
Workgroup: Network Working Group

Internet-Draft:

draft-happel-sieve-filter-rule-metadata-00

Published: 13 March 2023

Intended Status: Informational

Expires: 14 September 2023

Authors: H.-J. Happel

audriga GmbH

Sieve Filter Rule Metadata

Abstract

This document describes current practices in managing Sieve scripts

and proposes a standardized way for storing filter rule metadata in

Sieve comments.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

1.1. GUI-based email filter editors

1.2. Indirect creation of email filters

1.3. Special purpose email filters

1.4. Other kinds of Sieve scripts

1.5. Conventions Used in This Document

2. Modular Sieve scripts in practice

2.1. Rule comments

2.2. Deactivation of filtering rules

2.2.1. Example: Commenting out

2.2.2. Example: Wrapping

2.3. Issues

3. Proposed conventions

3.1. Script comments

3.2. Rule comments

3.3. Deactivation of filtering rules

4. Examples

4.1. CriticalPath

4.2. Horde (Ingo)

4.3. Oracle Communication Messaging Server

4.4. OpenXchange

4.5. OpenWave/InterMail

5. Security considerations

6. IANA Considerations

7. Informative References

Author's Address

1. Introduction

Sieve is a formal language for email filtering specified in

(RFC5228). Filters are stored in so called "scripts", which are text

files containing Sieve filtering expressions.

Users can edit Sieve scripts directly, in case they have access to

the script files, or by using the ManageSieve protocol (RFC5804), if

it is made available by their email service.

While experienced users may follow this approach, (RFC5228, section

1) anticipates that "GUI-based editors will be the preferred way of

editing filters for a large number of users."

This likely describes current practice, given that typical end users

rarely have direct access to their Sieve scripts, and given that

most email services do not offer ManageSieve access. Furthermore,

even for a popular email client such as Thunderbird, only very rough

Script editors seem to exist [TBSieve].

¶

¶

¶

¶

1.1. GUI-based email filter editors

Many Webmail and Groupware software features GUI-based email filter

editors, which use Sieve as the underlying script language. When

creating filters, the editor will create or update the user's Sieve

script. When opening the editor, the script will be parsed and

presented in a constrained set of UI widgets (such as dropdown-lists

or input fields).

The vast majority (if not all) GUI-based editors follow a similar

interaction paradigm, which is designed along the Sieve language

design concepts. A user first needs to define a "test" (RFC5228,

section 2.5), which defines filtering criteria (e.g., based on

sender or size of a message). The second major component is the

definition of one or more "actions" (RFC5228, section 4), such as to

move an email matching the filtering criteria into a certain

mailbox.

The design of existing editors affords users to modularize their

email filters, so that multiple test/action style "fiter rules" are

created. The "else" and "elseif" keywords, which are common in free-

form Sieve scripts (RFC5228, section 9), are typically not used in

those modularized filter rules.

Modularized filter rules often contain a "stop;" commend as their

final action by default, which makes them widely independent of each

other. GUI-based email filter editors typically allow users to label

and to (re-)order filter rules.

1.2. Indirect creation of email filters

Besides a dedicated GUI-based editor for email filters, many Webmail

and Groupware software include additional ways to modify the Sieve

script of a user. There are contextual interfaces, which create

rules in the background or which launch a prefilled filter rule

creation dialog.

Examples are:

Creating a filter rule based on a sender's email address ("Move

all emails from "John Doe" to ...")

Adding a sender to a block- or allowlist

The latter case is also an example for special purpose filters as

described in the following.

1.3. Special purpose email filters

Email filters are often used as a technology for realizing other

features, such as blocklists, vacation messages [RFC5230], or email

¶

¶

¶

¶

¶

¶

*

¶

* ¶

¶

forwarding. In most of these cases, there will be a dedicated user

interface specific to the feature. This user interface will still

write to the user's Sieve script, but the corresponding email filter

will either not be editable or hidden in the regular email filter

editor.

This special handling in the filter editor (i.e., the recognition of

a special purpose filter rule) is typically based on metadata which

is captured in Sieve comments (see also Section 4).

1.4. Other kinds of Sieve scripts

Besides capturing rules based on user input, Sieve scripts are

sometimes also used in other ways. E.g., some SPAM filtering systems

use machine-generated Sieve scripts for their operations. Such

scripts are typically hidden from end users and hence cannot be

edited. They are out of the scope of this draft.

1.5. Conventions Used in This Document

2. Modular Sieve scripts in practice

2.1. Rule comments

In order to manage modularized Sieve scripts, GUI-based script

editors need to capture the following information.

The type of a rule, distinguishing user-defined rules from

certain special-purpose rules. Examples for the latter are:

VACTION, SPAM, ALLOWED/BLOCKED SENDER, AUTOFORWARD.

The user-defined name of a rules, as shown in the rule management

UI. Some systems will use predefined rule names instead of rule

types.

In addition to this, some systems store further information:

Rule Id: an id for internal reference and/or ordering of rules in

processing and list presentation.

Rule position: a numberic value to maintain the ordering of

filter rules in a separate field.

Rule description: additional notes complementing the rule label

Since none of this information is natively supported by the Sieve

rule language, systems fall back to Sieve comments for storing.

Various vendor-specific practices have emerged, as seen in

Section 4.

¶

¶

¶

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

¶

2.2. Deactivation of filtering rules

Another aspect of informal standardization has been the

deacativation of certain Sieve code. Based on the RFC, Sieve offers

two means of deactivation:

Commenting out Sieve code

Keeping one active and multiple deativated scripts (as per

ManageSieve (RFC5804, section 1.4))

While some vendors using type (b) scripts rely on commenting out for

disabling individual modular rules, others came up with more

formalized approaches such as wrapping disabled rules using a simple

"if (false)" clause.

2.2.1. Example: Commenting out

The following filtering rule is take from an OpenXChange-generated

Sieve script:

Once "deactivated" in the user interface, this filtering rule will

be represented in the Sieve script as follows:

2.2.2. Example: Wrapping

The following filtering rule is take from an CriticalPath-generated

Sieve script:

Once "deactivated" in the user interface, this filtering rule will

be represented in the Sieve script as follows:

¶

* ¶

*

¶

¶

¶

Flag: |UniqueId:15|Rulename: testRuleCreate

if true

{

 discard ;

}

¶

¶

Flag: |UniqueId:15|Rulename: testRuleCreate

#<!-->if true

#<!-->{

#<!--> discard ;

#<!-->}

¶

¶

if allof (true, header :contains "X-Priority" "5")

{

 discard;

}

¶

¶

2.3. Issues

While the described informal workarounds helped vendors to cope

within the boundaries of the Sieve language, we see a number of

issues with this status quo:

Interoperability: Vendor-specific workarounds tend to work only

with the vendors own user interfaces. Any attempt to edit the

resulting Sieve scripts can essentially cause trouble displaying

these scripts respectively their contained rules within the

vendors UI. Furthermore, editing special-purpose rules might even

lead to more severe side effects. The lack of interoperability

might be considered a barrier for the implementation of useful

Sieve clients, which in turn hinders more widespread adoption of

Sieve.

Portability: similar to the way Sieve clients should be able to

interoperate with the Sieve usage of servers, Sieve scripts

should be portable between different Sieve server vendors.

Otherwise, users will not be able to transfer their data between

different providers.

3. Proposed conventions

The purpose of this section is to propose a normative reference for

filtering rule comments and deactivation.

3.1. Script comments

(TBD)

3.2. Rule comments

(TBD)

3.3. Deactivation of filtering rules

For the purpose of deactivating rules, the "wrapping" approach

described in the previous section should be applied.

(TBD)

4. Examples

In this section, we will document Sieve script patterns used by the

software of different vendors.

if allof (false, header :contains "X-Priority" "5")

{

 discard;

}

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

"(...)" stands for omitted code in example scripts.

4.1. CriticalPath

4.2. Horde (Ingo)

¶

cp_filter_name: Test filter

cp_filter_description:

¶

Sieve Filter

Generated by Ingo (http://www.horde.org/apps/ingo/) (09/03/2021, 05:37:41 PM)

require ["vacation", "regex", "fileinto", "imapflags", "body", "reject", "notify"];

Whitelisted Addresses

if address :all :comparator "i;ascii-casemap" :is ["From", "Sender", "Resent-From"] "whitelist@foo.com" {

 keep;

 stop;

}

Vacation

(...)

Blacklisted Addresses

if address :all :comparator "i;ascii-casemap" :is ["From", "Sender", "Resent-From"] "non@foo.com" {

 discard;

 stop;

}

Spamfilter

if header :comparator "i;ascii-casemap" :matches "X-Spam-Status" "yes*" {

 fileinto "spamblock";

 stop;

}

Forwards

if true {

 redirect "fws@foo.com";

}

userDefined Rule (Name: fileInto userDefinedFolder)

if address :all :comparator "i;ascii-casemap" :contains "To" "x" {

 fileinto "userDefinedFolder";

 stop;

}

¶

[TBSieve]

4.3. Oracle Communication Messaging Server

4.4. OpenXchange

4.5. OpenWave/InterMail

5. Security considerations

TBD

6. IANA Considerations

This document has no IANA actions at this time.

7. Informative References

Schmid, T., "Thunderbird Sieve Add-On", <https://

addons.thunderbird.net/de/thunderbird/addon/sieve/>.

Author's Address

Hans-Joerg Happel

audriga GmbH

Email: happel@audriga.com

URI: https://www.audriga.com

#RULE: $Name="Blocked senders" $Type="BLOCKED_ADDRESSES" $Version=1 $Lz=1 $Order=1

#BEGINFILTER

(...)

#ENDFILTER

#RULE: $Name="Test Folder Bulkmail" $Type="DEFAULT_TYPE" $Version=1 $Lz=1 $Order=6

#require "fileinto";

(...)

#ENDRULE

¶

Flag: vacation|UniqueId:1|Rulename: vacation notice

Flag: autoforward|UniqueId:2|Rulename: autoforward

Flag: |UniqueId:0|Rulename: MyTestFiler

¶

¶

¶

https://addons.thunderbird.net/de/thunderbird/addon/sieve/
https://addons.thunderbird.net/de/thunderbird/addon/sieve/
mailto:happel@audriga.com
https://www.audriga.com

	Sieve Filter Rule Metadata
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. GUI-based email filter editors
	1.2. Indirect creation of email filters
	1.3. Special purpose email filters
	1.4. Other kinds of Sieve scripts
	1.5. Conventions Used in This Document

	2. Modular Sieve scripts in practice
	2.1. Rule comments
	2.2. Deactivation of filtering rules
	2.2.1. Example: Commenting out
	2.2.2. Example: Wrapping

	2.3. Issues

	3. Proposed conventions
	3.1. Script comments
	3.2. Rule comments
	3.3. Deactivation of filtering rules

	4. Examples
	4.1. CriticalPath
	4.2. Horde (Ingo)
	4.3. Oracle Communication Messaging Server
	4.4. OpenXchange
	4.5. OpenWave/InterMail

	5. Security considerations
	6. IANA Considerations
	7. Informative References
	Author's Address

