
ISMS W. Hardaker
Internet-Draft Sparta, Inc.
Intended status: Standards Track June 24, 2009
Expires: December 26, 2009

Transport Layer Security Transport Model for SNMP
draft-hardaker-isms-dtls-tm-05.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 26, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal

Hardaker Expires December 26, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft SNMP over DTLS June 2009

 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This document describes a Transport Model for the Simple Network
 Management Protocol (SNMP), that uses either the Transport Layer
 Security protocol or the Datagram Transport Layer Security (DTLS)
 protocol. The TLS and DTLS protocols provide authentication and
 privacy services for SNMP applications. This document describes how
 the TLS Transport Model (TLSTM) implements the needed features of a
 SNMP Transport Subsystem to make this protection possible in an
 interoperable way.

 This transport model is designed to meet the security and operational
 needs of network administrators. The TLS mode can make use of TCP's
 improved support for larger packet sizes and the DTLS mode provides
 potentially superior operation in environments where a connectionless
 (e.g. UDP or SCTP) transport is preferred. Both TLS and DTLS
 integrate well into existing public keying infrastructures.

 This document also defines a portion of the Management Information
 Base (MIB) for monitoring and managing the TLS Transport Model for
 SNMP.

http://trustee.ietf.org/license-info

Hardaker Expires December 26, 2009 [Page 2]

Internet-Draft SNMP over DTLS June 2009

Table of Contents

1. Introduction . 5
1.1. Conventions . 7

2. The Datagram Transport Layer Security Protocol 8
2.1. The (D)TLS Record Protocol 8
2.2. The (D)TLS Handshake Protocol 9
2.3. SNMP requirements of (D)TLS 10

3. How the TLSTM fits into the Transport Subsystem 10
3.1. Security Capabilities of this Model 12
3.1.1. Threats . 12
3.1.2. Message Protection 13
3.1.3. (D)TLS Sessions 14

3.2. Security Parameter Passing 15
3.3. Notifications and Proxy 15

4. Elements of the Model . 16
4.1. Certificates . 16
4.1.1. The Certificate Infrastructure 16
4.1.2. Provisioning for the Certificate 17

4.2. Messages . 18
4.3. SNMP Services . 19
4.3.1. SNMP Services for an Outgoing Message 19
4.3.2. SNMP Services for an Incoming Message 20

4.4. (D)TLS Services . 21
4.4.1. Services for Establishing a Session 21
4.4.2. (D)TLS Services for an Incoming Message 22
4.4.3. (D)TLS Services for an Outgoing Message 23

4.5. Cached Information and References 24
4.5.1. TLS Transport Model Cached Information 24

5. Elements of Procedure . 24
5.1. Procedures for an Incoming Message 25
5.1.1. DTLS Processing for Incoming Messages 25
5.1.2. Transport Processing for Incoming Messages 26

5.2. Procedures for an Outgoing Message 27
5.3. Establishing a Session 29
5.4. Closing a Session . 31

6. MIB Module Overview . 31
6.1. Structure of the MIB Module 32
6.2. Textual Conventions 32
6.3. Statistical Counters 32
6.4. Configuration Tables 32
6.5. Relationship to Other MIB Modules 32
6.5.1. MIB Modules Required for IMPORTS 33

7. MIB Module Definition . 33
8. Operational Considerations 49
8.1. Sessions . 49
8.2. Notification Receiver Credential Selection 50
8.3. contextEngineID Discovery 50

Hardaker Expires December 26, 2009 [Page 3]

Internet-Draft SNMP over DTLS June 2009

9. Security Considerations 50
9.1. Certificates, Authentication, and Authorization 51
9.2. Use with SNMPv1/SNMPv2c Messages 52
9.3. MIB Module Security 52

10. IANA Considerations . 52
11. Acknowledgements . 54
12. References . 54
12.1. Normative References 54
12.2. Informative References 55

Appendix A. Target and Notificaton Configuration Example 56
 Author's Address . 58

Hardaker Expires December 26, 2009 [Page 4]

Internet-Draft SNMP over DTLS June 2009

1. Introduction

 It is important to understand the modular SNMPv3 architecture as
 defined by [RFC3411] and enhanced by the Transport Subsystem
 [I-D.ietf-isms-tmsm]. It is also important to understand the
 terminology of the SNMPv3 architecture in order to understand where
 the Transport Model described in this document fits into the
 architecture and how it interacts with the other architecture
 subsystems. For a detailed overview of the documents that describe
 the current Internet-Standard Management Framework, please refer to

Section 7 of [RFC3410].

 This document describes a Transport Model that makes use of the
 Transport Layer Security (TLS) [RFC5246] and the Datagram Transport
 Layer Security (DTLS) Protocol [RFC4347], within a transport
 subsystem [I-D.ietf-isms-tmsm]. DTLS is the datagram variant of the
 Transport Layer Security (TLS) protocol [RFC5246]. The Transport
 Model in this document is referred to as the Transport Layer Security
 Transport Model (TLSTM). TLS and DTLS take advantage of the X.509
 public keying infrastructure [X509]. This transport model is
 designed to meet the security and operational needs of network
 administrators, operate in both environments where a connectionless
 (e.g. UDP or SCTP) transport is preferred and in environments where
 large quantities of data need to be sent (e.g. over a TCP based
 stream). Both TLS and DTLS integrate well into existing public
 keying infrastructures.

 This document also specifies a portion of the Management Information
 Base (MIB) to define objects for monitoring and managing the TLS
 Transport Model for SNMP.

 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. MIB objects are generally
 accessed through the Simple Network Management Protocol (SNMP).
 Objects in the MIB are defined using the mechanisms defined in the
 Structure of Management Information (SMI). This memo specifies a MIB
 module that is compliant to the SMIv2, which is described in STD 58,

RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580
 [RFC2580].

 The diagram shown below gives a conceptual overview of two SNMP
 entities communicating using the TLS Transport Model. One entity
 contains a Command Responder and Notification Originator application,
 and the other a Command Generator and Notification Responder
 application. It should be understood that this particular mix of
 application types is an example only and other combinations are
 equally as legitimate.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3410#section-7
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc2580

Hardaker Expires December 26, 2009 [Page 5]

Internet-Draft SNMP over DTLS June 2009

 +--+
 | Network |
 +--+
 ^ ^ ^ ^
 |Notifications |Commands |Commands |Notifications
 +---|---------------------|--------+ +--|---------------|-------------+
V V		V V																		
+------------+ +------------+		+-----------+ +----------+																		
	(D)TLS		(D)TLS				(D)TLS		(D)TLS											
	Service		Service				Service		Service											
	(Client)		(Server)				(Client)		(Server)											
+------------+ +------------+		+-----------+ +----------+																		
^ ^		^ ^																		
+--+----------+		+-+--------------+																		
+-----	---------+----+		+---	--------+----+																
	V	LCD	+-------+			V	LCD	+--------+												
	+------+ +----+					+------+ +----+														
		DTLS	<---------->	Cache					DTLS	<---->	Cache									
		TM								TM										
	+------+	+-------+			+------+	+--------+														
	Transport Subsystem	^			Transport Sub.	^														
+--------------------+			+-----------------+																	
^ +----+		^																		
v			V																	
+-------+ +----------+ +-----+			+-----+ +------+ +-----+																	
			Message		Sec.							MP		Sec.						
	Disp.		Processing		Sub-					Disp.		Sub-		Sub-						
			Subsystem		sys.							system		sys.						
					+---+									+---+						
			+-----+											+----+						
	<--->	v3MP	<-->		TSM	<-+			<-->	v3MP	<->	TSM	<-+							
			+-----+										+----+							
+-------+			+---+			+-----+			+---+											
^						^														
	+----------+ +-----+			+------+ +-----+																
+-+------------+		+-+------------+																		
^ ^		^ ^																		
v v		V V																		
+-------------+ +--------------+		+-----------+ +--------------+																		
	COMMAND		NOTIFICATION				COMMAND		NOTIFICATION											
	RESPONDER		ORIGINATOR				GENERATOR		RESPONDER											
	application		applications				application		application											
+-------------+ +--------------+		+-----------+ +--------------+																		
SNMP entity		SNMP entity																		

Hardaker Expires December 26, 2009 [Page 6]

Internet-Draft SNMP over DTLS June 2009

 +----------------------------------+ +--------------------------------+

1.1. Conventions

 For consistency with SNMP-related specifications, this document
 favors terminology as defined in STD62 rather than favoring
 terminology that is consistent with non-SNMP specifications. This is
 consistent with the IESG decision to not require the SNMPv3
 terminology be modified to match the usage of other non-SNMP
 specifications when SNMPv3 was advanced to Full Standard.

 Authentication in this document typically refers to the English
 meaning of "serving to prove the authenticity of" the message, not
 data source authentication or peer identity authentication.

 Large portions of this document simultaneously refer to both TLS and
 DTLS when discussing TLSTM components that function equally with
 either protocol. "(D)TLS" is used in these places to indicate that
 the statement applies to either or both protocols as appropriate.
 When a distinction between the protocols is needed they are referred
 to independently through the use of "TLS" or "DTLS". The Transport
 Model, however, is named "TLS Transport Model" and refers not to the
 TLS or DTLS protocol but to the standard defined in this document,
 which includes support for both TLS and DTLS.

 The terms "manager" and "agent" are not used in this document,
 because in the RFC 3411 architecture [RFC3411], all SNMP entities
 have the capability of acting in either manager or agent or in both
 roles depending on the SNMP application types supported in the
 implementation. Where distinction is required, the application names
 of Command Generator, Command Responder, Notification Originator,
 Notification Receiver, and Proxy Forwarder are used. See "SNMP
 Applications" [RFC3413] for further information.

 Throughout this document, the terms "client" and "server" are used to
 refer to the two ends of the (D)TLS transport connection. The client
 actively opens the (D)TLS connection, and the server passively
 listens for the incoming (D)TLS connection. Either SNMP entity may
 act as client or as server, as discussed further below.

 The User-Based Security Model (USM) [RFC3414] is a mandatory-to-
 implement Security Model in STD 62. While (D)TLS and USM frequently
 refer to a user, the terminology preferred in RFC3411 [RFC3411] and
 in this memo is "principal". A principal is the "who" on whose
 behalf services are provided or processing takes place. A principal
 can be, among other things, an individual acting in a particular
 role; a set of individuals, with each acting in a particular role; an
 application or a set of applications, or a combination of these

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires December 26, 2009 [Page 7]

Internet-Draft SNMP over DTLS June 2009

 within an administrative domain.

 Throughout this document, the term "session" is used to refer to a
 secure association between two TLS Transport Models that permits the
 transmission of one or more SNMP messages within the lifetime of the
 session.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. The Datagram Transport Layer Security Protocol

 (D)TLS provides authentication, data message integrity, and privacy
 at the transport layer. (See [RFC4347])

 The primary goals of the TLS Transport Model are to provide privacy,
 source authentication and data integrity between two communicating
 SNMP entities. The (D)TLS protocol is composed of two layers: the
 (D)TLS Record Protocol and the (D)TLS Handshake Protocol. The
 following sections provide an overview of these two layers. Please
 refer to [RFC4347] for a complete description of the protocol.
 Readers familiar with (D)TLS can skip Section 2 except for section

Section 2.3.

2.1. The (D)TLS Record Protocol

 At the lowest layer, layered on top of the transport control protocol
 or a datagram transport protocol (e.g. UDP or SCTP) is the (D)TLS
 Record Protocol.

 The (D)TLS Record Protocol provides security that has three basic
 properties:

 o The session can be confidential. Symmetric cryptography is used
 for data encryption (e.g., AES [AES], DES [DES] etc.). The keys
 for this symmetric encryption are generated uniquely for each
 session and are based on a secret negotiated by another protocol
 (such as the (D)TLS Handshake Protocol). The Record Protocol can
 also be used without encryption.

 o Messages can have data integrity. Message transport includes a
 message integrity check using a keyed MAC. Secure hash functions
 (e.g., SHA, MD5, etc.) are used for MAC computations. The Record
 Protocol can operate without a MAC, but is generally only used in
 this mode while another protocol is using the Record Protocol as a
 transport for negotiating security parameters.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires December 26, 2009 [Page 8]

Internet-Draft SNMP over DTLS June 2009

 o Messages are protected against replay. (D)TLS uses explicit
 sequence numbers and integrity checks. DTLS uses a sliding window
 to protect against replay of messages within a session.

 (D)TLS also provides protection against replay of entire sessions.
 In a properly-implemented keying material exchange, both sides will
 generate new random numbers for each exchange. This results in
 different encryption and integrity keys for every session.

2.2. The (D)TLS Handshake Protocol

 The (D)TLS Record Protocol is used for encapsulation of various
 higher-level protocols. One such encapsulated protocol, the (D)TLS
 Handshake Protocol, allows the server and client to authenticate each
 other and to negotiate an integrity algorithm, an encryption
 algorithm and cryptographic keys before the application protocol
 transmits or receives its first octet of data. Only the (D)TLS
 client can initiate the handshake protocol. The (D)TLS Handshake
 Protocol provides security that has three basic properties:

 o The peer's identity can be authenticated using asymmetric (public
 key) cryptography (e.g., RSA [RSA], DSS [DSS], etc.). This
 authentication can be made optional, but is generally required by
 at least one of the peers.

 (D)TLS supports three authentication modes: authentication of both
 the server and the client, server authentication with an
 unauthenticated client, and total anonymity. For authentication
 of both entities, each entity provides a valid certificate chain
 leading to an acceptable certificate authority. Each entity is
 responsible for verifying that the other's certificate is valid
 and has not expired or been revoked. See
 [I-D.saintandre-tls-server-id-check] for further details on
 standardized processing when checking Server certificate
 identities.

 o The negotiation of a shared secret is secure: the negotiated
 secret is unavailable to eavesdroppers, and for any authenticated
 handshake the secret cannot be obtained, even by an attacker who
 can place himself in the middle of the session.

 o The negotiation is not vulnerable to malicious modification: it is
 infeasible for an attacker to modify negotiation communication
 without being detected by the parties to the communication.

 o DTLS uses a stateless cookie exchange to protect against anonymous
 denial of service attacks and has retransmission timers, sequence
 numbers, and counters to handle message loss, reordering, and

Hardaker Expires December 26, 2009 [Page 9]

Internet-Draft SNMP over DTLS June 2009

 fragmentation.

2.3. SNMP requirements of (D)TLS

 To properly support the SNMP over TLS Transport Model, the (D)TLS
 implementation requires the following:

 o The TLS Transport Model SHOULD always use authentication of both
 the server and the client.

 o At a minimum the TLS Transport Model MUST support authentication
 of the Command Generator principals to guarantee the authenticity
 of the securityName.

 o The TLS Transport Model SHOULD support the message encryption to
 protect sensitive data from eavesdropping attacks.

3. How the TLSTM fits into the Transport Subsystem

 A transport model is a component of the Transport Subsystem. The TLS
 Transport Model thus fits between the underlying (D)TLS transport
 layer and the message dispatcher [RFC3411] component of the SNMP
 engine and the Transport Subsystem.

 The TLS Transport Model will establish a session between itself and
 the TLS Transport Model of another SNMP engine. The sending
 transport model passes unprotected messages from the dispatcher to
 (D)TLS to be protected, and the receiving transport model accepts
 decrypted and authenticated/integrity-checked incoming messages from
 (D)TLS and passes them to the dispatcher.

 After a TLS Transport Model session is established, SNMP messages can
 conceptually be sent through the session from one SNMP message
 dispatcher to another SNMP message dispatcher. If multiple SNMP
 messages are needed to be passed between two SNMP applications they
 SHOULD be passed through the same session. A TLSTM implementation
 engine MAY choose to close a (D)TLS session to conserve resources.

 The TLS Transport Model of an SNMP engine will perform the
 translation between (D)TLS-specific security parameters and SNMP-
 specific, model-independent parameters.

 The diagram below depicts where the TLS Transport Model fits into the
 architecture described in RFC3411 and the Transport Subsystem:

 +------------------------------+

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires December 26, 2009 [Page 10]

Internet-Draft SNMP over DTLS June 2009

 | Network |
 +------------------------------+
 ^ ^ ^
 | | |
 v v v
 +---+
 | +--+ |
	Transport Subsystem	+--------+										
	+-----+ +-----+ +-------+ +-------+											
		UDP		SSH		(D)TLS	. . .	other	<--->	Cache		
				TM		TM						
	+-----+ +-----+ +-------+ +-------+	+--------+										
+--+ ^												
^												
Dispatcher v												
+--------------+ +---------------------+ +----------------+												
	Transport		Message Processing		Security							
	Dispatch		Subsystem		Subsystem							
			+------------+		+------------+							
			+->	v1MP	<--->		USM					
				+------------+		+------------+						
				+------------+		+------------+						
			+->	v2cMP	<--->		Transport					
	Message			+------------+			Security	<--+				
	Dispatch <---->	+------------+			Model							
			+->	v3MP	<--->	+------------+						
				+------------+		+------------+						
	PDU Dispatch			+------------+			Other					
+--------------+	+->	otherMP	<--->		Model(s)							
^	+------------+		+------------+									
	+---------------------+ +----------------+											
v												
+-------+-------------------------+---------------+												
^ ^ ^												
v v v												
+-------------+ +---------+ +--------------+ +-------------+												
	COMMAND		ACCESS		NOTIFICATION		PROXY					
	RESPONDER	<->	CONTROL	<->	ORIGINATOR		FORWARDER					
	application				applications		application					
+-------------+ +---------+ +--------------+ +-------------+												
^ ^												
v v												
+--+												
	MIB instrumentation	SNMP entity										
 +---+

Hardaker Expires December 26, 2009 [Page 11]

Internet-Draft SNMP over DTLS June 2009

3.1. Security Capabilities of this Model

3.1.1. Threats

 The TLS Transport Model provides protection against the threats
 identified by the RFC 3411 architecture [RFC3411]:

 1. Modification of Information - The modification threat is the
 danger that some unauthorized entity may alter in-transit SNMP
 messages generated on behalf of an authorized principal in such a
 way as to effect unauthorized management operations, including
 falsifying the value of an object.

 (D)TLS provides verification that the content of each received
 message has not been modified during its transmission through the
 network, data has not been altered or destroyed in an
 unauthorized manner, and data sequences have not been altered to
 an extent greater than can occur non-maliciously.

 2. Masquerade - The masquerade threat is the danger that management
 operations unauthorized for a given principal may be attempted by
 assuming the identity of another principal that has the
 appropriate authorizations.

 The TLSTM provides for authentication of the Command Generator,
 Command Responder, Notification Generator, Notification Responder
 and Proxy Forwarder through the use of X.509 certificates.

 The masquerade threat can be mitigated against by using an
 appropriate Access Control Model (ACM) such as the View-based
 Access Control Module (VACM) [RFC3415]. In addition, it is
 important to authenticate and verify both the authenticated
 identity of the (D)TLS client and the (D)TLS server to protect
 against this threat. (See Section 9 for more detail.)

 3. Message stream modification - The re-ordering, delay or replay of
 messages can and does occur through the natural operation of many
 connectionless transport services. The message stream
 modification threat is the danger that messages may be
 maliciously re-ordered, delayed or replayed to an extent which is
 greater than can occur through the natural operation of
 connectionless transport services, in order to effect
 unauthorized management operations.

 (D)TLS provides replay protection with a MAC that includes a
 sequence number. Since UDP provides no sequencing ability DTLS
 uses a sliding window protocol with the sequence number for
 replay protection, see [RFC4347]. The technique used is similar

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3415
https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires December 26, 2009 [Page 12]

Internet-Draft SNMP over DTLS June 2009

 to that as in IPsec AH/ESP [RFC4302] [RFC4303], by maintaining a
 bitmap window of received records. Records that are too old to
 fit in the window and records that have previously been received
 are silently discarded. The replay detection feature is
 optional, since packet duplication can also occur naturally due
 to routing errors and does not necessarily indicate an active
 attack. Applications may conceivably detect duplicate packets
 and accordingly modify their data transmission strategy.

 4. Disclosure - The disclosure threat is the danger of eavesdropping
 on the exchanges between SNMP engines. Protecting against this
 threat may be required by local policy at the deployment site.

 Symmetric cryptography (e.g., AES [AES], DES [DES] etc.) can be
 used by (D)TLS for data privacy. The keys for this symmetric
 encryption are generated uniquely for each session and are based
 on a secret negotiated by another protocol (such as the (D)TLS
 Handshake Protocol).

 5. Denial of Service - the RFC 3411 architecture [RFC3411] states
 that denial of service (DoS) attacks need not be addressed by an
 SNMP security protocol. However, datagram-based security
 protocols like DTLS are susceptible to a variety of denial of
 service attacks because it is more vulnerable to spoofed
 messages.

 In order to counter both of these attacks, DTLS borrows the
 stateless cookie technique used by Photuris [RFC2522] and IKEv2
 [RFC4306] and is described fully in section 4.2.1 of [RFC4347].
 This mechanism, though, does not provide any defense against
 denial of service attacks mounted from valid IP addresses. DTLS
 Transport Model server implementations MUST support DTLS cookies.

 Implementations are not required to perform the stateless cookie
 exchange for every DTLS handshakes but in environments where
 amplification could be an issue or has been detected it is
 RECOMMENDED that the cookie exchange is utilized.

3.1.2. Message Protection

 The RFC 3411 architecture recognizes three levels of security:

 o without authentication and without privacy (noAuthNoPriv)

 o with authentication but without privacy (authNoPriv)

 o with authentication and with privacy (authPriv)

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4347#section-4.2.1
https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires December 26, 2009 [Page 13]

Internet-Draft SNMP over DTLS June 2009

 The TLS Transport Model determines from (D)TLS the identity of the
 authenticated principal, and the type and address associated with an
 incoming message, and the TLS Transport Model provides this
 information to (D)TLS for an outgoing message.

 When an application requests a session for a message, through the
 cache, the application requests a security level for that session.
 The TLS Transport Model MUST ensure that the (D)TLS session provides
 security at least as high as the requested level of security. How
 the security level is translated into the algorithms used to provide
 data integrity and privacy is implementation-dependent. However, the
 NULL integrity and encryption algorithms MUST NOT be used to fulfill
 security level requests for authentication or privacy.
 Implementations MAY choose to force (D)TLS to only allow
 cipher_suites that provide both authentication and privacy to
 guarantee this assertion.

 If a suitable interface between the TLS Transport Model and the
 (D)TLS Handshake Protocol is implemented to allow the selection of
 security level dependent algorithms, for example a security level to
 cipher_suites mapping table, then different security levels may be
 utilized by the application. However, different port numbers will
 need to be used by at least one side of the connection to
 differentiate between the (D)TLS sessions. This is the only way to
 ensured proper selection of a session ID for an incoming (D)TLS
 message.

 The authentication, integrity and privacy algorithms used by the
 (D)TLS Protocol [RFC4347] may vary over time as the science of
 cryptography continues to evolve and the development of (D)TLS
 continues over time. Implementers are encouraged to plan for changes
 in operator trust of particular algorithms and implementations should
 offer configuration settings for mapping algorithms to SNMPv3
 security levels.

3.1.3. (D)TLS Sessions

 (D)TLS sessions are opened by the TLS Transport Model during the
 elements of procedure for an outgoing SNMP message. Since the sender
 of a message initiates the creation of a (D)TLS session if needed,
 the (D)TLS session will already exist for an incoming message.

 Implementations MAY choose to instantiate (D)TLS sessions in
 anticipation of outgoing messages. This approach might be useful to
 ensure that a (D)TLS session to a given target can be established
 before it becomes important to send a message over the (D)TLS
 session. Of course, there is no guarantee that a pre-established
 session will still be valid when needed.

https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires December 26, 2009 [Page 14]

Internet-Draft SNMP over DTLS June 2009

 DTLS sessions, when used over UDP, are uniquely identified within the
 TLS Transport Model by the combination of transportDomain,
 transportAddress, securityName, and requestedSecurityLevel associated
 with each session. Each unique combination of these parameters MUST
 have a locally-chosen unique dtlsSessionID associated for active
 sessions. For further information see Section 4.4 and Section 5.
 TLS and DTLS over SCTP sessions, on the other hand, do not require a
 unique paring of attributes since their lower layer protocols (TCP
 and SCTP) already provide adequate session framing.

3.2. Security Parameter Passing

 For the (D)TLS server-side, (D)TLS-specific security parameters
 (i.e., cipher_suites, X.509 certificate fields, IP address and port)
 are translated by the TLS Transport Model into security parameters
 for the TLS Transport Model and security model (i.e., securityLevel,
 securityName, transportDomain, transportAddress). The transport-
 related and (D)TLS-security-related information, including the
 authenticated identity, are stored in a cache referenced by
 tmStateReference.

 For the (D)TLS client-side, the TLS Transport Model takes input
 provided by the dispatcher in the sendMessage() Abstract Service
 Interface (ASI) and input from the tmStateReference cache. The
 (D)TLS Transport Model converts that information into suitable
 security parameters for (D)TLS and establishes sessions as needed.

 The elements of procedure in Section 5 discuss these concepts in much
 greater detail.

3.3. Notifications and Proxy

 (D)TLS sessions may be initiated by (D)TLS clients on behalf of
 command generators or notification originators. Command generators
 are frequently operated by a human, but notification originators are
 usually unmanned automated processes. The targets to whom
 notifications should be sent is typically determined and configured
 by a network administrator.

 The SNMP-TARGET-MIB module [RFC3413] contains objects for defining
 management targets, including transportDomain, transportAddress,
 securityName, securityModel, and securityLevel parameters, for
 Notification Generator, Proxy Forwarder, and SNMP-controllable
 Command Generator applications. Transport domains and transport
 addresses are configured in the snmpTargetAddrTable, and the
 securityModel, securityName, and securityLevel parameters are
 configured in the snmpTargetParamsTable. This document defines a MIB
 module that extends the SNMP-TARGET-MIB's snmpTargetParamsTable to

https://datatracker.ietf.org/doc/html/rfc3413

Hardaker Expires December 26, 2009 [Page 15]

Internet-Draft SNMP over DTLS June 2009

 specify a (D)TLS client-side certificate to use for the connection.

 When configuring a (D)TLS target, the snmpTargetAddrTDomain and
 snmpTargetAddrTAddress parameters in snmpTargetAddrTable should be
 set to the snmpTLSDomain, snmpDTLSUDPDomain, or snmpDTLSSCTPDomain
 object and an appropriate snmpTLSAddress, snmpDTLSUDPAddress or
 snmpDTLSSCTPAddress value respectively. The snmpTargetParamsMPModel
 column of the snmpTargetParamsTable should be set to a value of 3 to
 indicate the SNMPv3 message processing model. The
 snmpTargetParamsSecurityName should be set to an appropriate
 securityName value and the tlstmParamsHashType and
 tlstmParamsHashValue parameters of the tlstmParamsTable should be set
 to values that refer to a locally held certificate to be used. Other
 parameters, for example cryptographic configuration such as cipher
 suites to use, must come from configuration mechanisms not defined in
 this document. The other needed configuration may be configured
 using SNMP or other implementation-dependent mechanisms (for example,
 via a CLI). This securityName defined in the
 snmpTargetParamsSecurityName column will be used by the access
 control model to authorize any notifications that need to be sent.

4. Elements of the Model

 This section contains definitions required to realize the (D)TLS
 Transport Model defined by this document. Readers familiar with
 X.509 certificates can skip this section until Section 4.1.2.

4.1. Certificates

 (D)TLS makes use of X.509 certificates for authentication of both
 sides of the transport. This section discusses the use of
 certificates in (D)TLS and the its effects on SNMP over (D)TLS.

4.1.1. The Certificate Infrastructure

 Users of a public key SHALL be confident that the associated private
 key is owned by the correct remote subject (person or system) with
 which an encryption or digital signature mechanism will be used.
 This confidence is obtained through the use of public key
 certificates, which are data structures that bind public key values
 to subjects. The binding is asserted by having a trusted CA
 digitally sign each certificate. The CA may base this assertion upon
 technical means (i.e., proof of possession through a challenge-
 response protocol), presentation of the private key, or on an
 assertion by the subject. A certificate has a limited valid lifetime
 which is indicated in its signed contents. Because a certificate's
 signature and timeliness can be independently checked by a

Hardaker Expires December 26, 2009 [Page 16]

Internet-Draft SNMP over DTLS June 2009

 certificate-using client, certificates can be distributed via
 untrusted communications and server systems, and can be cached in
 unsecured storage in certificate-using systems.

 ITU-T X.509 (formerly CCITT X.509) or ISO/IEC/ITU 9594-8, which was
 first published in 1988 as part of the X.500 Directory
 recommendations, defines a standard certificate format [X509] which
 is a certificate which binds a subject (principal) to a public key
 value. This was later further documented in [RFC5280].

 A X.509 certificate is a sequence of three required fields:

 tbsCertificate: The field contains the names of the subject and
 issuer, a public key associated with the subject, a validity
 period, and other associated information. This field may also
 contain extension components.

 signatureAlgorithm: The signatureAlgorithm field contains the
 identifier for the cryptographic algorithm used by the certificate
 authority (CA) to sign this certificate.

 signatureValue: The signatureValue field contains a digital
 signature computed upon the ASN.1 DER encoded tbsCertificate
 field. The ASN.1 DER encoded tbsCertificate is used as the input
 to the signature function. This signature value is then ASN.1 DER
 encoded as a BIT STRING and included in the Certificate's
 signature field. By generating this signature, a CA certifies the
 validity of the information in the tbsCertificate field. In
 particular, the CA certifies the binding between the public key
 material and the subject of the certificate.

 The basic X.509 authentication procedure is as follows: A system is
 initialized with a number of root certificates that contain the
 public keys of a number of trusted CAs. When a system receives a
 X.509 certificate, signed by one of those CAs, the certificate has to
 be verified. It first checks the signatureValue field by using the
 public key of the corresponding trusted CA. Then it compares the
 decrypted information with a digest of the tbsCertificate field. If
 they match, then the subject in the tbsCertificate field is
 authenticated.

4.1.2. Provisioning for the Certificate

 Authentication using (D)TLS will require that SNMP entities are
 provisioned with certificates, which are signed by trusted
 certificate authorities. Furthermore, SNMP entities will most
 commonly need to be provisioned with root certificates which
 represent the list of trusted certificate authorities that an SNMP

https://datatracker.ietf.org/doc/html/rfc5280

Hardaker Expires December 26, 2009 [Page 17]

Internet-Draft SNMP over DTLS June 2009

 entity can use for certificate verification. SNMP entities MAY also
 be provisioned with a X.509 certificate revocation mechanism which
 can be used to verify that a certificate has not been revoked.

 The authenticated tmSecurityName of the principal is looked up using
 the tlstmCertificateToSNTable. This table either:

 o Maps a certificate's fingerprint hash type and value to a directly
 specified tmSecurityName.

 o Identifies a certificate issuer's fingerprint hash type and value
 and allows child certificate's subjectAltName or CommonName to
 directly used as the tmSecurityNome.

 The certificate trust anchors, being either CA certificates or public
 keys for use by self-signed certificates, must be installed through
 an out of band trusted mechanism into the server and its authenticity
 MUST be verified before access is granted. Implementations SHOULD
 choose to discard any connections for which no potential
 tlstmCertificateToSNTable mapping exists before performing
 certificate verification to avoid expending computational resources
 associated with certificate verification.

 The typical enterprise configuration will map the "subjectAltName"
 component of the tbsCertificate to the TLSTM specific tmSecurityName.
 Thus, the authenticated identity can be obtained by the TLS Transport
 Model by extracting the subjectAltName from the peer's certificate
 and the receiving application will have an appropriate tmSecurityName
 for use by components like an access control model. This setup
 requires very little configuration: a single row in the
 tlstmCertificateToSNTable referencing a certificate authority.

 An example mapping setup can be found in Appendix A

 This tmSecurityName may be later translated from a TLSTM specific
 tmSecurityName to a SNMP engine securityName by the security model.
 A security model, like the TSM security model, may perform an
 identity mapping or a more complex mapping to derive the securityName
 from the tmSecurityName offered by the TLS Transport Model.

4.2. Messages

 As stated in Section 4.1.1 of [RFC4347], each DTLS record must fit
 within a single DTLS datagram. The TLSTM SHOULD prohibit SNMP
 messages from being sent that exceeds the maximum DTLS message size.
 The TLSTM implementation SHOULD return an error when the DTLS message
 size would be exceeded and the message won't be sent.

https://datatracker.ietf.org/doc/html/rfc4347#section-4.1.1

Hardaker Expires December 26, 2009 [Page 18]

Internet-Draft SNMP over DTLS June 2009

4.3. SNMP Services

 This section describes the services provided by the (D)TLS Transport
 Model with their inputs and outputs. The services are between the
 Transport Model and the dispatcher.

 The services are described as primitives of an abstract service
 interface (ASI) and the inputs and outputs are described as abstract
 data elements as they are passed in these abstract service
 primitives.

4.3.1. SNMP Services for an Outgoing Message

 The dispatcher passes the information to the TLS Transport Model
 using the ASI defined in the transport subsystem:

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference -- reference to transport state
)

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

 statusInformation: An indication of whether the passing of the
 message was successful. If not it is an indication of the
 problem.

 destTransportDomain: The transport domain for the associated
 destTransportAddress. The Transport Model uses this parameter to
 determine the transport type of the associated
 destTransportAddress. This parameter may also be used by the
 transport subsystem to route the message to the appropriate
 Transport Model. This document specifies three TLS and DTLS based
 Transport Domains for use: the snmpTLSDomain, the
 snmpDTLSUDPDomain and the snmpDTLSSCTPDomain.

 destTransportAddress: The transport address of the destination TLS
 Transport Model in a format specified by the SnmpTLSAddress, the
 SnmpDTLSUDPAddress or the SnmpDTLSSCTPAddress TEXTUAL-CONVENTIONs.

Hardaker Expires December 26, 2009 [Page 19]

Internet-Draft SNMP over DTLS June 2009

 outgoingMessage: The outgoing message to send to (D)TLS for
 encapsulation.

 outgoingMessageLength: The length of the outgoing message.

 tmStateReference: A handle/reference to tmSecurityData to be used
 when securing outgoing messages.

4.3.2. SNMP Services for an Incoming Message

 The TLS Transport Model processes the received message from the
 network using the (D)TLS service and then passes it to the dispatcher
 using the following ASI:

 statusInformation =
 receiveMessage(
 IN transportDomain -- origin transport domain
 IN transportAddress -- origin transport address
 IN incomingMessage -- the message received
 IN incomingMessageLength -- its length
 IN tmStateReference -- reference to transport state
)

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

 statusInformation: An indication of whether the passing of the
 message was successful. If not it is an indication of the
 problem.

 transportDomain: The transport domain for the associated
 transportAddress. This document specifies three TLS and DTLS
 based Transport Domains for use: the snmpTLSDomain, the
 snmpDTLSUDPDomain and the snmpDTLSSCTPDomain.

 transportAddress: The transport address of the source of the
 received message in a format specified by the SnmpTLSAddress, the
 SnmpDTLSUDPAddress or the SnmpDTLSSCTPAddress TEXTUAL-CONVENTION.

 incomingMessage: The whole SNMP message stripped of all (D)TLS
 protection data.

 incomingMessageLength: The length of the SNMP message after being
 processed by (D)TLS.

Hardaker Expires December 26, 2009 [Page 20]

Internet-Draft SNMP over DTLS June 2009

 tmStateReference: A handle/reference to tmSecurityData to be used by
 the security model.

4.4. (D)TLS Services

 This section describes the services provided by the (D)TLS Transport
 Model with their inputs and outputs. These services are between the
 TLS Transport Model and the (D)TLS transport layer. The following
 sections describe services for establishing and closing a session and
 for passing messages between the (D)TLS transport layer and the TLS
 Transport Model.

4.4.1. Services for Establishing a Session

 The TLS Transport Model provides the following ASI to describe the
 data passed between the Transport Model and the (D)TLS transport
 layer for session establishment.

 statusInformation = -- errorIndication or success
 openSession(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 OUT tlsSessionID -- Session identifier for (D)TLS
)

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

 statusInformation: An indication of whether the process was
 successful or not. If not, then the status information will
 include the error indication provided by (D)TLS.

 destTransportDomain: The transport domain for the associated
 destTransportAddress. The TLS Transport Model uses this parameter
 to determine the transport type of the associated
 destTransportAddress. This document specifies three TLS and DTLS
 based Transport Domains for use: the snmpTLSDomain, the
 snmpDTLSUDPDomain, and the snmpDTLSSCTPDomain.

 destTransportAddress: The transport address of the destination TLS
 Transport Model in a format specified by the SnmpTLSAddress, the
 SnmpDTLSUDPAddress or the SnmpDTLSSCTPAddress TEXTUAL-CONVENTION.

Hardaker Expires December 26, 2009 [Page 21]

Internet-Draft SNMP over DTLS June 2009

 securityName: The security name representing the principal on whose
 behalf the message will be sent.

 securityLevel: The level of security requested by the application.

 dtlsSessionID: An implementation-dependent session identifier to
 reference the specific (D)TLS session.

 DTLS and UDP do not provide a session de-multiplexing mechanism and
 it is possible that implementations will only be able to identify a
 unique session based on a unique combination of source address,
 destination address, source UDP port number and destination UDP port
 number. Because of this, when establishing a new sessions
 implementations MUST use a different UDP source port number for each
 connection to a remote destination IP-address/port-number combination
 to ensure the remote entity can properly disambiguate between
 multiple sessions from a host to the same port on a server. TLS and
 DTLS over SCTP provide session de-multiplexing so this restriction is
 not needed for TLS or DTLS over SCTP implementations.

 The procedural details for establishing a session are further
 described in Section 5.3.

 Upon completion of the process the TLS Transport Model returns status
 information and, if the process was successful the dtlsSessionID.
 Other implementation-dependent data from (D)TLS are also returned.
 The dtlsSessionID is stored in an implementation- dependent manner
 and tied to the tmSecurityData for future use of this session.

4.4.2. (D)TLS Services for an Incoming Message

 When the TLS Transport Model invokes the (D)TLS record layer to
 verify proper security for the incoming message, it must use the
 following ASI:

 statusInformation = -- errorIndication or success
 tlsRead(
 IN tlsSessionID -- Session identifier for (D)TLS
 IN wholeTlsMsg -- as received on the wire
 IN wholeTlsMsgLength -- length as received on the wire
 OUT incomingMessage -- the whole SNMP message from (D)TLS
 OUT incomingMessageLength -- the length of the SNMP message
)

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

Hardaker Expires December 26, 2009 [Page 22]

Internet-Draft SNMP over DTLS June 2009

 statusInformation: An indication of whether the process was
 successful or not. If not, then the status information will
 include the error indication provided by (D)TLS.

 tlsSessionID: An implementation-dependent session identifier to
 reference the specific (D)TLS session. How the (D)TLS session ID
 is obtained for each message is implementation-dependent. As an
 implementation hint, for dtls over udp the TLS Transport Model can
 examine incoming messages to determine the source IP address,
 source port number, destination IP address, and destination port
 number and use these values to look up the local tlsSessionID in
 the list of active sessions.

 wholeDtlsMsg: The whole message as received on the wire.

 wholeDtlsMsgLength: The length of the message as it was received on
 the wire.

 incomingMessage: The whole SNMP message stripped of all (D)TLS
 privacy and integrity data.

 incomingMessageLength: The length of the SNMP message stripped of
 all (D)TLS privacy and integrity data.

4.4.3. (D)TLS Services for an Outgoing Message

 When the TLS Transport Model invokes the (D)TLS record layer to
 encapsulate and transmit a SNMP message, it must use the following
 ASI.

 statusInformation = -- errorIndication or success
 tlsWrite(
 IN tlsSessionID -- Session identifier for (D)TLS
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
)

 The abstract data elements passed as parameters in the abstract
 service primitives are as follows:

 statusInformation: An indication of whether the process was
 successful or not. If not, then the status information will
 include the error indication provided by (D)TLS.

Hardaker Expires December 26, 2009 [Page 23]

Internet-Draft SNMP over DTLS June 2009

 tlsSessionID: An implementation-dependent session identifier to
 reference the specific (D)TLS session that the message should be
 sent using.

 outgoingMessage: The outgoing message to send to (D)TLS for
 encapsulation.

 outgoingMessageLength: The length of the outgoing message.

4.5. Cached Information and References

 When performing SNMP processing, there are two levels of state
 information that may need to be retained: the immediate state linking
 a request-response pair, and potentially longer-term state relating
 to transport and security. "Transport Subsystem for the Simple
 Network Management Protocol" [I-D.ietf-isms-tmsm] defines general
 requirements for caches and references.

4.5.1. TLS Transport Model Cached Information

 The TLSTM has no specific responsibilities regarding the cached
 information beyond those discussed in "Transport Subsystem for the
 Simple Network Management Protocol" [I-D.ietf-isms-tmsm]

5. Elements of Procedure

 Abstract service interfaces have been defined by RFC 3411 to describe
 the conceptual data flows between the various subsystems within an
 SNMP entity. The TLSTM uses some of these conceptual data flows when
 communicating between subsystems. These RFC 3411-defined data flows
 are referred to here as public interfaces.

 To simplify the elements of procedure, the release of state
 information is not always explicitly specified. As a general rule,
 if state information is available when a message gets discarded, the
 message-state information should also be released. If state
 information is available when a session is closed, the session state
 information should also be released. Sensitive information, like
 cryptographic keys, should be overwritten with zero value or random
 value data prior to being released.

 An error indication may return an OID and value for an incremented
 counter if the information is available at the point where the error
 is detected.

https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3411

Hardaker Expires December 26, 2009 [Page 24]

Internet-Draft SNMP over DTLS June 2009

5.1. Procedures for an Incoming Message

 This section describes the procedures followed by the (D)TLS
 Transport Model when it receives a (D)TLS protected packet. The
 steps are broken into two different sections. The first section
 describes the needed steps for de-multiplexing multiple DTLS sessions
 (which is needed for DTLS over UDP) and the second section describes
 the steps which are specific to transport processing once the (D)TLS
 processing has been completed.

5.1.1. DTLS Processing for Incoming Messages

 DTLS is significantly different in terms of session handling than
 SSH, TLS or other TCP-based session streams. The DTLS protocol,
 which is datagram-based, does not have a session identifier when run
 over UDP that allows implementations to determine through which
 session a packet is arriving. DTLS over SCTP and TLS over TCP
 streams have built in session demultiplexing and these steps are not
 necessary, although it is still critical that implementations be able
 to derive a tlsSessionID from any demultiplexing regardless of how it
 is done.

 For DTLS over UDP a process for de-multiplexing sessions when used
 over UDP must be incorporated into the procedures for an incoming
 message. The steps in this section describe how this can be
 accomplished, although any implementation dependent method for doing
 so should be suitable as long as the results are consistently
 deterministic. The important results from the steps in this section
 are the transportDomain, the transportAddress, the wholeMessage, the
 wholeMessageLength, and a unique implementation-dependent session
 identifier.

 This procedure assumes that upon session establishment, an entry in a
 local transport mapping table is created in the Transport Model's
 LCD. This transport mapping table entry should be able to map a
 unique combination of the remote address, remote port number, local
 address and local port number to a implementation-dependent
 tlsSessionID.

 1) The TLS Transport Model examines the raw UDP message, in an
 implementation-dependent manner. If the message is not a DTLS
 message then it should be discarded. If the message is not a
 (D)TLS Application Data message then the message should be
 processed by the underlying DTLS framework as it is (for example)
 a session initialization or session modification message and no
 further steps below should be taken by the DTLS Transport.

Hardaker Expires December 26, 2009 [Page 25]

Internet-Draft SNMP over DTLS June 2009

 2) The TLS Transport Model queries the LCD using the transport
 parameters to determine if a session already exists and its
 tlsSessionID. As noted previously, the source and destination
 addresses and ports of the message should uniquely assign the
 message to a specific session identifier. However, another
 implementation-dependent method may be used if so desired.

 3) If a matching entry in the LCD does not exist then the message is
 discarded. Increment the tlstmSessionNoAvailableSessions counter
 and stop processing the message.

 Note that an entry would already exist if the client and server's
 session establishment procedures had been successfully completed
 (as described both above and in Section 5.3) even if no message
 had yet been sent through the newly established session. An
 entry may not exist, however, if a "rogue" message was routed to
 the SNMP entity by mistake. An entry might also be missing
 because of a "broken" session (see operational considerations).

 4) Retrieve the tlsSessionID from the LCD.

 5) The tlsWholeMsg, and the tlsSessionID are passed to DTLS for
 integrity checking and decryption using the tlsRead() ASI.

 6) If the message fails integrity checks or other (D)TLS security
 processing then the tlstmDTLSProtectionErrors counter is
 incremented, the message is discarded and processing of the
 message is stopped.

 7) The output of the tlsRead results in an incomingMessage and an
 incomingMessageLength. These results and the tlsSessionID are
 used below in the Section 5.1.2 to complete the processing of the
 incoming message.

5.1.2. Transport Processing for Incoming Messages

 The procedures in this section describe how the TLS Transport Model
 should process messages that have already been properly extracted
 from the (D)TLS stream, such as described in Section 5.1.1.

 1) Create a tmStateReference cache for the subsequent reference and
 assign the following values within it:

 tmTransportDomain = snmpTLSDomain, snmpDTLSUDPDomain or
 snmpDTLSSCTPDomain as appropriate.

Hardaker Expires December 26, 2009 [Page 26]

Internet-Draft SNMP over DTLS June 2009

 tmTransportAddress = The address the message originated from,
 determined in an implementation dependent way.

 tmSecurityLevel = The derived tmSecurityLevel for the session,
 as discussed in Section 3.1.2 and Section 5.3.

 tmSecurityName = The derived tmSecurityName for the session as
 discussed in and Section 5.3. This value MUST be constant
 during the lifetime of the (D)TLS session.

 tmSessionID = The tlsSessionID, which MUST be A unique session
 identifier for this (D)TLS session. The contents and format
 of this identifier are implementation dependent as long as it
 is unique to the session. A session identifier MUST NOT be
 reused until all references to it are no longer in use. The
 tmSessionID is equal to the tlsSessionID discussed in

Section 5.1.1. tmSessionID refers to the session identifier
 when stored in the tmStateReference and tlsSessionID refers to
 the session identifier when stored in the LCD. They MUST
 always be equal when processing a given session's traffic.

 2) The wholeMessage and the wholeMessageLength are assigned values
 from the incomingMessage and incomingMessageLength values from
 the (D)TLS processing.

 3) The TLS Transport Model passes the transportDomain,
 transportAddress, wholeMessage, and wholeMessageLength to the
 dispatcher using the receiveMessage ASI:

 statusInformation =
 receiveMessage(
 IN transportDomain -- snmpTLSDomain, snmpDTLSUDPDomain,
 -- or snmpDTLSSCTPDomain
 IN transportAddress -- address for the received message
 IN wholeMessage -- the whole SNMP message from (D)TLS
 IN wholeMessageLength -- the length of the SNMP message
 IN tmStateReference -- (NEW) transport info
)

5.2. Procedures for an Outgoing Message

 The dispatcher sends a message to the TLS Transport Model using the
 following ASI:

Hardaker Expires December 26, 2009 [Page 27]

Internet-Draft SNMP over DTLS June 2009

 statusInformation =
 sendMessage(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN outgoingMessage -- the message to send
 IN outgoingMessageLength -- its length
 IN tmStateReference -- (NEW) transport info
)

 This section describes the procedure followed by the TLS Transport
 Model whenever it is requested through this ASI to send a message.

 1) Extract tmSessionID, tmTransportAddress, tmSecurityName,
 tmRequestedSecurityLevel. and tmSameSecurity from the
 tmStateReference. Note: The tmSessionID value may be undefined
 if session exists yet.

 2) If tmSameSecurity is true and either tmSessionID is undefined or
 refers to a session that is no longer open then increment the
 tlstmSessionNoAvailableSessions counter, discard the message and
 return the error indication in the statusInformation. Processing
 of this message stops.

 3) If tmSameSecurity is false and tmSessionID refers to a session
 that is no longer available then an implementation SHOULD open a
 new session using the openSession() ASI as described below in
 step 4b. An implementation MAY choose to return an error to the
 calling module.

 4) If tmSessionID is undefined, then use tmTransportAddress,
 tmSecurityName and tmRequestedSecurityLevel to see if there is a
 corresponding entry in the LCD suitable to send the message over.

 4a) If there is a corresponding LCD entry, then this session
 will be used to send the message.

 4b) If there is not a corresponding LCD entry, then open a
 session using the openSession() ASI (discussed further in

Section 4.4.1). Implementations MAY wish to offer message
 buffering to prevent redundant openSession() calls for the
 same cache entry. If an error is returned from
 OpenSession(), then discard the message, increment the
 tlstmSessionOpenErrors, and return an error indication to
 the calling module.

Hardaker Expires December 26, 2009 [Page 28]

Internet-Draft SNMP over DTLS June 2009

 5) Using either the session indicated by the tmSessionID if there
 was one or the session resulting in the previous step, pass the
 outgoingMessage to (D)TLS for encapsulation and transmission.

5.3. Establishing a Session

 The TLS Transport Model provides the following primitive to establish
 a new (D)TLS session (previously discussed in Section 4.4.1):

 statusInformation = -- errorIndication or success
 openSession(
 IN destTransportDomain -- transport domain to be used
 IN destTransportAddress -- transport address to be used
 IN securityName -- on behalf of this principal
 IN securityLevel -- Level of Security requested
 OUT tlsSessionID -- Session identifier for (D)TLS
)

 The following sections describe the procedures followed by a TLS
 Transport Model when establishing a session as a Command Generator, a
 Notification Originator or as part of a Proxy Forwarder.

 The following describes the procedure to follow to establish a
 session between SNMP engines to exchange SNMP messages. This process
 is followed by any SNMP engine establishing a session for subsequent
 use.

 This MAY be done automatically for SNMP messages which are not
 Response or Report messages.

 (D)TLS provides no explicit manner for transmitting an identity the
 client wishes to connect to during or prior to key exchange to
 facilitate certificate selection at the server (e.g. at a
 Notification Receiver). I.E., there is no available mechanism for
 sending notifications to a specific principal at a given TCP, UDP or
 SCTP port. Therefore, implementations MAY support responding with
 multiple identities using separate TCP, UDP or SCTP port numbers to
 indicate the desired principal or some other implementation-dependent
 solution.

 1) The client selects the appropriate certificate and cipher_suites
 for the key agreement based on the tmSecurityName and the
 tmRequestedSecurityLevel for the session. For sessions being
 established as a result of a SNMP-TARGET-MIB based operation, the
 certificate will potentially have been identified via the
 tlstmParamsTable mapping and the cipher_suites will have to be
 taken from system-wide or implementation-specific configuration.

Hardaker Expires December 26, 2009 [Page 29]

Internet-Draft SNMP over DTLS June 2009

 Otherwise, the certificate and appropriate cipher_suites will
 need to be passed to the openSession() ASI as supplemental
 information or configured through an implementation-dependent
 mechanism. It is also implementation-dependent and possibly
 policy-dependent how tmRequestedSecurityLevel will be used to
 influence the security capabilities provided by the (D)TLS
 session. However this is done, the security capabilities
 provided by (D)TLS MUST be at least as high as the level of
 security indicated by the tmRequestedSecurityLevel parameter.
 The actual security level of the session should be reported in
 the tmStateReference cache as tmSecurityLevel. For (D)TLS to
 provide strong authentication, each principal acting as a Command
 Generator SHOULD have its own certificate.

 2) Using the destTransportDomain and destTransportAddress values,
 the client will initiate the (D)TLS handshake protocol to
 establish session keys for message integrity and encryption.

 If the attempt to establish a session is unsuccessful, then
 tlstmSessionOpenErrors is incremented, an error indication is
 returned, and session establishment processing stops.

 3) Once the secure session is established and both sides have been
 authenticated, certificate validation and identity expectations
 are performed.

 a) The (D)TLS server side of the connection identifies the
 authenticated identity from the (D)TLS client's principal
 certificate using the tlstmCertificateToSNTable mapping table
 and records this in the tmStateReference cache as
 tmSecurityName. The details of the lookup process are fully
 described in the DESCRIPTION clause of the
 tlstmCertificateToSNTable MIB object. If this verification
 fails in any way (for example because of failures in
 cryptographic verification or the lack of an appropriate row
 in the tlstmCertificateToSNTable) then the session
 establishment MUST fail, the
 tlstmSessionInvalidClientCertificates object is incremented
 and processing is stopped.

 b) The (D)TLS client side of the connection SHOULD verify that
 authenticated identity of the (D)TLS server's certificate is
 the expected identity and MUST do so if the client
 application is a Notification Generator. If strong
 authentication is desired then the (D)TLS server certificate
 MUST always be verified and checked against the expected
 identity. Methods for doing this are described in
 [I-D.saintandre-tls-server-id-check]. (D)TLS provides

Hardaker Expires December 26, 2009 [Page 30]

Internet-Draft SNMP over DTLS June 2009

 assurance that the authenticated identity has been signed by
 a trusted configured certificate authority. If verification
 of the server's certificate fails in any way (for example
 because of failures in cryptographic verification or the
 presented identity was not the expected identity) then the
 session establishment MUST fail, the
 tlstmSessionInvalidServerCertificates object is incremented
 and processing is stopped.

 4) The (D)TLS-specific session identifier is passed to the TLS
 Transport Model and associated with the tmStateReference cache
 entry to indicate that the session has been established
 successfully and to point to a specific (D)TLS session for future
 use.

5.4. Closing a Session

 The TLS Transport Model provides the following primitive to close a
 session:

 statusInformation =
 closeSession(
 IN tmStateReference -- transport info
)

 The following describes the procedure to follow to close a session
 between a client and server. This process is followed by any SNMP
 engine closing the corresponding SNMP session.

 1) Look up the session in the cache and the LCD using the
 tmStateReference.

 2) If there is no session open associated with the tmStateReference,
 then closeSession processing is completed.

 3) Delete the entry from the cache and any other implementation-
 dependent information in the LCD.

 4) Have (D)TLS close the specified session. This SHOULD include
 sending a close_notify TLS Alert to inform the other side that
 session cleanup may be performed.

6. MIB Module Overview

 This MIB module provides management of the TLS Transport Model. It
 defines needed textual conventions, statistical counters and

Hardaker Expires December 26, 2009 [Page 31]

Internet-Draft SNMP over DTLS June 2009

 configuration infrastructure necessary for session establishment.
 Example usage of the configuration tables can be found in Appendix A.

6.1. Structure of the MIB Module

 Objects in this MIB module are arranged into subtrees. Each subtree
 is organized as a set of related objects. The overall structure and
 assignment of objects to their subtrees, and the intended purpose of
 each subtree, is shown below.

6.2. Textual Conventions

 Generic and Common Textual Conventions used in this module can be
 found summarized at http://www.ops.ietf.org/mib-common-tcs.html

 This module defines two new Textual Conventions: a new
 TransportDomain and TransportAddress format for describing (D)TLS
 connection addressing requirements.

6.3. Statistical Counters

 The TLSTM-MIB defines some statical counters that can provide network
 managers with feedback about (D)TLS session usage and potential
 errors that a MIB-instrumented device may be experiencing.

6.4. Configuration Tables

 The TLSTM-MIB defines configuration tables that a manager can use for
 help in configuring a MIB-instrumented device for sending and
 receiving SNMP messages over (D)TLS. In particular, there is a MIB
 table that extends the SNMP-TARGET-MIB for configuring certificates
 to be used and a MIB table for mapping incoming (D)TLS client
 certificates to securityNames.

6.5. Relationship to Other MIB Modules

 Some management objects defined in other MIB modules are applicable
 to an entity implementing the TLS Transport Model. In particular, it
 is assumed that an entity implementing the TLSTM-MIB will implement
 the SNMPv2-MIB [RFC3418], the SNMP-FRAMEWORK-MIB [RFC3411], the SNMP-
 TARGET-MIB [RFC3413], the SNMP-NOTIFICATION-MIB [RFC3413] and the
 SNMP-VIEW-BASED-ACM-MIB [RFC3415].

 This MIB module is for managing TLS Transport Model information.

http://www.ops.ietf.org/mib-common-tcs.html
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3415

Hardaker Expires December 26, 2009 [Page 32]

Internet-Draft SNMP over DTLS June 2009

6.5.1. MIB Modules Required for IMPORTS

 The following MIB module imports items from SNMPV2-SMI [RFC2578],
 SNMPV2-TC [RFC2579], SNMP-FRAMEWORK-MIB [RFC3411], SNMP-TARGET-MIB
 [RFC3413] and SNMP-CONF [RFC2580].

7. MIB Module Definition

TLSTM-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE,
 OBJECT-IDENTITY, snmpModules, snmpDomains,
 Counter32, Unsigned32
 FROM SNMPv2-SMI
 TEXTUAL-CONVENTION, TimeStamp, RowStatus, StorageType
 FROM SNMPv2-TC
 MODULE-COMPLIANCE, OBJECT-GROUP
 FROM SNMPv2-CONF
 SnmpAdminString
 FROM SNMP-FRAMEWORK-MIB
 snmpTargetParamsEntry
 FROM SNMP-TARGET-MIB
 ;

tlstmMIB MODULE-IDENTITY
 LAST-UPDATED "200807070000Z"
 ORGANIZATION " "
 CONTACT-INFO "WG-EMail:
 Subscribe:

 Chairs:
 Co-editors:
 "

 DESCRIPTION "The TLS Transport Model MIB

 Copyright (C) The IETF Trust (2008). This
 version of this MIB module is part of RFC XXXX;
 see the RFC itself for full legal notices."
-- NOTE to RFC editor: replace XXXX with actual RFC number
-- for this document and remove this note

 REVISION "200807070000Z"
 DESCRIPTION "The initial version, published in RFC XXXX."
-- NOTE to RFC editor: replace XXXX with actual RFC number

https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc2580

Hardaker Expires December 26, 2009 [Page 33]

Internet-Draft SNMP over DTLS June 2009

-- for this document and remove this note

 ::= { snmpModules xxxx }
-- RFC Ed.: replace xxxx with IANA-assigned number and
-- remove this note

-- **
-- subtrees of the SNMP-DTLS-TM-MIB
-- **

tlstmNotifications OBJECT IDENTIFIER ::= { tlstmMIB 0 }
tlstmObjects OBJECT IDENTIFIER ::= { tlstmMIB 1 }
tlstmConformance OBJECT IDENTIFIER ::= { tlstmMIB 2 }

-- **
-- Objects
-- **

snmpTLSDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over TLS transport domain. The corresponding
 transport address is of type SnmpTLSAddress.

 The securityName prefix to be associated with the
 snmpTLSDomain is 'tls'. This prefix may be used by
 security models or other components to identify what secure
 transport infrastructure authenticated a securityName."

 ::= { snmpDomains xx }

-- RFC Ed.: replace xx with IANA-assigned number and
-- remove this note

-- RFC Ed.: replace 'tls' with the actual IANA assigned prefix string
-- if 'tls' is not assigned to this document.

snmpDTLSUDPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over DTLS/UDP transport domain. The corresponding
 transport address is of type SnmpDTLSUDPAddress.

 When an SNMP entity uses the snmpDTLSUDPDomain transport
 model, it must be capable of accepting messages up to
 the maximum MTU size for an interface it supports, minus the
 needed IP, UDP, DTLS and other protocol overheads.

Hardaker Expires December 26, 2009 [Page 34]

Internet-Draft SNMP over DTLS June 2009

 The securityName prefix to be associated with the
 snmpDTLSUDPDomain is 'dudp'. This prefix may be used by
 security models or other components to identify what secure
 transport infrastructure authenticated a securityName."

 ::= { snmpDomains yy }

-- RFC Ed.: replace yy with IANA-assigned number and
-- remove this note

-- RFC Ed.: replace 'dudp' with the actual IANA assigned prefix string
-- if 'dtls' is not assigned to this document.

snmpDTLSSCTPDomain OBJECT-IDENTITY
 STATUS current
 DESCRIPTION
 "The SNMP over DTLS/SCTP transport domain. The corresponding
 transport address is of type SnmpDTLSSCTPAddress.

 When an SNMP entity uses the snmpDTLSSCTPDomain transport
 model, it must be capable of accepting messages up to
 the maximum MTU size for an interface it supports, minus the
 needed IP, SCTP, DTLS and other protocol overheads.

 The securityName prefix to be associated with the
 snmpDTLSSCTPDomain is 'dsct'. This prefix may be used by
 security models or other components to identify what secure
 transport infrastructure authenticated a securityName."

 ::= { snmpDomains zz }

-- RFC Ed.: replace zz with IANA-assigned number and
-- remove this note

-- RFC Ed.: replace 'dsct' with the actual IANA assigned prefix string
-- if 'dtls' is not assigned to this document.

SnmpTLSAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1a"
 STATUS current
 DESCRIPTION
 "Represents a TCP connection address for an IPv4 address, an
 IPv6 address or an ASCII encoded host name and port number.

 The hostname must be encoded in ASCII, as specified in RFC3490
 (Internationalizing Domain Names in Applications) followed by

https://datatracker.ietf.org/doc/html/rfc3490

Hardaker Expires December 26, 2009 [Page 35]

Internet-Draft SNMP over DTLS June 2009

 a colon ':' (ASCII character 0x3A) and a decimal port number
 in ASCII. The name SHOULD be fully qualified whenever
 possible.

 An IPv4 address must be a dotted decimal format followed by a
 colon ':' (ASCII character 0x3A) and a decimal port number in
 ASCII.

 An IPv6 address must be a colon separated format, surrounded
 by square brackets (ASCII characters 0x5B and 0x5D), followed
 by a colon ':' (ASCII character 0x3A) and a decimal port
 number in ASCII.

 Values of this textual convention may not be directly usable
 as transport-layer addressing information, and may require
 run-time resolution. As such, applications that write them
 must be prepared for handling errors if such values are not
 supported, or cannot be resolved (if resolution occurs at the
 time of the management operation).

 The DESCRIPTION clause of TransportAddress objects that may
 have snmpTLSAddress values must fully describe how (and
 when) such names are to be resolved to IP addresses and vice
 versa.

 This textual convention SHOULD NOT be used directly in object
 definitions since it restricts addresses to a specific
 format. However, if it is used, it MAY be used either on its
 own or in conjunction with TransportAddressType or
 TransportDomain as a pair.

 When this textual convention is used as a syntax of an index
 object, there may be issues with the limit of 128
 sub-identifiers specified in SMIv2, STD 58. It is RECOMMENDED
 that all MIB documents using this textual convention make
 explicit any limitations on index component lengths that
 management software must observe. This may be done either by
 including SIZE constraints on the index components or by
 specifying applicable constraints in the conceptual row
 DESCRIPTION clause or in the surrounding documentation."
 SYNTAX OCTET STRING (SIZE (1..255))

SnmpDTLSUDPAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1a"
 STATUS current
 DESCRIPTION
 "Represents a UDP connection address for an IPv4 address, an
 IPv6 address or an ASCII encoded host name and port number.

Hardaker Expires December 26, 2009 [Page 36]

Internet-Draft SNMP over DTLS June 2009

 The hostname must be encoded in ASCII, as specified in RFC3490
 (Internationalizing Domain Names in Applications) followed by
 a colon ':' (ASCII character 0x3A) and a decimal port number
 in ASCII. The name SHOULD be fully qualified whenever
 possible.

 An IPv4 address must be a dotted decimal format followed by a
 colon ':' (ASCII character 0x3A) and a decimal port number in
 ASCII.

 An IPv6 address must be a colon separated format, surrounded
 by square brackets (ASCII characters 0x5B and 0x5D), followed
 by a colon ':' (ASCII character 0x3A) and a decimal port
 number in ASCII.

 Values of this textual convention may not be directly usable
 as transport-layer addressing information, and may require
 run-time resolution. As such, applications that write them
 must be prepared for handling errors if such values are not
 supported, or cannot be resolved (if resolution occurs at the
 time of the management operation).

 The DESCRIPTION clause of TransportAddress objects that may
 have snmpDTLSUDPAddress values must fully describe how (and
 when) such names are to be resolved to IP addresses and vice
 versa.

 This textual convention SHOULD NOT be used directly in object
 definitions since it restricts addresses to a specific
 format. However, if it is used, it MAY be used either on its
 own or in conjunction with TransportAddressType or
 TransportDomain as a pair.

 When this textual convention is used as a syntax of an index
 object, there may be issues with the limit of 128
 sub-identifiers specified in SMIv2, STD 58. It is RECOMMENDED
 that all MIB documents using this textual convention make
 explicit any limitations on index component lengths that
 management software must observe. This may be done either by
 including SIZE constraints on the index components or by
 specifying applicable constraints in the conceptual row
 DESCRIPTION clause or in the surrounding documentation."
 SYNTAX OCTET STRING (SIZE (1..255))

SnmpDTLSSCTPAddress ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1a"
 STATUS current
 DESCRIPTION

https://datatracker.ietf.org/doc/html/rfc3490

Hardaker Expires December 26, 2009 [Page 37]

Internet-Draft SNMP over DTLS June 2009

 "Represents a SCTP connection address for an IPv4 address, an
 IPv6 address or an ASCII encoded host name and port number.

 The hostname must be encoded in ASCII, as specified in RFC3490
 (Internationalizing Domain Names in Applications) followed by
 a colon ':' (ASCII character 0x3A) and a decimal port number
 in ASCII. The name SHOULD be fully qualified whenever
 possible.

 An IPv4 address must be a dotted decimal format followed by a
 colon ':' (ASCII character 0x3A) and a decimal port number in
 ASCII.

 An IPv6 address must be a colon separated format, surrounded
 by square brackets (ASCII characters 0x5B and 0x5D), followed
 by a colon ':' (ASCII character 0x3A) and a decimal port
 number in ASCII.

 Values of this textual convention may not be directly usable
 as transport-layer addressing information, and may require
 run-time resolution. As such, applications that write them
 must be prepared for handling errors if such values are not
 supported, or cannot be resolved (if resolution occurs at the
 time of the management operation).

 The DESCRIPTION clause of TransportAddress objects that may
 have snmpDTLSSCTPAddress values must fully describe how (and
 when) such names are to be resolved to IP addresses and vice
 versa.

 This textual convention SHOULD NOT be used directly in object
 definitions since it restricts addresses to a specific
 format. However, if it is used, it MAY be used either on its
 own or in conjunction with TransportAddressType or
 TransportDomain as a pair.

 When this textual convention is used as a syntax of an index
 object, there may be issues with the limit of 128
 sub-identifiers specified in SMIv2, STD 58. It is RECOMMENDED
 that all MIB documents using this textual convention make
 explicit any limitations on index component lengths that
 management software must observe. This may be done either by
 including SIZE constraints on the index components or by
 specifying applicable constraints in the conceptual row
 DESCRIPTION clause or in the surrounding documentation."
 SYNTAX OCTET STRING (SIZE (1..255))

X509IdentifierHashType ::= TEXTUAL-CONVENTION

https://datatracker.ietf.org/doc/html/rfc3490

Hardaker Expires December 26, 2009 [Page 38]

Internet-Draft SNMP over DTLS June 2009

 STATUS current
 DESCRIPTION
 "Identifies a hashing algorithm type that will be used for
 identifying an X.509 certificate.

 The md5(1) value SHOULD NOT be used."
 SYNTAX INTEGER { md5(1), sha1(2), sha256(3) }

X509IdentifierHash ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "A hash value that uniquely identifies a certificate within a
 systems local certificate store. The length of the value
 stored in an object of type X509IdentifierHash is dependent on
 the hashing algorithm that produced the hash.

 MIB structures making use of this textual convention should
 have an accompanying object of type X509IdentifierHashType.
 "
 SYNTAX OCTET STRING

-- The tlstmSession Group

tlstmSession OBJECT IDENTIFIER ::= { tlstmObjects 1 }

tlstmSessionOpens OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an openSession() request has been
 executed as an (D)TLS client, whether it succeeded or failed."
 ::= { tlstmSession 1 }

tlstmSessionCloses OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times a closeSession() request has been
 executed as an (D)TLS client, whether it succeeded or failed."
 ::= { tlstmSession 2 }

tlstmSessionOpenErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION

Hardaker Expires December 26, 2009 [Page 39]

Internet-Draft SNMP over DTLS June 2009

 "The number of times an openSession() request failed to open a
 session as a (D)TLS client, for any reason."
 ::= { tlstmSession 3 }

tlstmSessionNoAvailableSessions OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an outgoing message was dropped because
 the session associated with the passed tmStateReference was no
 longer (or was never) available."
 ::= { tlstmSession 4 }

tlstmSessionInvalidClientCertificates OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an incoming session was not established
 on an (D)TLS server because the presented client certificate was
 invalid. Reasons for invalidation includes, but is not
 limited to, cryptographic validation failures and lack of a
 suitable mapping row in the tlstmCertificateToSNTable."
 ::= { tlstmSession 5 }

tlstmSessionInvalidServerCertificates OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times an outgoing session was not established
 on an (D)TLS client because the presented server certificate was
 invalid. Reasons for invalidation includes, but is not
 limited to, cryptographic validation failures and an unexpected
 presented certificate identity."
 ::= { tlstmSession 6 }

tlstmTLSProtectionErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The number of times (D)TLS processing resulted in a message
 being discarded because it failed its integrity test,
 decryption processing or other (D)TLS processing."
 ::= { tlstmSession 7 }

Hardaker Expires December 26, 2009 [Page 40]

Internet-Draft SNMP over DTLS June 2009

-- Configuration Objects

tlstmConfig OBJECT IDENTIFIER ::= { tlstmObjects 2 }

-- Certificate mapping

tlstmCertificateMapping OBJECT IDENTIFIER ::= { tlstmConfig 1 }

tlstmCertificateToSNCount OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A count of the number of entries in the
 tlstmCertificateToSNTable"
 ::= { tlstmCertificateMapping 1 }

tlstmCertificateToSNTableLastChanged OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime.0 when the tlstmCertificateToSNTable
 was last modified through any means, or 0 if it has not been
 modified since the command responder was started."
 ::= { tlstmCertificateMapping 2 }

tlstmCertificateToSNTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TlstmCertificateToSNEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table listing the X.509 certificates known to the entity
 and the associated method for determining the SNMPv3 security
 name from a certificate.

 On an incoming (D)TLS/SNMP connection the client's presented
 certificate should be examined and validated based on an
 established trusted CA certificate or self-signed public
 certificate. This table does not provide a mechanism for
 uploading the certificates as that is expected to occur
 through an out-of-band transfer.

 Once the authenticity of the certificate has been verified,
 this table can be consulted to determine the appropriate
 securityName to identify the remote connection. This is done
 by comparing the issuer's fingerprint hash type and value and
 the certificate's fingerprint hash type and value against the

Hardaker Expires December 26, 2009 [Page 41]

Internet-Draft SNMP over DTLS June 2009

 tlstmCertHashType and tlstmCertHashValue values in each
 entry of this table. If a matching entry is found then the
 securityName is selected based on the tlstmCertMapType,
 tlstmCertHashType, tlstmCertHashValue and
 tlstmCertSecurityName fields and the resulting securityName
 is used to identify the other side of the (D)TLS connection.

 This table should be treated as an ordered list of mapping
 rules to check. The first mapping rule appropriately matching
 a certificate in the local certificate store with a
 corresponding hash type (tlstmCertHashType) and hash value
 (tlstmCertHashValue) will be used to perform the mapping from
 X.509 certificate values to a securityName. If, after a
 matching row is found but the mapping can not succeed for some
 other reason then further attempts to perform the mapping MUST
 NOT be taken. For example, if the entry being checked
 contains a tlstmCertMapType of bySubjectAltName(2) and an
 incoming connection uses a certificate with an issuer
 certificate matching the tlstmCertHashType and
 tlstmCertHashValue fields but the connecting certificate does
 not contain a subjectAltName field then the lookup operation
 must be treated as a failure. No further rows are examined for
 other potential mappings.

 Missing values of tlstmCertID are acceptable and
 implementations should treat missing entries as a failed match
 and should continue to the next highest numbered row. E.G.,
 the table may legally contain only two rows with tlstmCertID
 values of 10 and 20.

 Users are encouraged to make use of certificates with
 subjectAltName fields that can be used as securityNames so
 that a single root CA certificate can allow all child
 certificate's subjectAltName to map directly to a securityName
 via a 1:1 transformation. However, this table is flexible
 enough to allow for situations where existing deployed
 certificate infrastructures do not provide adequate
 subjectAltName values for use as SNMPv3 securityNames.
 Certificates may also be mapped to securityNames using the
 CommonName portion of the Subject field which is also a
 scalable method of mapping certificate components to
 securityNames. Finally, direct mapping from each individual
 certificate fingerprint to a securityName is possible but
 requires one entry in the table per securityName."
 ::= { tlstmCertificateMapping 3 }

tlstmCertificateToSNEntry OBJECT-TYPE
 SYNTAX TlstmCertificateToSNEntry

Hardaker Expires December 26, 2009 [Page 42]

Internet-Draft SNMP over DTLS June 2009

 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A row in the tlstmCertificateToSNTable that specifies a
 mapping for an incoming (D)TLS certificate to a securityName
 to use for the connection."
 INDEX { tlstmCertID }
 ::= { tlstmCertificateToSNTable 1 }

TlstmCertificateToSNEntry ::= SEQUENCE {
 tlstmCertID Unsigned32,
 tlstmCertHashType X509IdentifierHashType,
 tlstmCertHashValue X509IdentifierHash,
 tlstmCertMapType INTEGER,
 tlstmCertSecurityName SnmpAdminString,
 tlstmCertStorageType StorageType,
 tlstmCertRowStatus RowStatus
}

tlstmCertID OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A unique arbitrary number index for a given certificate
 entry."
 ::= { tlstmCertificateToSNEntry 1 }

tlstmCertHashType OBJECT-TYPE
 SYNTAX X509IdentifierHashType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The hash algorithm to use when applying a hash to a X.509
 certificate for purposes of referring to it from the
 tlstmCertHashValue column.

 The md5(1) value SHOULD NOT be used."
 DEFVAL { sha256 }
 ::= { tlstmCertificateToSNEntry 2 }

tlstmCertHashValue OBJECT-TYPE
 SYNTAX X509IdentifierHash
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A cryptographic hash of a X.509 certificate. The use of this

Hardaker Expires December 26, 2009 [Page 43]

Internet-Draft SNMP over DTLS June 2009

 hash is dictated by the tlstmCertMapType column.
 "
 ::= { tlstmCertificateToSNEntry 3 }

tlstmCertMapType OBJECT-TYPE
 SYNTAX INTEGER { specified(1), bySubjectAltName(2), byCN(3) }
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The mapping type used to obtain the securityName from the
 certificate. The possible values of use and their usage
 methods are defined as follows:

 specified(1): The securityName that should be used locally to
 identify the remote entity is directly specified
 in the tlstmCertSecurityName column from this
 table. The tlstmCertHashValue MUST refer to a
 X.509 client certificate that will be mapped
 directly to the securityName specified in the
 tlstmCertSecurityName column.

 bySubjectAltName(2):
 The securityName that should be used locally to
 identify the remote entity should be taken from
 the subjectAltName portion of the X.509
 certificate. The tlstmCertHashValue MUST refer
 to a trust anchor certificate that is
 responsible for issuing certificates with
 carefully controlled subjectAltName fields.

 byCN(3): The securityName that should be used locally to
 identify the remote entity should be taken from
 the CommonName portion of the Subject field from
 the X.509 certificate. The tlstmCertHashValue
 MUST refer to a trust anchor certificate that is
 responsible for issuing certificates with
 carefully controlled CommonName fields."
 DEFVAL { specified }
 ::= { tlstmCertificateToSNEntry 4 }

tlstmCertSecurityName OBJECT-TYPE
 SYNTAX SnmpAdminString (SIZE(0..32))
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The securityName that the session should use if the
 tlstmCertMapType is set to specified(1), otherwise the value
 in this column should be ignored. If tlstmCertMapType is set

Hardaker Expires December 26, 2009 [Page 44]

Internet-Draft SNMP over DTLS June 2009

 to specifed(1) and this column contains a zero-length string
 (which is not a legal securityName value) this row is
 effectively disabled and the match will not be considered
 successful."
 DEFVAL { "" }
 ::= { tlstmCertificateToSNEntry 5 }

tlstmCertStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row. Conceptual rows
 having the value 'permanent' need not allow write-access to
 any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { tlstmCertificateToSNEntry 6 }

tlstmCertRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row. This object may be used
 to create or remove rows from this table.

 The value of this object has no effect on whether
 other objects in this conceptual row can be modified."
 ::= { tlstmCertificateToSNEntry 7 }

-- Maps securityNames to certificates for use by the SNMP-TARGET-MIB

tlstmParamsCount OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "A count of the number of entries in the
 tlstmParamsTable"
 ::= { tlstmCertificateMapping 4 }

tlstmParamsTableLastChanged OBJECT-TYPE
 SYNTAX TimeStamp
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 "The value of sysUpTime.0 when the tlstmParamsTable

Hardaker Expires December 26, 2009 [Page 45]

Internet-Draft SNMP over DTLS June 2009

 was last modified through any means, or 0 if it has not been
 modified since the command responder was started."
 ::= { tlstmCertificateMapping 5 }

tlstmParamsTable OBJECT-TYPE
 SYNTAX SEQUENCE OF TlstmParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "This table augments the SNMP-TARGET-MIB's
 snmpTargetParamsTable with an additional (D)TLS client-side
 certificate certificate identifier to use when establishing
 new (D)TLS connections."
 ::= { tlstmCertificateMapping 6 }

tlstmParamsEntry OBJECT-TYPE
 SYNTAX TlstmParamsEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A conceptual row containing a locally held certificate's hash
 type and hash value for a given snmpTargetParamsEntry. The
 values in this row should be ignored if the connection
 that needs to be established, as indicated by the
 SNMP-TARGET-MIB infrastructure, is not a (D)TLS based
 connection."
 AUGMENTS { snmpTargetParamsEntry }
 ::= { tlstmParamsTable 1 }

TlstmParamsEntry ::= SEQUENCE {
 tlstmParamsHashType X509IdentifierHashType,
 tlstmParamsHashValue X509IdentifierHash,
 tlstmParamsStorageType StorageType,
 tlstmParamsRowStatus RowStatus
}

tlstmParamsHashType OBJECT-TYPE
 SYNTAX X509IdentifierHashType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The hash algorithm type for the hash stored in the
 tlstmParamsHash column to identify a locally-held X.509
 certificate that should be used when initiating a (D)TLS
 connection as a (D)TLS client."
 DEFVAL { sha256 }
 ::= { tlstmParamsEntry 1 }

Hardaker Expires December 26, 2009 [Page 46]

Internet-Draft SNMP over DTLS June 2009

tlstmParamsHashValue OBJECT-TYPE
 SYNTAX X509IdentifierHash
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "A cryptographic hash of a X.509 certificate. This object
 should store the hash of a locally held X.509 certificate that
 should be used when initiating a (D)TLS connection as a (D)TLS
 client."
 ::= { tlstmParamsEntry 2 }

tlstmParamsStorageType OBJECT-TYPE
 SYNTAX StorageType
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The storage type for this conceptual row. Conceptual rows
 having the value 'permanent' need not allow write-access to
 any columnar objects in the row."
 DEFVAL { nonVolatile }
 ::= { tlstmParamsEntry 3 }

tlstmParamsRowStatus OBJECT-TYPE
 SYNTAX RowStatus
 MAX-ACCESS read-create
 STATUS current
 DESCRIPTION
 "The status of this conceptual row. This object may be used
 to create or remove rows from this table.

 The value of this object has no effect on whether
 other objects in this conceptual row can be modified."
 ::= { tlstmParamsEntry 4 }

-- **
-- tlstmMIB - Conformance Information
-- **

tlstmCompliances OBJECT IDENTIFIER ::= { tlstmConformance 1 }

tlstmGroups OBJECT IDENTIFIER ::= { tlstmConformance 2 }

-- **
-- Compliance statements
-- **

Hardaker Expires December 26, 2009 [Page 47]

Internet-Draft SNMP over DTLS June 2009

tlstmCompliance MODULE-COMPLIANCE
 STATUS current
 DESCRIPTION
 "The compliance statement for SNMP engines that support the
 TLSTM-MIB"
 MODULE
 MANDATORY-GROUPS { tlstmStatsGroup,
 tlstmIncomingGroup, tlstmOutgoingGroup }
 ::= { tlstmCompliances 1 }

-- **
-- Units of conformance
-- **
tlstmStatsGroup OBJECT-GROUP
 OBJECTS {
 tlstmSessionOpens,
 tlstmSessionCloses,
 tlstmSessionOpenErrors,
 tlstmSessionNoAvailableSessions,
 tlstmSessionInvalidClientCertificates,
 tlstmSessionInvalidServerCertificates,
 tlstmTLSProtectionErrors
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for maintaining
 statistical information of an SNMP engine which
 implements the SNMP TLS Transport Model."
 ::= { tlstmGroups 1 }

tlstmIncomingGroup OBJECT-GROUP
 OBJECTS {
 tlstmCertificateToSNCount,
 tlstmCertificateToSNTableLastChanged,
 tlstmCertHashType,
 tlstmCertHashValue,
 tlstmCertMapType,
 tlstmCertSecurityName,
 tlstmCertStorageType,
 tlstmCertRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for maintaining
 incoming connection certificate mappings to
 securityNames of an SNMP engine which implements the
 SNMP TLS Transport Model."
 ::= { tlstmGroups 2 }

Hardaker Expires December 26, 2009 [Page 48]

Internet-Draft SNMP over DTLS June 2009

tlstmOutgoingGroup OBJECT-GROUP
 OBJECTS {
 tlstmParamsCount,
 tlstmParamsTableLastChanged,
 tlstmParamsHashType,
 tlstmParamsHashValue,
 tlstmParamsStorageType,
 tlstmParamsRowStatus
 }
 STATUS current
 DESCRIPTION
 "A collection of objects for maintaining
 outgoing connection certificates to use when opening
 connections as a result of SNMP-TARGET-MIB settings."
 ::= { tlstmGroups 3 }

END

8. Operational Considerations

 This section discusses various operational aspects of the solution

8.1. Sessions

 A session is discussed throughout this document as meaning a security
 association between the (D)TLS client and the (D)TLS server. State
 information for the sessions are maintained in each TLSTM and this
 information is created and destroyed as sessions are opened and
 closed. Because of the connectionless nature of UDP, a "broken"
 session, one side up one side down, could result if one side of a
 session is brought down abruptly (i.e., reboot, power outage, etc.).
 Whenever possible, implementations SHOULD provide graceful session
 termination through the use of disconnect messages. Implementations
 SHOULD also have a system in place for dealing with "broken"
 sessions. Implementations SHOULD support the session resumption
 feature of TLS.

 To simplify session management it is RECOMMENDED that implementations
 utilize two separate ports, one for Notification sessions and one for
 Command sessions. If this implementation recommendation is followed,
 (D)TLS clients will always send REQUEST messages and (D)TLS servers
 will always send RESPONSE messages. With this assertion,
 implementations may be able to simplify "broken" session handling,
 session resumption, and other aspects of session management such as
 guaranteeing that Request- Response pairs use the same session.

 Implementations SHOULD limit the lifetime of established sessions

Hardaker Expires December 26, 2009 [Page 49]

Internet-Draft SNMP over DTLS June 2009

 depending on the algorithms used for generation of the master session
 secret, the privacy and integrity algorithms used to protect
 messages, the environment of the session, the amount of data
 transferred, and the sensitivity of the data.

8.2. Notification Receiver Credential Selection

 When an SNMP engine needs to establish an outgoing session for
 notifications, the snmpTargetParamsTable includes an entry for the
 snmpTargetParamsSecurityName of the target. However, the receiving
 SNMP engine (Server) does not know which (D)TLS certificate to offer
 to the Client so that the tmSecurityName identity-authentication will
 be successful. The best solution would be to maintain a one-to-one
 mapping between certificates and incoming ports for notification
 receivers, although other implementation dependent mechanisms may be
 used instead. This can be handled at the Notification Originator by
 configuring the snmpTargetAddrTable (snmpTargetAddrTDomain and
 snmpTargetAddrTAddress) and then requiring the receiving SNMP engine
 to monitor multiple incoming static ports based on which principals
 are capable of receiving notifications. Implementations MAY also
 choose to designate a single Notification Receiver Principal to
 receive all incoming TRAPS and INFORMS.

8.3. contextEngineID Discovery

 Because most Command Responders have contextEngineIDs that are
 identical to the USM securityEngineID, the USM provides Command
 Generators with the ability to discover a default contextEngineID to
 use. Because the TLS Transport Model does not make use of a
 discoverable securityEngineID like the USM does, it may be difficult
 for Command Generators to discover a suitable default
 contextEngineID. Implementations should consider offering another
 engineID discovery mechanism to continue providing Command Generators
 with a contextEngineID discovery mechanism. A recommended discovery
 solution is documented in [RFC5343].

9. Security Considerations

 This document describes a transport model that permits SNMP to
 utilize (D)TLS security services. The security threats and how the
 (D)TLS transport model mitigates these threats are covered in detail
 throughout this document. Security considerations for DTLS are
 covered in [RFC4347] and security considerations for TLS are
 described in Section 11 and Appendices D, E, and F of TLS 1.2
 [RFC5246]. DTLS adds to the security considerations of TLS only
 because it is more vulnerable to denial of service attacks. A random
 cookie exchange was added to the handshake to prevent anonymous

https://datatracker.ietf.org/doc/html/rfc5343
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246

Hardaker Expires December 26, 2009 [Page 50]

Internet-Draft SNMP over DTLS June 2009

 denial of service attacks. RFC 4347 recommends that the cookie
 exchange is utilized for all handshakes and therefore it is
 RECOMMENDED that implementers also support this cookie exchange.

9.1. Certificates, Authentication, and Authorization

 Implementations are responsible for providing a security certificate
 configuration installation . Implementations SHOULD support
 certificate revocation lists and expiration of certificates or other
 access control mechanisms.

 (D)TLS provides for both authentication of the identity of the (D)TLS
 server and authentication of the identity of the (D)TLS client.
 Access to MIB objects for the authenticated principal MUST be
 enforced by an access control subsystem (e.g. the VACM).

 Authentication of the Command Generator principal's identity is
 important for use with the SNMP access control subsystem to ensure
 that only authorized principals have access to potentially sensitive
 data. The authenticated identity of the Command Generator
 principal's certificate is mapped to an SNMP model-independent
 securityName for use with SNMP access control.

 Furthermore, the (D)TLS handshake only provides assurance that the
 certificate of the authenticated identity has been signed by an
 configured accepted Certificate Authority. (D)TLS has no way to
 further authorize or reject access based on the authenticated
 identity. An Access Control Model (such as the VACM) provides access
 control and authorization of a Command Generator's requests to a
 Command Responder and a Notification Responder's authorization to
 receive Notifications from a Notification Originator. However to
 avoid man-in-the-middle attacks both ends of the (D)TLS based
 connection MUST check the certificate presented by the other side
 against what was expected. For example, Command Generators must
 check that the Command Responder presented and authenticated itself
 with a X.509 certificate that was expected. Not doing so would allow
 an impostor, at a minimum, to present false data, receive sensitive
 information and/or provide a false-positive belief that configuration
 was actually received and acted upon. Authenticating and verifying
 the identity of the (D)TLS server and the (D)TLS client for all
 operations ensures the authenticity of the SNMP engine that provides
 MIB data.

 The instructions found in the DESCRIPTION clause of the
 tlstmCertificateToSNTable object must be followed exactly.
 Specifically, it is important that if a row matching a certificate or
 a certificate's issuer is found but the translation to a securityName
 using the row fails that the lookup process stops and no further rows

https://datatracker.ietf.org/doc/html/rfc4347

Hardaker Expires December 26, 2009 [Page 51]

Internet-Draft SNMP over DTLS June 2009

 are consulted. It is also important that the rows of the table be
 search in order starting with the row containing the lowest numbered
 tlstmCertID value.

9.2. Use with SNMPv1/SNMPv2c Messages

 The SNMPv1 and SNMPv2c message processing described in RFC3484 (BCP
74) [RFC3584] always selects the SNMPv1(1) Security Model for an

 SNMPv1 message, or the SNMPv2c(2) Security Model for an SNMPv2c
 message. When running SNMPv1/SNMPv2c over a secure transport like
 the TLS Transport Model, the securityName and securityLevel used for
 access control decisions are then derived from the community string,
 not the authenticated identity and securityLevel provided by the TLS
 Transport Model.

9.3. MIB Module Security

 The MIB objects in this document must be protected with an adequate
 level of at least integrity protection, especially those objects
 which are writable. Since knowledge of authorization rules and
 certificate usage mechanisms may be considered sensitive, protection
 from disclosure of the SNMP traffic via encryption is also highly
 recommended.

 SNMP versions prior to SNMPv3 did not include adequate security.
 Even if the network itself is secure (for example by using IPSec or
 (D)TLS) there is no control as to who on the secure network is
 allowed to access and GET/SET (read/change/create/delete) the objects
 in this MIB module.

 It is RECOMMENDED that implementers consider the security features as
 provided by the SNMPv3 framework (see section 8 of [RFC3410]),
 including full support for the USM (see [RFC3414]) and the TLS
 Transport Model cryptographic mechanisms (for authentication and
 privacy).

10. IANA Considerations

 IANA is requested to assign:

 1. a TCP port number in the range 1..1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for SNMP command messages over a TLS
 Transport Model as defined in this document,

 2. a TCP port number in the range 1..1023 in the
http://www.iana.org/assignments/port-numbers registry which will

https://datatracker.ietf.org/doc/html/rfc3484
https://datatracker.ietf.org/doc/html/bcp74
https://datatracker.ietf.org/doc/html/bcp74
https://datatracker.ietf.org/doc/html/rfc3584
https://datatracker.ietf.org/doc/html/rfc3410#section-8
https://datatracker.ietf.org/doc/html/rfc3414
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Hardaker Expires December 26, 2009 [Page 52]

Internet-Draft SNMP over DTLS June 2009

 be the default port for SNMP notification messages over a TLS
 Transport Model as defined in this document,

 3. a UDP port number in the range 1..1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for SNMP command messages over a DTLS/UDP
 connection as defined in this document,

 4. a UDP port number in the range 1..1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for SNMP notification messages over a DTLS/
 UDP connection as defined in this document,

 5. a SCTP port number in the range 1..1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for SNMP command messages over a DTLS/SCTP
 connection as defined in this document,

 6. a SCTP port number in the range 1..1023 in the
http://www.iana.org/assignments/port-numbers registry which will

 be the default port for SNMP notification messages over a DTLS/
 SCTP connection as defined in this document,

 7. an SMI number under snmpDomains for the snmpTLSDomain object
 identifier,

 8. an SMI number under snmpDomains for the snmpDTLSUDPDomain object
 identifier,

 9. an SMI number under snmpDomains for the snmpDTLSSCTPDomain
 object identifier,

 10. a SMI number under snmpModules, for the MIB module in this
 document,

 11. "tls" as the corresponding prefix for the snmpTLSDomain in the
 SNMP Transport Model registry,

 12. "dudp" as the corresponding prefix for the snmpDTLSUDPDomain in
 the SNMP Transport Model registry,

 13. "dsct" as the corresponding prefix for the snmpDTLSSCTPDomain in
 the SNMP Transport Model registry;

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Hardaker Expires December 26, 2009 [Page 53]

Internet-Draft SNMP over DTLS June 2009

11. Acknowledgements

 This document closely follows and copies the Secure Shell Transport
 Model for SNMP defined by David Harrington and Joseph Salowey in
 [I-D.ietf-isms-secshell].

 This document was reviewed by the following people who helped provide
 useful comments: David Harrington, Alan Luchuk, Ray Purvis.

 This work was supported in part by the United States Department of
 Defense. Large portions of this document are based on work by
 General Dynamics C4 Systems and the following individuals: Brian
 Baril, Kim Bryant, Dana Deluca, Dan Hanson, Tim Huemiller, John
 Holzhauer, Colin Hoogeboom, Dave Kornbau, Chris Knaian, Dan Knaul,
 Charles Limoges, Steve Moccaldi, Gerardo Orlando, and Brandon Yip.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2578] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Structure of Management Information
 Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

 [RFC2579] McCloghrie, K., Ed., Perkins, D., Ed., and J.
 Schoenwaelder, Ed., "Textual Conventions for SMIv2",
 STD 58, RFC 2579, April 1999.

 [RFC2580] McCloghrie, K., Perkins, D., and J. Schoenwaelder,
 "Conformance Statements for SMIv2", STD 58, RFC 2580,
 April 1999.

 [RFC3411] Harrington, D., Presuhn, R., and B. Wijnen, "An
 Architecture for Describing Simple Network Management
 Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,
 December 2002.

 [RFC3413] Levi, D., Meyer, P., and B. Stewart, "Simple Network
 Management Protocol (SNMP) Applications", STD 62,

RFC 3413, December 2002.

 [RFC3414] Blumenthal, U. and B. Wijnen, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2578
https://datatracker.ietf.org/doc/html/rfc2579
https://datatracker.ietf.org/doc/html/rfc2580
https://datatracker.ietf.org/doc/html/rfc3411
https://datatracker.ietf.org/doc/html/rfc3413
https://datatracker.ietf.org/doc/html/rfc3414

Hardaker Expires December 26, 2009 [Page 54]

Internet-Draft SNMP over DTLS June 2009

 [RFC3415] Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", STD 62, RFC 3415,
 December 2002.

 [RFC3418] Presuhn, R., "Management Information Base (MIB) for the
 Simple Network Management Protocol (SNMP)", STD 62,

RFC 3418, December 2002.

 [RFC3584] Frye, R., Levi, D., Routhier, S., and B. Wijnen,
 "Coexistence between Version 1, Version 2, and Version 3
 of the Internet-standard Network Management Framework",

BCP 74, RFC 3584, August 2003.

 [RFC4347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security", RFC 4347, April 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [I-D.ietf-isms-transport-security-model]
 Harington, D., "Transport Security Model for SNMP".

 [I-D.ietf-isms-tmsm]
 Harington, D. and J. Schoenwaelder, "Transport Subsystem
 for the Simple Network Management Protocol (SNMP)".

 [X509] Rivest, R., Shamir, A., and L. M. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems".

12.2. Informative References

 [RFC2522] Karn, P. and W. Simpson, "Photuris: Session-Key Management
 Protocol", RFC 2522, March 1999.

 [RFC3410] Case, J., Mundy, R., Partain, D., and B. Stewart,
 "Introduction and Applicability Statements for Internet-
 Standard Management Framework", RFC 3410, December 2002.

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

https://datatracker.ietf.org/doc/html/rfc3415
https://datatracker.ietf.org/doc/html/rfc3418
https://datatracker.ietf.org/doc/html/bcp74
https://datatracker.ietf.org/doc/html/rfc3584
https://datatracker.ietf.org/doc/html/rfc4347
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2522
https://datatracker.ietf.org/doc/html/rfc3410
https://datatracker.ietf.org/doc/html/rfc4302

Hardaker Expires December 26, 2009 [Page 55]

Internet-Draft SNMP over DTLS June 2009

 [RFC4303] Kent, S., "IP Encapsulating Security Payload (ESP)",
RFC 4303, December 2005.

 [RFC4306] Kaufman, C., "Internet Key Exchange (IKEv2) Protocol",
RFC 4306, December 2005.

 [I-D.ietf-isms-secshell]
 Harington, D. and J. Salowey, "Secure Shell Transport
 Model for SNMP".

 [RFC5343] Schoenwaelder, J., "Simple Network Management Protocol
 (SNMP) Context EngineID Discovery".

 [I-D.saintandre-tls-server-id-check]
 Saint-Andre, P., Zeilenga, K., Hodges, J., and B. Morgan,
 "Best Practices for Checking of Server Identities in the
 Context of Transport Layer Security (TLS)".

 [AES] National Institute of Standards, "Specification for the
 Advanced Encryption Standard (AES)".

 [DES] National Institute of Standards, "American National
 Standard for Information Systems-Data Link Encryption".

 [DSS] National Institute of Standards, "Digital Signature
 Standard".

 [RSA] Rivest, R., Shamir, A., and L. Adleman, "A Method for
 Obtaining Digital Signatures and Public-Key
 Cryptosystems".

Appendix A. Target and Notificaton Configuration Example

 Configuring the SNMP-TARGET-MIB and NOTIFICATION-MIB along with
 access control settings for the SNMP-VIEW-BASED-ACM-MIB can be a
 daunting task without an example to follow. The following section
 describes an example of what pieces must be in place to accomplish
 this configuration.

 The isAccessAllowed() ASI requires configuration to exist in the
 following SNMP-VIEW-BASED-ACM-MIB tables:

 vacmSecurityToGroupTable
 vacmAccessTable
 vacmViewTreeFamilyTable

 The only table that needs to be discussed as particularly different

https://datatracker.ietf.org/doc/html/rfc4303
https://datatracker.ietf.org/doc/html/rfc4306

Hardaker Expires December 26, 2009 [Page 56]

Internet-Draft SNMP over DTLS June 2009

 here is the vacmSecurityToGroupTable. This table is indexed by both
 the SNMPv3 security model and the security name. The security model,
 when TLSTM is in use, should be set to the value of XXX corresponding
 to the TSM [I-D.ietf-isms-transport-security-model]. An example
 vacmSecurityToGroupTable row might be filled out as follows (using a
 single SNMP SET request):

 Note to RFC editor: replace XXX in the previous paragraph above with
 the actual IANA-assigned number for the TSM security model and remove
 this note.

 vacmSecurityModel = XXX (TSM)
 vacmSecurityName = "blueberry"
 vacmGroupaName = "administrators"
 vacmSecurityToGroupStorageType = 3 (nonVolatile)
 vacmSecurityToGroupStatus = 4 (createAndGo)

 Note to RFC editor: replace XXX in the vacmSecurityModel line above
 with the actual IANA-assigned number for the TSM security model and
 remove this note.

 This example will assume that the "administrators" group has been
 given proper permissions via rows in the vacmAccessTable and
 vacmViewTreeFamilyTable.

 Depending on whether this VACM configuration is for a Command
 Responder or a Command Generator the security name "blueberry" will
 come from a few different locations.

 For Notification Generator's performing authorization checks, the
 server's certificate must be verified against the expected
 certificate before proceeding to send the notification. The
 securityName be set by the SNMP-TARGET-MIB's
 snmpTargetParamsSecurityName column or other configuration mechanism
 and the certificate to use would be taken from the appropriate entry
 in the tlstmParamsTable. The tlstmParamsTable augments the SNMP-
 TARGET-MIB's snmpTargetParamsTable with client-side certificate
 information.

 For Command Responder applications, the vacmSecurityName "blueberry"
 value is a value that needs to come from an incoming (D)TLS session.
 The mapping from a recevied (D)TLS client certificate to a
 securityName is done with the tlstmCertificateToSNTable. The
 certificates must be loaded into the device so that a
 tlstmCertificateToSNEntry may refer to it. As an example, consider
 the following entry which will provide a mapping from a X.509's hash
 fingerprint directly to the "blueberry" securityName:

Hardaker Expires December 26, 2009 [Page 57]

Internet-Draft SNMP over DTLS June 2009

 tlstmCertID = 1 (chosen by ordering preference)
 tlstmCertHashType = sha256
 tlstmCertHashValue = (appropriate sha256 fingerprint)
 tlstmCertMapType = specified(1)
 tlstmCertSecurityName = "blueberry"
 tlstmCertStorageType = 3 (nonVolatile)
 tlstmCertRowStatus = 4 (createAndGo)

 The above is an example of how to map a particular certificate to a
 particular securityName. It is recommended that users make use of
 direct subjectAltName or CommonName mappings where possible since it
 will provide a more scalable approach to certificate management.
 This entry provides an example of using a subjectAltName mapping:

 tlstmCertID = 1 (chosen by ordering preference)
 tlstmCertHashType = sha256
 tlstmCertHashValue = (appropriate sha256 fingerprint)
 tlstmCertMapType = bySubjectAltName(2)
 tlstmCertStorageType = 3 (nonVolatile)
 tlstmCertRowStatus = 4 (createAndGo)

 The above entry indicates the subjectAltName field for certificates
 created by an Issuing certificate with a corresponding hash type and
 value will be trusted to always produce common names that are
 directly 1 to 1 mappable into SNMPv3 securityNames. This type of
 configuration should only be used when the certificate authorities
 naming conventions are carefully controlled.

 For the example, if the incoming (D)TLS client provided certificate
 contained a subjectAltName of "blueberry" and the certificate was
 signed by a certificate matching the tlstmCertHashType and
 tlstmCertHashValue values above and the CA's certificate was properly
 installed on the device then the CommonName of "blueberry" would be
 used as the securityName for the session.

Author's Address

 Wes Hardaker
 Sparta, Inc.
 P.O. Box 382
 Davis, CA 95617
 US

 Phone: +1 530 792 1913
 Email: ietf@hardakers.net

Hardaker Expires December 26, 2009 [Page 58]

