
Internet Engineering Task Force F. Hao, Ed.
Internet-Draft Newcastle University (UK)
Intended status: Informational February 29, 2016
Expires: September 1, 2016

Schnorr NIZK Proof: Non-interactive Zero Knowledge Proof for Discrete
Logarithm

draft-hao-schnorr-03

Abstract

 This document describes Schnorr NIZK proof, a non-interactive variant
 of the three-pass Schnorr identification scheme. The Schnorr NIZK
 proof allows one to prove the knowledge of a discrete logarithm
 without leaking any information about its value. It can serve as a
 useful building block for many cryptographic protocols to ensure the
 participants follow the protocol specification honestly. This
 document specifies the Schnorr NIZK proof in both the finite field
 and the elliptic curve settings.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 1, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hao Expires September 1, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Schnorr NIZK Proof February 2016

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3
1.2. Notations . 3

2. Schnorr NIZK Proof over Finite Field 4
2.1. Group Parameters . 4
2.2. Schnorr Identification Scheme 4
2.3. Non-Interactive Zero-Knowledge Proof 5
2.4. Computation Cost . 5

3. Schnorr NIZK Proof over Elliptic Curve 6
3.1. Group Parameters . 6
3.2. Schnorr Identification Scheme 6
3.3. Non-Interactive Zero-Knowledge Proof 7
3.4. Computation Cost . 7

4. Applications of Schnorr NIZK proof 8
5. Security Considerations 8
6. IANA Considerations . 9
7. Acknowledgements . 9
8. References . 9
8.1. Normative References 9
8.2. Informative References 10
8.3. URIs . 10

 Author's Address . 10

1. Introduction

 A well-known principle for designing robust public key protocols
 states as follows: "Do not assume that a message you receive has a
 particular form (such as g^r for known r) unless you can check this"
 [AN95]. This is the sixth of the eight principles defined by Ross
 Anderson and Roger Needham at Crypto'95. Hence, it is also known as
 the "sixth principle". In the past thirty years, many public key
 protocols failed to prevent attacks, which can be explained by the
 violation of this principle [Hao10].

 While there may be several ways to satisfy the sixth principle, this
 document describes one technique that allows one to prove the
 knowledge of a discrete logarithm (e.g., r for g^r) without revealing
 its value. This technique is called the Schnorr NIZK proof, which is
 a non-interactive variant of the three-pass Schnorr identification
 scheme [Stinson06]. The original Schnorr identification scheme is
 made non-interactive through a Fiat-Shamir transformation [FS86],

Hao Expires September 1, 2016 [Page 2]

Internet-Draft Schnorr NIZK Proof February 2016

 assuming that there exists a secure cryptographic hash function
 (i.e., so-called random oracle model).

 The Schnorr NIZK proof can be implemented over a finite field or an
 elliptic curve (EC). The technical specification is basically the
 same, except that the underlying cyclic group is different. For
 completeness, this document describes the Schnorr NIZK proof in both
 the finite field and the EC settings.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Notations

 The following notations are used in this document:

 o Alice: the assumed identity of the prover in the protocol

 o Bob: the assumed identity of the verifier in the protocol

 o a || b: concatenation of a and b

 o t: the bit length of the challenge chosen by Bob

 o H: a secure cryptographic hash function

 o p: a large prime

 o q: a large prime divisor of p-1, i.e., q | p-1

 o Zp*: a multiplicative group of integers modulo p

 o Gq: a subgroup of Zp* with prime order q

 o g: a generator of Gq

 o g^x: g raised to the power of x

 o a mod b: a modulo b

 o Fq: a finite field of q elements where q is a prime

 o E(Fq): an elliptic curve defined over Fq

 o G: a generator of the subgroup over E(Fq) with prime order n

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hao Expires September 1, 2016 [Page 3]

Internet-Draft Schnorr NIZK Proof February 2016

 o n: the order of G

 o h: the co-factor of the subgroup generated by G, as defined by h
 = |E(Fq)|/n

 o P x [b]: multiplication of a point P with a scalar b over E(Fq)

 o P.x: the x coordinate of a point P over E(Fq)

2. Schnorr NIZK Proof over Finite Field

2.1. Group Parameters

 When implemented over a finite field, the Schnorr NIZK Proof uses the
 same group setting as DSA. Let p and q be two large primes with q |
 p-1. Let Gq denote the subgroup of Zp* of prime order q, and g be a
 generator for the subgroup. Refer to NIST [1] for values of (p, q,
 g) that satisfy different security levels.

2.2. Schnorr Identification Scheme

 The Schnorr identification scheme runs interactively between Alice
 (prover) and Bob (verifier). In the setup of the scheme, Alice
 publishes her public key X = g^x mod p where x is the private key
 chosen uniformly at random from [0, q-1]. The value X must be an
 element in the subgroup Gq, which anyone can verify. This is to
 ensure that the discrete logarithm of X with respect to the base g
 actually exists.

 The protocol works in three passes:

 1. Alice chooses a number v uniformly at random from [0, q-1] and
 computes V = g^v mod p. She sends V to Bob.

 2. Bob chooses a challenge c uniformly at random from [0, 2^t - 1],
 where t is the bit length of the challenge (say t = 80). Bob
 sends c to Alice.

 3. Alice computes b = v - x * c mod q and sends it to Bob.

 At the end of the protocol, Bob checks if the following equality
 holds: V = g^b * X^c mod p. The verification succeeds only if the
 equality holds. The process is summarized in the following diagram.

Hao Expires September 1, 2016 [Page 4]

Internet-Draft Schnorr NIZK Proof February 2016

 Information Flows in Schnorr Identification Scheme

 Alice Bob
 ------- -----

 choose random v from [0, q-1]

 compute V = g^v mod p -- V ->

 compute b = v-x*c mod q <- c -- choose random c from [0, 2^t-1]

 -- b -> check if V = g^b * X^c mod p?

2.3. Non-Interactive Zero-Knowledge Proof

 The Schnorr NIZK proof is obtained from the interactive Schnorr
 identification scheme through a Fiat-Shamir transformation [FS86].
 This transformation involves using a secure cryptographic hash
 function to issue the challenge instead. More specifically, the
 challenge is redefined as c = H(g || g^v || g^x || UserID ||
 OtherInfo), where UserID is a unique identifier for the prover and
 OtherInfo is optional data. The OtherInfo is included here for
 generality, as some security protocols built on top of the Schnorr
 NIZK proof may wish to include more contextual information such as
 the protocol name, timestamp and so on. The exact items (if any) in
 OtherInfo shall be left to specific protocols to define. However,
 the format of OtherInfo in any specific protocol must be fixed and
 explicitly defined in the protocol specification.

 Within the hash function, there must be a clear boundary between the
 concatenated items. Usually, the boundary is implicitly defined once
 the length of each item is publicly known. However, in the general
 case, it is safer to define the boundary explicitly. It is
 recommended that one should always prepend each item with a 4-byte
 integer that represents the byte length of the item. The OtherInfo
 may contain multiple sub-items. In that case, the same rule shall
 apply to ensure a clear boundary between adjacent sub-items.

2.4. Computation Cost

 In summary, to prove the knowledge of the exponent for X = g^x, Alice
 generates a Schnorr NIZK proof that contains: {UserID, OtherInfo, V =
 g^v mod p, r = v - x*c mod q}, where c = H(g || g^v || g^x ||
 UserID || OtherInfo).

 To generate a Schnorr NIZK proof, the cost is roughly one modular
 exponentiation: that is to compute g^v mod p. In practice, this
 exponentiation may be pre-computed in the off-line manner to optimize

Hao Expires September 1, 2016 [Page 5]

Internet-Draft Schnorr NIZK Proof February 2016

 efficiency. The cost of the remaining operations (random number
 generation, modular multiplication and hashing) is negligible as
 compared with the modular exponentiation.

 To verify the Schnorr NIZK proof, the following computations shall be
 performed.

 1. To verify X is within [1, p-1] and X^q = 1 mod p

 2. To verify V = g^r * X^c mod p

 Hence, the cost of verifying a Schnorr NIZK proof is approximately
 two exponentiations: one for computing X^q mod p and the other for
 computing g^r * X^c mod p. (It takes roughly one exponentiation to
 compute the latter using a simultaneous exponentiation technique as
 described in [MOV96].)

 It is worth noting that some applications may specifically exclude
 the identity element as a valid public key. In that case, one shall
 check X is within [2, p-1] instead of [1, p-1]. Also note that in
 the DSA-like group setting, it requires a full modular exponentiation
 to validate a public key, but in the ECDSA-like setting, the public
 key validation incurs almost negligible cost due to the co-factor
 being very small (see [MOV96]).

3. Schnorr NIZK Proof over Elliptic Curve

3.1. Group Parameters

 When implemented over an elliptic curve, the Schnorr NIZK proof uses
 essentially the same EC setting as ECDSA, e.g., NIST P-256, P-384,
 and P-521 [NISTCurve]. Let E(Fq) be an elliptic curve defined over a
 finite field Fq where q is a large prime. Let G be a base point on
 the curve that serves as a generator for the subgroup over E(Fq) of
 prime order n. The co-factor of the subgroup is denoted h, which is
 usually a small value (not more than 4). Details on EC operations,
 such as addition, negation and scalar multiplications, can be found
 in [MOV96].

3.2. Schnorr Identification Scheme

 In the setup of the scheme, Alice publishes her public key Q = G x
 [x] where x is the private key chosen uniformly at random from [1,
 n-1]. The value Q must be an element in the subgroup over the
 elliptic curve, which anyone can verify.

 The protocol works in three passes:

Hao Expires September 1, 2016 [Page 6]

Internet-Draft Schnorr NIZK Proof February 2016

 1. Alice chooses a number v uniformly at random from [1, n-1] and
 computes V = G x [v]. She sends V to Bob.

 2. Bob chooses a challenge c uniformly at random from [0, 2^t - 1],
 where t is the bit length of the challenge (say t = 80). Bob
 sends c to Alice.

 3. Alice computes b = v - x * c mod n and sends it to Bob.

 At the end of the protocol, Bob checks if the following equality
 holds: V = G x [b] + Q x [c]. The verification succeeds only if the
 equality holds. The process is summarized in the following diagram.

 Information Flows in Schnorr Identification Scheme

 Alice Bob
 ------- -----

 choose random v from [1, n-1]

 compute V = G x [v] -- V ->

 compute b = v-x*c mod n <- c -- choose random c from [0, 2^t-1]

 -- b -> check if V = G x [b] + Q x [c]?

3.3. Non-Interactive Zero-Knowledge Proof

 Same as before, the non-interactive variant is obtained through a
 Fiat-Shamir transformation [FS86], by using a secure cryptographic
 hash function to issue the challenge instead. Note that G, V and Q
 are points on the curve. In practice, it is sufficient to include
 only the x coordinate of the point into the hash function. Hence,
 let G.x, V.x and Q.x be the x coordinates of these points
 respectively. The challenge c is defined as c = H(G.x || V.x ||
 Q.x || UserID || OtherInfo), where UserID is a unique identifier for
 the prover and OtherInfo is optional data as explained earlier.

3.4. Computation Cost

 In summary, to prove the knowledge of the discrete logarithm for Q =
 G x [x] with respect to base G over the elliptic curve, Alice
 generates a Schnorr NIZK proof that contains: {UserID, OtherInfo, V =
 G x [v], r = v - x*c mod n}, where c = H(G.x || V.x || Q.x ||
 UserID || OtherInfo).

 To generate a Schnorr NIZK proof, the cost is one scalar
 multiplication: that is to compute G x [v].

Hao Expires September 1, 2016 [Page 7]

Internet-Draft Schnorr NIZK Proof February 2016

 To verify the Schnorr NIZK proof in the EC setting, the following
 computations shall be performed.

 1. To verify Q is a valid public key in the subgroup over E(Fq)

 2. To verify V = G x [r] + Q x [c]

 In the EC setting where the co-factor is small (say 1, 2 or 4),
 validating the public key Q is essentially free (see [MOV96]). The
 cost of verifying a Schnorr NIZK proof in the EC setting is
 approximately one multiplication over the elliptic curve: i.e.,
 computing G x [r] + Q x [c] (using the same simultaneous computation
 technique as before).

4. Applications of Schnorr NIZK proof

 Some key exchange protocols, such as J-PAKE [HR08] and YAK [Hao10],
 rely on the Schnorr NIZK proof to ensure participants in the protocol
 follow the specification honestly. Hence, the technique described in
 this document can be directly applied to those protocols.

 The inclusion of OtherInfo also makes the Schnorr NIZK proof
 generally useful and sufficiently flexible to cater for a wide range
 of applications. For example, the described technique may be used to
 allow a user to demonstrate the Proof-Of-Possession (PoP) of a long-
 term private key to a Certificate Authority (CA) during the public
 key registration phrase. Accordingly, the OtherInfo should include
 extra information such as the CA name, the expiry date, the
 applicant's email contact and so on. In this case, the Schnorr NIZK
 proof is essentially no different from a self-signed Certificate
 Signing Request generated by using DSA (or ECDSA).

5. Security Considerations

 The Schnorr identification protocol has been proven to satisfy the
 following properties, assuming that the verifier is honest and the
 discrete logarithm problem is intractable (see [Stinson06]).

 1. Completeness -- a prover who knows the discrete logarithm is
 always able to pass the verification challenge.

 2. Soundness -- an adversary who does not know the discrete
 logarithm has only a negligible probability (i.e., 2^(-t)) to
 pass the verification challenge.

 3. Honest verifier zero-knowledge -- a prover leaks no more than one
 bit information to the honest verifier: whether the prover knows
 the discrete logarithm.

Hao Expires September 1, 2016 [Page 8]

Internet-Draft Schnorr NIZK Proof February 2016

 The Fiat-Shamir transformation is a standard technique to transform a
 three-pass interactive Zero Knowledge Proof protocol (in which the
 verifier chooses a random challenge) to a non-interactive one,
 assuming that there exists a secure cryptographic hash function.
 Since the hash function is publicly defined, the prover is able to
 compute the challenge by herself, hence making the protocol non-
 interactive. The assumption of an honest verifier naturally holds
 because the verifier can be anyone.

 A non-interactive Zero Knowledge Proof is often called a signature
 scheme. However, it should be noted that the Schnorr NIZK proof
 described in this document is different from the original Schnorr
 signature scheme (see [Stinson06]) in that it is specifically
 designed as a proof of knowledge of the discrete logarithm rather
 than a general-purpose digital signing algorithm.

 When a security protocol relies on the Schnorr NIZK proof for proving
 the knowledge of a discrete logarithm in a non-interactive way, the
 threat of replay attacks shall be considered. For example, the
 Schnorr NIZK proof might be replayed back to the prover itself (to
 introduce some undesirable correlation between items in a
 cryptographic protocol). This particular attack is prevented by the
 inclusion of the unique UserID into the hash. The verifier shall
 check the prover's UserID is a valid identity and is different from
 its own. Depending the context of specific protocols, other forms of
 replay attacks should be considered, and appropriate contextual
 information included into OtherInfo whenever necessary.

6. IANA Considerations

 This document has no actions for IANA.

7. Acknowledgements

 The editor of this document would like to thank Dylan Clarke, Robert
 Ransom, Siamak Shahandashti and Robert Cragie for useful comments.
 This work is supported by the EPSRC First Grant (EP/J011541/1) and
 the ERC Starting Grant (No. 306994).

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Hao Expires September 1, 2016 [Page 9]

Internet-Draft Schnorr NIZK Proof February 2016

 [AN95] Anderson, R. and R. Needham, "Robustness principles for
 public key protocols", Proceedings of the 15th Annual
 International Cryptology Conference on Advances in
 Cryptology, 1995.

 [FS86] Fiat, A. and A. Shamir, "How to Prove Yourself: Practical
 Solutions to Identification and Signature Problems",
 Proceedings of the 6th Annual International Cryptology
 Conference on Advances in Cryptology, 1986.

 [MOV96] Menezes, A., Oorschot, P., and S. Vanstone, "Handbook of
 Applied Cryptography", 1996.

 [Stinson06]
 Stinson, D., "Cryptography: Theory and Practice (3rd
 Edition)", CRC, 2006.

8.2. Informative References

 [NISTCurve]
 "Recommended Elliptic Curves for Federal Government use",
 July 1999,
 <http://csrc.nist.gov/groups/ST/toolkit/documents/dss/

NISTReCur.pdf>.

 [HR08] Hao, F. and P. Ryan, "Password Authenticated Key Exchange
 by Juggling", the 16th Workshop on Security Protocols,
 May 2008.

 [Hao10] Hao, F., "On Robust Key Agreement Based on Public Key
 Authentication", the 14th International Conference on
 Financial Cryptography and Data Security, February 2010.

8.3. URIs

 [1] http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/
DSA2_All.pdf

Author's Address

 Feng Hao (editor)
 Newcastle University (UK)
 Claremont Tower, School of Computing Science, Newcastle University
 Newcastle Upon Tyne
 United Kingdom

 Phone: +44 (0)191-208-6384
 EMail: feng.hao@ncl.ac.uk

http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/DSA2_All.pdf
http://csrc.nist.gov/groups/ST/toolkit/documents/Examples/DSA2_All.pdf

Hao Expires September 1, 2016 [Page 10]

