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Abstract

   This document describes Schnorr NIZK proof, a non-interactive variant
   of the three-pass Schnorr identification scheme.  The Schnorr NIZK
   proof allows one to prove the knowledge of a discrete logarithm
   without leaking any information about its value.  It can serve as a
   useful building block for many cryptographic protocols to ensure the
   participants follow the protocol specification honestly.  This
   document specifies the Schnorr NIZK proof in both the finite field
   and the elliptic curve settings.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on September 1, 2016.

Copyright Notice

   Copyright (c) 2016 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
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   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.
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1.  Introduction

   A well-known principle for designing robust public key protocols
   states as follows: "Do not assume that a message you receive has a
   particular form (such as g^r for known r) unless you can check this"
   [AN95].  This is the sixth of the eight principles defined by Ross
   Anderson and Roger Needham at Crypto'95.  Hence, it is also known as
   the "sixth principle".  In the past thirty years, many public key
   protocols failed to prevent attacks, which can be explained by the
   violation of this principle [Hao10].

   While there may be several ways to satisfy the sixth principle, this
   document describes one technique that allows one to prove the
   knowledge of a discrete logarithm (e.g., r for g^r) without revealing
   its value.  This technique is called the Schnorr NIZK proof, which is
   a non-interactive variant of the three-pass Schnorr identification
   scheme [Stinson06].  The original Schnorr identification scheme is
   made non-interactive through a Fiat-Shamir transformation [FS86],
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   assuming that there exists a secure cryptographic hash function
   (i.e., so-called random oracle model).

   The Schnorr NIZK proof can be implemented over a finite field or an
   elliptic curve (EC).  The technical specification is basically the
   same, except that the underlying cyclic group is different.  For
   completeness, this document describes the Schnorr NIZK proof in both
   the finite field and the EC settings.

1.1.  Requirements Language

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.2.  Notations

   The following notations are used in this document:

   o  Alice: the assumed identity of the prover in the protocol

   o  Bob: the assumed identity of the verifier in the protocol

   o  a || b: concatenation of a and b

   o  t: the bit length of the challenge chosen by Bob

   o  H: a secure cryptographic hash function

   o  p: a large prime

   o  q: a large prime divisor of p-1, i.e., q | p-1

   o  Zp*: a multiplicative group of integers modulo p

   o  Gq: a subgroup of Zp* with prime order q

   o  g: a generator of Gq

   o  g^x: g raised to the power of x

   o  a mod b: a modulo b

   o  Fq: a finite field of q elements where q is a prime

   o  E(Fq): an elliptic curve defined over Fq

   o  G: a generator of the subgroup over E(Fq) with prime order n

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   o  n: the order of G

   o  h: the co-factor of the subgroup generated by G, as defined by h
      = |E(Fq)|/n

   o  P x [b]: multiplication of a point P with a scalar b over E(Fq)

   o  P.x: the x coordinate of a point P over E(Fq)

2.  Schnorr NIZK Proof over Finite Field

2.1.  Group Parameters

   When implemented over a finite field, the Schnorr NIZK Proof uses the
   same group setting as DSA.  Let p and q be two large primes with q |
   p-1.  Let Gq denote the subgroup of Zp* of prime order q, and g be a
   generator for the subgroup.  Refer to NIST [1] for values of (p, q,
   g) that satisfy different security levels.

2.2.  Schnorr Identification Scheme

   The Schnorr identification scheme runs interactively between Alice
   (prover) and Bob (verifier).  In the setup of the scheme, Alice
   publishes her public key X = g^x mod p where x is the private key
   chosen uniformly at random from [0, q-1].  The value X must be an
   element in the subgroup Gq, which anyone can verify.  This is to
   ensure that the discrete logarithm of X with respect to the base g
   actually exists.

   The protocol works in three passes:

   1.  Alice chooses a number v uniformly at random from [0, q-1] and
       computes V = g^v mod p.  She sends V to Bob.

   2.  Bob chooses a challenge c uniformly at random from [0, 2^t - 1],
       where t is the bit length of the challenge (say t = 80).  Bob
       sends c to Alice.

   3.  Alice computes b = v - x * c mod q and sends it to Bob.

   At the end of the protocol, Bob checks if the following equality
   holds: V = g^b * X^c mod p.  The verification succeeds only if the
   equality holds.  The process is summarized in the following diagram.
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   Information Flows in Schnorr Identification Scheme

          Alice                               Bob
         -------                             -----

   choose random v from [0, q-1]

   compute V = g^v mod p    -- V ->

   compute b = v-x*c mod q  <- c -- choose random c from [0, 2^t-1]

                            -- b -> check if V = g^b * X^c mod p?

2.3.  Non-Interactive Zero-Knowledge Proof

   The Schnorr NIZK proof is obtained from the interactive Schnorr
   identification scheme through a Fiat-Shamir transformation [FS86].
   This transformation involves using a secure cryptographic hash
   function to issue the challenge instead.  More specifically, the
   challenge is redefined as c = H(g || g^v || g^x || UserID ||
   OtherInfo), where UserID is a unique identifier for the prover and
   OtherInfo is optional data.  The OtherInfo is included here for
   generality, as some security protocols built on top of the Schnorr
   NIZK proof may wish to include more contextual information such as
   the protocol name, timestamp and so on.  The exact items (if any) in
   OtherInfo shall be left to specific protocols to define.  However,
   the format of OtherInfo in any specific protocol must be fixed and
   explicitly defined in the protocol specification.

   Within the hash function, there must be a clear boundary between the
   concatenated items.  Usually, the boundary is implicitly defined once
   the length of each item is publicly known.  However, in the general
   case, it is safer to define the boundary explicitly.  It is
   recommended that one should always prepend each item with a 4-byte
   integer that represents the byte length of the item.  The OtherInfo
   may contain multiple sub-items.  In that case, the same rule shall
   apply to ensure a clear boundary between adjacent sub-items.

2.4.  Computation Cost

   In summary, to prove the knowledge of the exponent for X = g^x, Alice
   generates a Schnorr NIZK proof that contains: {UserID, OtherInfo, V =
   g^v mod p, r = v - x*c mod q}, where c = H(g || g^v || g^x ||
   UserID || OtherInfo).

   To generate a Schnorr NIZK proof, the cost is roughly one modular
   exponentiation: that is to compute g^v mod p.  In practice, this
   exponentiation may be pre-computed in the off-line manner to optimize
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   efficiency.  The cost of the remaining operations (random number
   generation, modular multiplication and hashing) is negligible as
   compared with the modular exponentiation.

   To verify the Schnorr NIZK proof, the following computations shall be
   performed.

   1.  To verify X is within [1, p-1] and X^q = 1 mod p

   2.  To verify V = g^r * X^c mod p

   Hence, the cost of verifying a Schnorr NIZK proof is approximately
   two exponentiations: one for computing X^q mod p and the other for
   computing g^r * X^c mod p.  (It takes roughly one exponentiation to
   compute the latter using a simultaneous exponentiation technique as
   described in [MOV96].)

   It is worth noting that some applications may specifically exclude
   the identity element as a valid public key.  In that case, one shall
   check X is within [2, p-1] instead of [1, p-1].  Also note that in
   the DSA-like group setting, it requires a full modular exponentiation
   to validate a public key, but in the ECDSA-like setting, the public
   key validation incurs almost negligible cost due to the co-factor
   being very small (see [MOV96]).

3.  Schnorr NIZK Proof over Elliptic Curve

3.1.  Group Parameters

   When implemented over an elliptic curve, the Schnorr NIZK proof uses
   essentially the same EC setting as ECDSA, e.g., NIST P-256, P-384,
   and P-521 [NISTCurve].  Let E(Fq) be an elliptic curve defined over a
   finite field Fq where q is a large prime.  Let G be a base point on
   the curve that serves as a generator for the subgroup over E(Fq) of
   prime order n.  The co-factor of the subgroup is denoted h, which is
   usually a small value (not more than 4).  Details on EC operations,
   such as addition, negation and scalar multiplications, can be found
   in [MOV96].

3.2.  Schnorr Identification Scheme

   In the setup of the scheme, Alice publishes her public key Q = G x
   [x] where x is the private key chosen uniformly at random from [1,
   n-1].  The value Q must be an element in the subgroup over the
   elliptic curve, which anyone can verify.

   The protocol works in three passes:
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   1.  Alice chooses a number v uniformly at random from [1, n-1] and
       computes V = G x [v].  She sends V to Bob.

   2.  Bob chooses a challenge c uniformly at random from [0, 2^t - 1],
       where t is the bit length of the challenge (say t = 80).  Bob
       sends c to Alice.

   3.  Alice computes b = v - x * c mod n and sends it to Bob.

   At the end of the protocol, Bob checks if the following equality
   holds: V = G x [b] + Q x [c].  The verification succeeds only if the
   equality holds.  The process is summarized in the following diagram.

   Information Flows in Schnorr Identification Scheme

   Alice                               Bob
   -------                             -----

   choose random v from [1, n-1]

   compute V = G x [v]      -- V ->

   compute b = v-x*c mod n  <- c -- choose random c from [0, 2^t-1]

                            -- b -> check if V = G x [b] + Q x [c]?

3.3.  Non-Interactive Zero-Knowledge Proof

   Same as before, the non-interactive variant is obtained through a
   Fiat-Shamir transformation [FS86], by using a secure cryptographic
   hash function to issue the challenge instead.  Note that G, V and Q
   are points on the curve.  In practice, it is sufficient to include
   only the x coordinate of the point into the hash function.  Hence,
   let G.x, V.x and Q.x be the x coordinates of these points
   respectively.  The challenge c is defined as c = H(G.x || V.x ||
   Q.x || UserID || OtherInfo), where UserID is a unique identifier for
   the prover and OtherInfo is optional data as explained earlier.

3.4.  Computation Cost

   In summary, to prove the knowledge of the discrete logarithm for Q =
   G x [x] with respect to base G over the elliptic curve, Alice
   generates a Schnorr NIZK proof that contains: {UserID, OtherInfo, V =
   G x [v], r = v - x*c mod n}, where c = H(G.x || V.x || Q.x ||
   UserID || OtherInfo).

   To generate a Schnorr NIZK proof, the cost is one scalar
   multiplication: that is to compute G x [v].
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   To verify the Schnorr NIZK proof in the EC setting, the following
   computations shall be performed.

   1.  To verify Q is a valid public key in the subgroup over E(Fq)

   2.  To verify V = G x [r] + Q x [c]

   In the EC setting where the co-factor is small (say 1, 2 or 4),
   validating the public key Q is essentially free (see [MOV96]).  The
   cost of verifying a Schnorr NIZK proof in the EC setting is
   approximately one multiplication over the elliptic curve: i.e.,
   computing G x [r] + Q x [c] (using the same simultaneous computation
   technique as before).

4.  Applications of Schnorr NIZK proof

   Some key exchange protocols, such as J-PAKE [HR08] and YAK [Hao10],
   rely on the Schnorr NIZK proof to ensure participants in the protocol
   follow the specification honestly.  Hence, the technique described in
   this document can be directly applied to those protocols.

   The inclusion of OtherInfo also makes the Schnorr NIZK proof
   generally useful and sufficiently flexible to cater for a wide range
   of applications.  For example, the described technique may be used to
   allow a user to demonstrate the Proof-Of-Possession (PoP) of a long-
   term private key to a Certificate Authority (CA) during the public
   key registration phrase.  Accordingly, the OtherInfo should include
   extra information such as the CA name, the expiry date, the
   applicant's email contact and so on.  In this case, the Schnorr NIZK
   proof is essentially no different from a self-signed Certificate
   Signing Request generated by using DSA (or ECDSA).

5.  Security Considerations

   The Schnorr identification protocol has been proven to satisfy the
   following properties, assuming that the verifier is honest and the
   discrete logarithm problem is intractable (see [Stinson06]).

   1.  Completeness -- a prover who knows the discrete logarithm is
       always able to pass the verification challenge.

   2.  Soundness -- an adversary who does not know the discrete
       logarithm has only a negligible probability (i.e., 2^(-t)) to
       pass the verification challenge.

   3.  Honest verifier zero-knowledge -- a prover leaks no more than one
       bit information to the honest verifier: whether the prover knows
       the discrete logarithm.
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   The Fiat-Shamir transformation is a standard technique to transform a
   three-pass interactive Zero Knowledge Proof protocol (in which the
   verifier chooses a random challenge) to a non-interactive one,
   assuming that there exists a secure cryptographic hash function.
   Since the hash function is publicly defined, the prover is able to
   compute the challenge by herself, hence making the protocol non-
   interactive.  The assumption of an honest verifier naturally holds
   because the verifier can be anyone.

   A non-interactive Zero Knowledge Proof is often called a signature
   scheme.  However, it should be noted that the Schnorr NIZK proof
   described in this document is different from the original Schnorr
   signature scheme (see [Stinson06]) in that it is specifically
   designed as a proof of knowledge of the discrete logarithm rather
   than a general-purpose digital signing algorithm.

   When a security protocol relies on the Schnorr NIZK proof for proving
   the knowledge of a discrete logarithm in a non-interactive way, the
   threat of replay attacks shall be considered.  For example, the
   Schnorr NIZK proof might be replayed back to the prover itself (to
   introduce some undesirable correlation between items in a
   cryptographic protocol).  This particular attack is prevented by the
   inclusion of the unique UserID into the hash.  The verifier shall
   check the prover's UserID is a valid identity and is different from
   its own.  Depending the context of specific protocols, other forms of
   replay attacks should be considered, and appropriate contextual
   information included into OtherInfo whenever necessary.

6.  IANA Considerations

   This document has no actions for IANA.
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