLS.

Figure 4: MoQ using QUIC for media, other for metadata, like WebRTC

6. Security Considerations

When the metadata is not carried inside the QUIC payload, it should

be protected from unauthorized third-part access to to protect the

privacy. Relay should be authenticated to access the metadata.

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

"LiveNet - A Low-Latency Video Transport Network",

October 2022, <https://dl.acm.org/doi/abs/

10.1145/3544216.3544236>.

Gruessing, J. and S. Dawkins, "draft-gruessing-moq-

requirements-02", October 2022, <https://

datatracker.ietf.org/doc/draft-gruessing-moq-

requirements/>.

Jennings, C. and S. Nandakumar, "QuicR - Media Delivery

Protocol over QUIC", October 2022, <https://

datatracker.ietf.org/doc/draft-jennings-moq-quicr-arch/>.

Authors' Addresses

Hang Shi (editor)

Huawei Technologies

¶

 Media metadata | Media content <-----\

-------------------------|----------------------- \

 Protocol header | Protocol payload <------ MoQ

-------------------------|----------------------- /

 Other | QUIC <-----/

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174
https://dl.acm.org/doi/abs/10.1145/3544216.3544236
https://dl.acm.org/doi/abs/10.1145/3544216.3544236
https://datatracker.ietf.org/doc/draft-gruessing-moq-requirements/
https://datatracker.ietf.org/doc/draft-gruessing-moq-requirements/
https://datatracker.ietf.org/doc/draft-gruessing-moq-requirements/
https://datatracker.ietf.org/doc/draft-jennings-moq-quicr-arch/
https://datatracker.ietf.org/doc/draft-jennings-moq-quicr-arch/

China

Email: shihang9@huawei.com

Yong Cui

Tsinghua University

China

Email: cuiyong@tsinghua.edu.cn

mailto:shihang9@huawei.com
mailto:cuiyong@tsinghua.edu.cn

	Design Space Analysis of MoQ
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Requirements Language

	3. Design Choice 1: Static Tree Topology versus Dynamic Mesh Topology
	4. Design Choice 2: Stateless HTTP versus Stateful pub/sub
	5. Design Choice 3: QUIC hop-by-hop versus end-to-end
	6. Security Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Authors' Addresses

