
Network Working Group W. Hardaker
Internet-Draft Sparta
Expires: April 16, 2005 D. Perkins
 SNMPInfo
 October 16, 2004

A Session-Based Security Model (SBSM) for version 3 of the Simple
Network Management Protocol (SNMPv3)
draft-hardaker-snmp-session-sm-03.txt

Status of this Memo

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on April 16, 2005.

Copyright Notice

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

 This document describes a Session Based Security Model (SBSM) for use
 within version 3 of the Simple Network Management Protocol (SNMPv3).
 The security model is designed to establish a "session" between two
 interacting SNMPv3 entities, over which SNMP operations can be sent
 securely. It provides a number of security properties not previously
 available in defined SNMPv3 security models, such as public key based
 identity authentication, limited life-time keying, and the ability to

Hardaker & Perkins Expires April 16, 2005 [Page 1]

Internet-Draft A Session-based security model for SNMP October 2004

 make use of previously implemented and deployed security
 infrastructures for purposes of identification and authentication.

Table of Contents

1. Introduction . 4
1.1 SNMPv3 background information 4
1.2 Status of this document 4

2. Document conventions . 4
2.1 SBSM Definitions and Terminology 4
2.2 Protocol documentation conventions 5

3. Goals and Objectives . 6
4. Protocol Overview . 7
5. Protocol Definitions . 9
6. Elements of Procedure . 13
6.1 Session State Information 13
6.1.1 Closing sessions 14

6.2 The msgSecurityModel field in the msgGlobalData 15
6.3 Diffie-Helman exchange and key derivation 15
6.3.1 Generating Keying Material 16
6.3.2 Generating the session keys 16

6.4 Authenticaton and Encryption Algorithms 17
 6.4.1 Differences from USM encryption algorithm
 implementations 17

6.5 Creating new sessions 19
6.5.1 Session initialization and generation of SBSMInit1 . . 19
6.5.2 Reception of SBSMInit1 and generation of SBSMInit2 . . 21
6.5.3 Reception of SBSMInit2 and generation of SBSMInit3 . . 26

 6.5.4 Reception of the SBSMInit3 message and generation
 of the SBSMRunning REPORT 30
 6.6 Processing messages in an active session. 33
 6.6.1 Outgoing Messages on an open session. 33
 6.6.2 Incoming Messages on an open session. 35

6.7 Processing SBSMError messages. 38
 6.7.1 Processing outgoing SBSMError messages. 38
 6.7.2 Processing incoming SBSMError messages. 38

6.8 Closing an active session from either side 40
 6.9 Processing the SBSM messages for anti-replay support. . . 40

6.9.1 Processing outgoing messages 41
6.9.2 Processing Incoming Messages 42

7. MIB Definitions . 44
8. Identification Mechanisms 47
8.1 Public Key Based Identities 48
8.1.1 Security Model assignment 48
8.1.2 Format of the identity field 48

8.1.3 Signatures . 49
8.1.4 Security Name Mapping 49

8.2 Local Accounts . 49

Hardaker & Perkins Expires April 16, 2005 [Page 2]

Internet-Draft A Session-based security model for SNMP October 2004

8.2.1 Security Model assignment 50
8.2.2 Format of the identity field 50
8.2.3 Signatures . 50
8.2.4 Security Name Mapping 50

8.3 EAP Authentication and Identification 51
8.4 SSH Authentication and Identification 51

9. Compression Algorithms . 51
9.1 sbsmNullCompressionAlgorithm 51
9.2 sbsmGZipCompressionAlgorithm 51
9.3 sbsmBZip2CompressionAlgorithm 51

10. Security Considerations 52
11. TODO list . 52
12. History and Acknowledgments 52
13. References . 54
13.1 Normative References . 54
13.2 Informative References 55

 Authors' Addresses . 55
A. Diffie-Helman Group information 55
A.1 Diffie-Helman Group IKEv2-N5 55

 Intellectual Property and Copyright Statements 56

Hardaker & Perkins Expires April 16, 2005 [Page 3]

Internet-Draft A Session-based security model for SNMP October 2004

1. Introduction

 This document describes a Session Based Security Model (SBSM) for use
 within version 3 of the Simple Network Management Protocol (SNMPv3).
 The security model is designed to establish a "session" between two
 interacting SNMPv3 entities, over which SNMP operations can be sent
 securely. It provides a number of security properties not previously
 available in defined SNMPv3 security models, such as public key based
 identity authentication, limited life-time keying, and the ability to
 make use of previously implemented and deployed security
 infrastructures for purposes of identification and authentication.
 It also supports creation of a authenticated and possibly encrypted
 session when the identity of the initiator of the session is
 anonymous or unknown. These properties and the other goals of the
 (SBSM) are documented in Section Section 3.

 The details of the technology and concepts on which the SBSM is built
 comes from previously described and operationally proven works, such
 as the SIGMA security protocol, and the IKEv2 key exchange
 specification. Although it is not required that the reader
 understands the concepts in these other documents, it certainly
 wouldn't hurt. And to ease the review of this document, note that no
 new cryptographic algorithms or security protocols are defined in
 this document beyond those defined in previous or other SNMPv3
 standards documents.

1.1 SNMPv3 background information

 Although all of the SNMPv3 protocol specifications are described in
 RFCs 3410-3415 those who are new to SNMPv3 may find it useful to read
 a companion document instead, which is a concise and easy to
 understand summary of the SNMPv3 protocol specifications
 [refs.v3overview]. It is designed to be especially helpful for
 people which wish to read this document but are not well versed in
 how the security aspects of the SNMPv3 protocol specification are
 designed.

1.2 Status of this document

 This document is a work in progress.

2. Document conventions

2.1 SBSM Definitions and Terminology

 The following terms are used through this document:

Hardaker & Perkins Expires April 16, 2005 [Page 4]

Internet-Draft A Session-based security model for SNMP October 2004

 session: A potentially long lived interaction between two SNMPv3
 entities.

 initiator: The SNMPv3 entity that starts a session by sending the
 first SBSM initiation message. An initiator can be either a
 manager and/or a managed device and once the session is
 established all types of transactions may flow through it
 regardless of origin (that is, the responder can be a manager or
 managed device). For example, if a manager becomes an initiator
 and opens a session, it can send SNMP GET operations through it
 and the managed device can send SNMP INFORM operations back
 through the same session.

 responder: The SNMPv3 entity that listens for connections and
 responds to initiation requests from the initiator.

 identity authentication: Verifying that the SNMPv3 entity is who it
 claims to be. This can be a process running on a computer system,
 or a network operator acting through an application.

 message authentication: Verifying that a SNMPv3 message has not been
 modified, reordered, or replayed and that it belongs to the
 sessions under which it was received.

 message encryption: Protecting portions of a message from disclosure
 during transmission through the use of cryptographic algorithms.

 The | operator used in multiple equations in this document refers
 to the string concatenation operator, *not* the xor operator. In
 the ASN.1 and MIB portions of this document, it refers to options.

2.2 Protocol documentation conventions

 Portions of this document contain simple assignment operations in
 order to simplify understanding of what happens at particular points
 during processing of the protocol operations. They are expressed in
 a pseudo-code style text block, such as:

 outgoingMessage.init-identifier = store.local-identifier

 In the simplest and most common case, this is simply a copy
 operation which dictates what should be copied and to where it should
 be copied (in this case the local-identifies stored in the "store" is
 copied to the init-identifier field of the outgoingMessage
 construct). Generally the usage of these code blocks should be
 simple to understand and shorter than what a text sentence could
 quickly convey.

Hardaker & Perkins Expires April 16, 2005 [Page 5]

Internet-Draft A Session-based security model for SNMP October 2004

 One particular information source which might take a bit more
 explanation: "generated", EG:

 outgoingMessage.init-DH-value = generated.diffie-helman-half

 In this case, the value to be stored in the outgoingMessage is
 generated from a diffie-helman calculation, which is frequently
 described elsewhere in text.

 Finally, it should be important to note that both these equations and
 the surrounding text must be read and understood in order to get the
 protocol correct. IE, a successful implementation must take
 everything into account: both the text wording and the equations.
 Order of execution of both the text and equations are critical for
 preserving some of the security properties of the SBSM protocol.

3. Goals and Objectives

 The brief list of goals and objectives met by this protocol include:

 o Security transactions that make use of previously deployed and
 widely used mechanisms for establishing identity authentication.
 This includes public/private key technologies (including PKI
 infrastructures), and other common and currently deployed
 authenticating mechanisms such as Radius and TACACS+.

 o Session-based keying properties such as dynamically created keys,
 limited lifetime keys, separate negotiated keys for message
 authentication and message encryption, and perfect forward secrecy
 (PFS) support of those keys.

 o Retransmissions and replays of SNMP protocol operations do NOT
 result in reprocessing of the message within the protocol. EG, a
 managed device which receives and processes a SET request will not
 reprocess that same SET request in the future, even if a manager
 retransmits its original request due to packets being dropped
 within the network. This is done to nullify the damage possible
 via retransmitted SNMP messages which would have previously been
 reprocessed within the security time window of other protocols,
 such as the USM.

 o SBSM sessions will work over any lower layer transports, which
 include both UDP and TCP, for example. As well, the session
 parameters are not bound to the lower layer transport.

 o SNMP message exchange that is authenticated and even private when
 the session initiator or responder is anonymous.

Hardaker & Perkins Expires April 16, 2005 [Page 6]

Internet-Draft A Session-based security model for SNMP October 2004

 o Negotiated compression to reduce the overhead of BER encoding
 rules before encryption is processed.

4. Protocol Overview

 The SBSM protocol is designed to meet the goals and objectives listed
 in Section Section 3. The SBSM session gets established through some
 initial hand-shake transactions. These transactions exist entirely
 within the security parameter field of the SNMPv3 message and the
 application is not involved. Generally an application sending
 something through a SBSM security model will trigger the creation of
 a session within the initiator, and the responder will trigger
 session creation when it receives the first message from a
 hand-shake.

 Establishing a SBSM security session between an initiator and a
 responder takes some negotiation between the two pairs. The
 complexity of this exchange has been kept to a bare minimum wherever
 possible. It would be easy to conclude that more parameters should
 be included since they would be convenient (such as timeout values,
 session length values, etc) but they offer little benefit for their
 increased complexity and thus have been left out.

 The initial exchange for creating a session looks roughly like the
 following series of security-parameter exchanges, assuming no errors
 occur during the establishment:

 Initiator Responder
 ----------- -----------
 SBSMInit1 -->
 <-- SBSMInit2

 SBSMInit3 -->
 <-- SBSMRunning

 ... session started ...

 Note: The above flow diagram is the most simple case. When

 challenge-response identification protocols, such as EAP, are used to
 authenticate identities, then more messages need to be sent than
 those above. E.G., an SBSMError message may be used by the
 identification protocol to trigger the need for additional SBSMInit3
 messages to be sent before the Responder is satisfied with the
 initiators credentials.

Hardaker & Perkins Expires April 16, 2005 [Page 7]

Internet-Draft A Session-based security model for SNMP October 2004

 Note that the initiation of a session can occur at either end of the
 protocol. E.G., a management station can establish a session with a
 device through which it can send management operations (E.G. for
 sending GETs, SETs, ...) and a managed device can also establish a
 session with a management station (E.G. for sending TRAPs, INFORMs,
 ...). Additionally, a peer MUST expect management operations of any
 type to be sent through a given session. EG, just because a managed
 device opens a session to send a notification, it must be able to
 accept management operations of other types (GETs, etc) to be sent
 from the management station to the device under the same session.

 The details of how the session establishment exchange works is
 described in Section Section 6.5.

 Once a session has been established, the security parameters switch
 to using the running form:

 Initiator Responder
 ----------- -----------
 SBSMRunning <--> SBSMRunning

 The security model sent within the SNMPv3 message is always the
 security model number assigned to the SBSM security model. Within
 the application, however, the security model assigned to the identity
 type is typically used which will differ from the security model
 number assigned to the SBSM security model. The use of these
 sub-security models is further discussed in the elements of procedure
 below (Section Section 6.

 There are several differences from the way the previous User Based
 Security model (USM) [refs.RFC3414] worked that are important to
 understand. Most importantly, the User Based Security model was
 based on shared secrets and thus was a symmetric protocol. This is
 starkly different from the way the SBSM protocol works, which is
 asymmetric in nature. For example, two identities exist (the
 initiator and responder) within the SBSM session and both sides of
 the transaction MUST check the identity of the other side for proper
 authentication and authorization.

 Since identity types within the security model can differ on each
 side (EG, one side may have an identity associated with a public key
 certificate and the other side may have an identity associated with a

https://datatracker.ietf.org/doc/html/rfc3414

 user name and password pair), there can be two sub-security models in
 use within a session, one for each direction. This may seem odd to
 those previously familiar with the USM, but will not affect usage of
 the SNMP protocol's applications.

 The details of how the session operates once it has been established

Hardaker & Perkins Expires April 16, 2005 [Page 8]

Internet-Draft A Session-based security model for SNMP October 2004

 is described in Section Section 6.6.

5. Protocol Definitions

 Here are the ASN.1 definitions that describe how the
 msgSecurityParameters field within the msgGlobalData [RFC3412] should
 be encoded. Note that the msgSecurityParameters field is an OCTET
 STRING, and the SBSMSecurityParameters CHOICE, defined below, would
 be encoded as a normal BER-encoded CHOICE/SEQUENCE and then wrapped
 inside the OCTET STRING when encoded into the msgSecurityParameters
 field of the msgGlobalData.

 Many readers less familiar with ASN.1 may choose to skip to Section
 where the elements of procedure are defined in English text. (Section

6)

 SBSMSecurityParametersSyntax DEFINITIONS IMPLICIT TAGS ::= BEGIN

 -- Needed data types copied from RFC3416:

 Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

 --
 -- TODO:
 -- 1) State-keeping DoS protection for the Responder
 -- 5) too-large packet sizing -- works now, document though
 -- 7) handle multiple responses to requests properly. (don't
 -- assume first message is correct unless authenticated)
 -- (Some places are documented now, need to check all spots)
 -- (mostly done. need to double check everywhere though)
 -- 8) encrypt errors when possible, use NULL when not.

 SBSMSecurityParameters ::=
 CHOICE {
 sbsm-establishment1[0] SBSMInit1, -- 0xA0
 sbsm-establishment2[1] SBSMInit2, -- 0xA1
 sbsm-establishment3[2] SBSMInit3, -- 0xA2
 sbsm-running[3] SBSMRunning, -- 0xA3
 sbsm-error[4] SBSMError -- 0xA4
 }

https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3416

 SBSMInit1 ::=
 SEQUENCE {
 init-identifier Unsigned32,
 dhgroup-list NegotiationList,
 init-DH-value NegotiationOctetList,
 init-nonce OCTET STRING,
 authentication-list NegotiationList,

Hardaker & Perkins Expires April 16, 2005 [Page 9]

Internet-Draft A Session-based security model for SNMP October 2004

 encryption-list NegotiationList,
 compression-list NegotiationList,
 init-encryption-parameters OCTET STRING,
 init-accepted-identity-types IdentityTypeList

 }

 SBSMInit2 ::=
 SEQUENCE {
 init-identifier Unsigned32,
 resp-identifier Unsigned32,
 sequence-number Unsigned32
 dhgroup OBJECT IDENTIFIER,
 resp-DH-value OCTET STRING,
 resp-nonce OCTET STRING
 authentication-algorithm OBJECT IDENTIFIER,
 resp-encryption-parameters OCTET STRING,
 encryption-algorithm OBJECT IDENTIFIER,
 encryption-parameters OCTET STRING,
 compression-algorithm OBJECT IDENTIFIER,
 compression-parameters OCTET STRING,

 -- Encrypted SBSMInit2Encr:
 resp-information OCTET STRING,
 }

 SBSMInit2Encr ::=
 SEQUENCE {
 max-window-size INTEGER (0..255),
 resp-engineID OCTET STRING (0|5..32),
 resp-accepted-identity-types IdentityTypeList,

 resp-identity-type Unsigned32,
 resp-identity OCTET STRING,
 resp-proof1 OCTET STRING,
 resp-proof2 OCTET STRING,
 }

 SBSMInit3 ::=

 SEQUENCE {
 to-identifier Unsigned32,
 sequence-number Unsigned32
 encryption-parameters OCTET STRING,
 compression-parameters OCTET STRING,
 -- Encrypted SBSMInit3Encr:

Hardaker & Perkins Expires April 16, 2005 [Page 10]

Internet-Draft A Session-based security model for SNMP October 2004

 init-information OCTET STRING,
 }

 SBSMInit3Encr ::=
 SEQUENCE {
 window-size INTEGER (0..255),
 init-engineID OCTET STRING (0|5..32)

 init-identity-type Unsigned32,
 init-identity OCTET STRING,
 init-proof1 OCTET STRING,
 init-proof2 OCTET STRING,
 }

 SBSMRunning ::=
 SEQUENCE {
 to-identifier Unsigned32,
 sequence-number Unsigned32
 authentication-parameters OCTET STRING,
 encryption-parameters OCTET STRING
 compression-parameters OCTET STRING,
 }

 --
 -- Error structures
 --

 SBSMError ::=
 SEQUENCE {
 to-identifier Unsigned32,
 error-code SBSMErrorCode
 error-description OCTET STRING,
 sequence-number Unsigned32
 authentication-parameters OCTET STRING,
 }

 -- numbers are synched with SNMPv2 PDU error codes just for ease
 -- of #defines and enum lists.
 SBSMErrorCode ::=
 INTEGER {
 noError(0), -- never used

 genErr(5),
 resourceUnavailable(13),

 noSupportedAuthAlgorthim(100),
 noSupportedPrivAlgorthim(101),
 noSupportedDHGroup(102),

Hardaker & Perkins Expires April 16, 2005 [Page 11]

Internet-Draft A Session-based security model for SNMP October 2004

 insufficientNonce(103),
 insufficientEncryptionParameters(104),
 insufficientCompressionParameters(105),
 noSupportedIdentityType(106),

 incorrectIdentityType(107),
 identificationError(108),
 identityAuthenticationError(109),
 unacceptableIdentity(110),
 identityContinuationNeeded(111)
 messageAuthenticationError(112),
 messageEncryptionError(113),
 messageCompressionerror(114),

 sessionClosing(150)
 sessionClosed(151)
 }

 --
 -- Support structures
 --

 NegotiationList ::=
 SEQUENCE (SIZE (0..32)) OF OBJECT IDENTIFIER

 NegotiationOctetList ::=
 SEQUENCE (SIZE (0..32)) OF OCTET STRING

 -- This is a list of supported SNMP security models which are
 -- valid for use within a SBSM session.
 IdentityTypeList ::=
 SEQUENCE (SIZE (0..255)) OF Unsigned32

 --
 -- Security sequences for signing
 --
 -- the contents of these two sequences MUST NOT be transmitted in
 -- this form (the values are transmitted in other sequences).
 -- They exist purely for BER encoding before being signed by
 -- an identity.

 SBSMResponderProofInfo ::=
 SEQUENCE {
 init-nonce OCTET STRING,
 resp-messages SEQUENCE (SIZE (0..255))
 OF OCTET STRING

Hardaker & Perkins Expires April 16, 2005 [Page 12]

Internet-Draft A Session-based security model for SNMP October 2004

 }

 SBSMInitiatorProofInfo ::=
 SEQUENCE {
 resp-nonce OCTET STRING,
 init-messages SEQUENCE (SIZE (0..255))
 OF OCTET STRING

 }
 END

6. Elements of Procedure

6.1 Session State Information

 When a session exists within a SNMP engine, a certain amount of state
 must be kept and associated with it. This amounts to the following
 collection of information. The data is listed as normal SNMP SMIv2
 data types, but can be stored in any fashion as long as the bits on
 the wire end up being encoded properly as the elements of procedures
 require. In particular, the startTime value would be more
 efficiently implemented if stored as a local clock value format (like
 an integer value as returned by the common time() function).

 SBSMSessionStoreDefs DEFINITIONS IMPLICIT TAGS ::= BEGIN

 Unsigned32 ::= [APPLICATION 2] IMPLICIT INTEGER (0..4294967295)

 SBSMSessionStore ::=
 SEQUENCE {
 local-identifier Unsigned32,
 remote-identifier Unsigned32,
 session-status INTEGER { init1(1),
 init2(2),
 up(3),
 closed(4) }
 security-model Unsigned32,
 diffieHelmanExponent NegotiationOctetList,

 remote-nonce OCTET STRING,
 outgoingSequenceNumber Unsigned32,
 incomingMinSequenceNumber Unsigned32,
 window-size INTEGER (1..255),
 securityName OCTET STRING,
 authenticationType OBJECT IDENTIFER,
 encryptionType OBJECT IDENTIFER,

Hardaker & Perkins Expires April 16, 2005 [Page 13]

Internet-Draft A Session-based security model for SNMP October 2004

 incomingEncryptionParameters OCTET STRING,
 outgoingEncryptionParameters OCTET STRING,
 incomingAuthenticationKey OBJECT STRING,
 outgoingAuthenticationKey OBJECT STRING,
 incomingEncryptionKey OBJECT STRING,
 outgoingEncryptionKey OBJECT STRING,
 startTime Unsigned32,
 legalSessionLength Unsigned32, -- seconds
 remoteEngineID OCTET STRING (0|5..32)
 -- data store array for replaying responses
 lastIncomingInit OCTET STRING,
 messageStoreList SEQUENCE (SIZE(0..255))
 OF SBSMMessageStore

 -- Other session information may be useful to keep in the
 -- session store, such as the remote destination
 -- transport address, etc.
 }

 SBSMMessageStore ::=
 SEQUENCE {
 sequence-number Unsigned32,
 timestamp Unsigned32,
 message OCTET STRING
 }
 END

 The descriptions of how the value for each field is obtained is
 outlined in section Section 6.5.

 SNMP Engines MUST occasionally review their open session list and
 close any sessions where the current time minus the startTime is
 greater the number of seconds indicated by the legalSessionLength
 field (see section Section 6.1.1).

 The legalSessionLength field MAY be implemented as a global system
 policy. IE, it is not required that each session's length be
 individually configurable and a global system policy may be used
 instead.

6.1.1 Closing sessions

 When a session is closed either due to a normal operation, or due to
 an error condition which mandates that the session be closed, the
 store.session-status field should be set to closed(4) and all future
 traffic to such a session MUST trigger a unknownSBSMSession error
 condition message (described below). After a period of time defined
 by local policy (a suggested default is 300 seconds) or after a

Hardaker & Perkins Expires April 16, 2005 [Page 14]

Internet-Draft A Session-based security model for SNMP October 2004

 maximum number of allowed closed connections is hit (a suggested
 default is 30), then the session should be deleted from the session
 store.

 When a session is first set to closed, an implementation MUST zeroize
 the following fields:

 diffieHelmanExponent
 incomingEncryptionParameters
 outgoingEncryptionParameters
 incomingAuthenticationKey
 outgoingAuthenticationKey
 incomingEncryptionKey
 outgoingEncryptionKey

 Implementations SHOULD zeroize the entire memory contents for the
 session state just before the session is actually deleted from the
 store.

6.2 The msgSecurityModel field in the msgGlobalData

 [refs.RFC3412] documents the msgGlobalData field which is used to
 indicate the security model is use. In the following elements of
 procedure, the value XXX:IANA ASSIGNMENT MUST be used. However, the
 VACM processing [refs.RFC3415] documents processing of authorization
 of incoming requests. For use within authorization processing within
 the VACM or any other security models, the value passed to the
 isAccessAllowed directive MUST be the security-model value from the
 current session store. IE, each identification algorithm is always
 transmitted across the wire using the XXX:IANA ASSIGMENT but for
 authorization purposes the individual identity type's specified value
 must be used instead.

6.3 Diffie-Helman exchange and key derivation

 [this section needs a lot more work, but the basic concepts are
 there. A very large portion of this text was stolen from the current
 IKEv2 internet-draft.]

 The output of a diffie-helman exchange produces a negotiated

https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3415

 symmetric secret key known only to the two sides of the negotiation.
 The keying material needed for both the authentication and encryption
 algorithms to be used are derived from this initial negotiated key
 using the following procedure. In the following text, prf indicates
 a pseudo-random function. This function, for purposes of this
 security model, is the HMAC algorithm combined with the negotiated
 authentication algorithm.

Hardaker & Perkins Expires April 16, 2005 [Page 15]

Internet-Draft A Session-based security model for SNMP October 2004

6.3.1 Generating Keying Material

 Keying material will always be derived as the output of the
 negotiated message authentication algorithm (HMAC). Since the amount
 of keying material needed may be greater than the size of the output
 of the prf algorithm, we will use the prf iteratively. We will use
 the terminology prf+ to describe the function that outputs a
 pseudo-random stream based on the inputs to a prf as follows: (where
 | indicates concatenation)

 prf+ (K,S) = T1 | T2 | T3 | T4 | ...

 where:
 T1 = prf (K, S | 0x01)
 T2 = prf (K, T1 | S | 0x02)
 T3 = prf (K, T2 | S | 0x03)
 T4 = prf (K, T3 | S | 0x04)

 continuing as needed to compute all required keys. The keys are
 taken from the output string without regard to boundaries (e.g. if
 the required keys are a 256 bit AES key and a 160 bit HMAC key, and
 the prf function generates 160 bits, the AES key will come from T1
 and the beginning of T2, while the HMAC key will come from the rest
 of T2 and the beginning of T3).

 The constant concatenated to the end of each string feeding the prf
 is a single octet. prf+ in this document is not defined beyond 255
 times the size of the prf output.

6.3.2 Generating the session keys

 SKEYSEED = prf(init-nonce | resp-nonce, g^ir)

 {K-ai, K-ar, K-ei, K-er}
 = prf+ (SKEYSEED, g^ir | init-nonce | resp-nonce |
 init-identifier | resp-identifier)

 Note: the init-identifier and resp-identifier MUST be 4 bytes and
 stored in network byte order.

 The 4 derived session keys are used for the following purposes:

 K-ai: Authentication of messages from the initiator.

 K-ar: Authentication of messages from the responder.

Hardaker & Perkins Expires April 16, 2005 [Page 16]

Internet-Draft A Session-based security model for SNMP October 2004

 K-ei: Encryption of messages from the initiator.

 K-er: Encryption of messages from the responder.

 The proper use of these keys will be further discussed in the
 following sections.

6.4 Authenticaton and Encryption Algorithms

 The negotiated authentication and encryption algorithms used by the
 SBSM security model duplicate those defined for the User Based
 Security model (USM) [refs.RFC3414]. The mechanisms for calling
 their ASI primitives are the same, although some minor implementation
 details are slightly different for use within SBSM. Future
 equivalent or better authentication and encryption algorithms defined
 in future documents for use within the SBSM framework and those
 documents MUST specify if there are any changes for use within the
 SBSM protocol. At the time of this writing, the current list of
 acceptable authentication and encryption algorithms include:

 Authentication:

 * SNMP-USER-BASED-SM-MIB::usmHMACMD5AuthProtocol

 * SNMP-USER-BASED-SM-MIB::usmHMACSHAAuthProtocol

 Encryption:

 * SNMP-USER-BASED-SM-MIB:usmDESPrivProtocol

 * SNMP-USM-AES-MIB::usmAesCfb128Protocol

 NULL-equivalent authentication algorithms (IE,
 SNMP-USER-BASED-SM-MIB::usmNoAuthProtocol) MUST NOT be used within
 the SBSM framework, as both authentication and encryption algorithms
 will be needed to securely finish the establishment of a session.

https://datatracker.ietf.org/doc/html/rfc3414

 At a minimum, the usmHMACSHAAuthProtocol protocol MUST be supported
 and the usmAesCfb128Protocol SHOULD be supported. Implementations
 MAY choose to implement the usmHMACMD5AuthProtocol and
 usmDESPrivProtocol values as well.

6.4.1 Differences from USM encryption algorithm implementations

 One difference exists between how encryption algorithms are used
 within the USM and how they are used within the SBSM. Within the
 USM, the initialization vectors (IVs) passed to the encryption
 algorithms are created using the engineBoots and engineTime values,

Hardaker & Perkins Expires April 16, 2005 [Page 17]

Internet-Draft A Session-based security model for SNMP October 2004

 which are not required for implementation of the SBSM protocol.

 To alleviate this, when the encryption algorithms are used within the
 SBSM their IVs are created as follows. First a vector of the
 appropriate length (L) for the encryption algorithm (for DES this
 would be 64 bits, and for AES this would be 128 bits) is filled by
 concatenating first the 32 bit sequence-number encoded in network
 byte order (see the rest of this section for the details on
 calculating this value) along with a random value calculated at
 session initialization time for each side. The random value should
 be of sufficient length to fill the vector for the encryption
 algorthim being used. IE, if L is the required IV length in bits for
 an algorthim, then the vector is generated using:

 vector = sequence-number | random(L - 32)

 For usmDESPrivProtocol, the vector is then used as the "salt"
 according to section 8.1.1.1 of [refs.RFC3414].

 For usmAesCfb128Protocol, the vector is then used as the IV for the
 protocol.

 The init-encryption-parameters field of the SBSMInit1 message MUST be
 filled with a sufficient length vector suitable for use by any of the
 encryption algorithms offered in the encryption-list field.

 For the algorithms mentioned in this document, the
 init-encryption-parameters field of the SBSMInit1 and
 resp-encryption-parameters field of the SBSMInit2 MUST be filled in
 using the random portion of the vector. For the algorithms mentioned
 in this document, the encryption-parameters field of the SBSMINIT3
 and SBSMRunning messages MUST be left as a zero length octet string.
 This requires that each side retain the random portion of the vector
 values for the incoming and outgoing directions in the session state
 store in the OutgoingEncryptionParameters and
 IncomingEncryptionParameters fields so that the calculation of the
 correct IV can take place during both encryption and decryption.

 These procedures are required MUST be followed for the encryption
 algorithms listed in this document, and MAY be used by future
 algorithms defined in future documents.

https://datatracker.ietf.org/doc/html/rfc3414

 These procedures are designed to ensure that a given vector is never
 reused for a given encryption key and that the vectors are only
 transmitted once to reduce packet sizes for running sessions.

Hardaker & Perkins Expires April 16, 2005 [Page 18]

Internet-Draft A Session-based security model for SNMP October 2004

6.5 Creating new sessions

 This section describes the process by which new sessions are created
 on both sides of the protocol. This is done using a handshake
 process that will eventually result in the creation of a valid
 session, or unrecoverable errors in extreme cases. Once a session is
 established, the procedures in Section Section 6.6 should be followed
 to make use of the live session.

 All SBSMInit1 and SBSMInit3 messages MUST be sent with a contained
 PDU payload of an empty GET payload. All SBSMInit2 messages MUST be
 sent containing a PDU payload of an empty REPORT PDU. All SBSMInit1,
 SBSMInit2, SBSMInit3 and SBSMRunning messages MUST be sent with a
 securityModel value for the assigned SBSM security model value (see
 Section Section 6.2)

 It should be noted that within the Session Initialization phase
 only the fields within the msgSecurityParameters field can be
 trusted. Modification on the wire of any of the rest of the
 parameters in a normal SNMPv3 message will not be detected by the
 security model as a session is getting set up. However, this is of
 no consequence since all of the values will be safely ignored or will
 generate errors at a higher layer (E.G., within the message
 processor) that will cause the packet to be dropped before it gets to
 the security model. No real SNMP transmitted packet is ever acted
 upon during session initialization, and thus only the session
 parameters need to be protected against modification and/or
 disclosure (and they are as appropriate).

6.5.1 Session initialization and generation of SBSMInit1

 The sequence values of the first message should be filled in as
 follows:

 1. The store.local-identifier field is filled in using a unique
 value which has not been assigned to any other session within
 the session store storage. An entry in the session store is
 created for this store.local-identifier index value.

 2. The SBSMInit1.init-DH-value value is the initiator's half of the
 Diffie-Helman transaction. One value should be generated for

 every dhgroup being offered in the dhgroup-lis field using the
 Diffie-Helman group information defined in Appendix Appendix A
 or other appropriate standards documents.

 3. XXX The SBSMInit1.init-nonce value MUST be composed of randomly
 chosen octets and of size equal to half of the sum of the
 maximum key length of all the authentication algorithms

Hardaker & Perkins Expires April 16, 2005 [Page 19]

Internet-Draft A Session-based security model for SNMP October 2004

 potentially in use and the maximum key length of all the
 encryption algorithms potentially in use. IE, length = (Ka +
 Ke)/2.

 4. The SBSMInit1.dhgroup-list should be filled in using values
 supported by the local system that were desired to be used by
 the calling system.

 5. The SBSMInit1.authentication-list and SBSMInit1.encryption-list
 fields are filled in using desired algorithms to be used by the
 session for message authentication checking and encryption
 (respectively). The valid values for these fields are dictated
 by the list of authentication and encryption protocols supported
 by the implementation (see Section Section 6.4 for details).

 At least one authentication and encryption algorithm MUST be
 specified and the list MUST NOT include any NULL-equivalent
 algorithms.

 6. The following assignments are made relative to the recently
 created store and the SBSMInit1 message (some of these have
 already been discussed above, but are repeated here for
 completeness:

 7. The SBSMInit1.init-encryption-parameters value MUST be randomly
 chosen of size equal to the maximum size value needed by any of
 the values in SBSMInit1.encryption-list as dictated by the
 selected encryption algorithm (see Section Section 6.4.1). The
 value is then stored in the store.outgoingEncryptionParameters
 field of the session store.

 8. The SBSMInit1.init-accepted-identity-types field should be filled
 in with acceptable identity types, in order of preference, for
 the responder to use when returning an identity, such as those
 specified in Section Section 8 for a list of identity types.

 9. The SBSMInit1.compression-parameters field should be filled in
 according to the initialization needs of the compression
 algorithms being proposed.

Hardaker & Perkins Expires April 16, 2005 [Page 20]

Internet-Draft A Session-based security model for SNMP October 2004

 store.session-status = init1(1)

 SBSMInit1.init-identifier = store.local-identifier
 SBSMInit1.init-DH-value = generated.list.diffie-helman-half
 store.diffieHelmanExponent = generated.list.diffie-helman-half
 SBSMInit1.init-nonce = generated.init-nonce
 SBSMInit1.dhgroup-list = policy.dhgroup-list
 SBSMInit1.authentication-list = policy.authentication-list
 SBSMInit1.encryption-list = policy.encryption-list
 store.outgoingEncryptionParameters =
 generated.encryption-parameters
 SBSMInit1.init-accepted-identity-types =
 policy.accepted-identity-types

 10. Timers should be used to determine if a packet was lost and to
 retransmit the exact same copy of the SBSMInit1 message after a
 suitable period of time. A new SNMPv3 message MAY be created,
 but a new SBSMInit1 message SHOULD NOT be created and the
 previous exact copy should be sent instead. After a
 implementation dependent number of retries, the session SHOULD
 be deleted and an error reported to the application.

6.5.2 Reception of SBSMInit1 and generation of SBSMInit2

 When a SNMPv3Message is received containing a SBSMInit1 message
 encoded into the securityParameters field, it MUST follow the
 following elements of procedure below to establish it's side of the
 SBSM session.

 Note: If at any time during processing of the SBSMInit1 message an
 error occurs which prevents further processing of the message (such
 as insufficient resources, etc), then a SBSMError message may be
 returned containing a error-code of genErr or resourceUnavailable and
 processing should stop and the active session store deleted (if it
 exists yet).

 1. If an existing session exists within the session store with the
 session-status of init1(1) and a lastIncomingInit value equal to
 the SBSMInit1 incoming message, the SBSMInit2 message contained
 in the messageStore[0].message session state MUST be resent.
 Processing then MUST be stopped and the packet dropped. This

 processing serves to respond to retransmitted packets from the
 other side, but prevents recalculation on the responder's side.
 If no such matching session exists, it is deemed to be a new
 request (IE, not a retransmission of a previously sent SBSMInit1
 message) and processing continues.

Hardaker & Perkins Expires April 16, 2005 [Page 21]

Internet-Draft A Session-based security model for SNMP October 2004

 2. If an existing session exists within the session store with the
 session-status of init2(1) and a lastIncomingInit value equal to
 the SBSMInit1 incoming message, the SBSMInit1 message must be
 dropped.

 3. The lists of offered message authentication and encryption
 algorithms (authentication-list, encryption-list) are examined
 for support and accepted values. One of each type MUST be
 selected and the first in each list that is acceptable SHOULD be
 the one selected. The resulting selected algorithms are later
 referred to as authAlgorthim and encrAlgorthim.

 4. If a message authentication algorithm, encryption algorithm or
 diffie-helman group can't be picked (E.G., they are unsupported
 or administratively prohibited), then: A SBSMError message
 should be returned to the sender with a error-code of either
 unsupportedAuthAlgorthim, unsupportedPrivAlgorthim or
 unsupportedDHGroup. The message is dropped and further
 processing is stopped.

 5. If the init-nonce value is not of sufficient length to support
 the selected authentication and encryption algorithm (See
 section Section 6.5.1 for length requirement details), then: A
 SBSMError message should be returned to the sender with a
 error-code of insufficientNonce. The message is dropped and
 further processing is stopped.

 6. The list of offered identity types, found in the
 init-accepted-identity-types field, is examined. If multiple
 acceptable identities are listed, then the first acceptable
 value in the list SHOULD be selected although responder
 implementations MAY choose to select a different one based on
 local policy. We will refer to this selection later as
 policy.selectedOutgoingIdentityType. If no acceptable identity
 type is found within the list then an SBSMError message should
 be returned with a error-code of noSupportedIdentityType

 7. If the encryption algorithm chosen requires the use of the
 init-encryption-parameters field and it is not of sufficient
 length, then: A SBSMError message should be returned to the
 sender with a error-code of insufficientEncryptionParameters.
 The message is dropped and further processing is stopped.

 8. If the compression algorithm chosen requires the use of the
 init-compression-parameters field and it is not of sufficient
 length, then: A SBSMError message should be returned to the
 sender with a error-code of insufficientCompressionParameters.
 The message is dropped and further processing is stopped.

Hardaker & Perkins Expires April 16, 2005 [Page 22]

Internet-Draft A Session-based security model for SNMP October 2004

 9. A unique local-identifier is generated and a new session store is
 created to store session parameters. A SBSMInit2 response
 message (including the SBSMInit2Encr SEQUENCE) is also created.
 The two structures are filled in using the following guidelines:

 SBSMInit2.init-identifier = SBSMInit1.init-identifier
 SBSMInit2.resp-identifier = store.local-identifier
 SBSMInit2.dhgroup = policy.dhgroup
 SBSMInit2.authentication-algorithm = policy.authAlgorthim
 SBSMInit2.encryption-algorithm = policy.encrAlgorthim
 SBSMInit2.sequence-number = 0

 store.session-status = init1(1)
 store.local-identifier = generated.identifier
 store.remote-identifier = message.init-identifier
 store.authenticationType = policy.authAlgorthim
 store.encryptionType = policy.encrAlgorthim
 store.init-encryption-parameters =
 SBSMInit1.init-encryption-parameters
 store.outgoingSequenceNumber = 0
 store.incomingSequenceNumber = 0
 store.startTime = generated.now
 store.legalSessionLength = policy.session-length
 store.lastIncomingInit = message

 // Other values may be needed or desired by implementations.

 10. The store's resp-DH-value value is the responder's half of the
 Diffie-Helman transaction using the Diffie-Helman group defined
 by the accepted SBSMInit2.dhgroup field and the related values
 found in Appendix Appendix A or other appropriate standards
 documents. It's value is stored in the resp-DH-value field of
 the SBSMInit2 message.

 11. The resp-nonce value MUST be randomly chosen and of size equal
 to half of the sum of the maximum key length of all the
 authentication algorithms potentially in use and the maximum key
 length of all the encryption algorithms potentially in use. IE,
 length = (Ka + Ke)/2.

 SBSMInit2.resp-nonce = generated.resp-nonce

 12. A suitable value for the SBSMInit2.resp-encryption-parameters
 field MUST be randomly chosen of size equal to the needed as
 dictated by the selected encryption algorithm (see Section

Section 6.4.1). The value is then stored in both the store and
 the SBSMInit2 message:

Hardaker & Perkins Expires April 16, 2005 [Page 23]

Internet-Draft A Session-based security model for SNMP October 2004

 store.outgoingCompressionParameters =
 generated.encr-parameters

 13. A suitable value for the SBSMInit2.resp-compression-parameters
 field MUST be chosen according to the compression algorithm in
 use (see Section Section 9).

 store.outgoingCompressionParameters =
 generated.compression-parameters

 14. The session keys (K-ai, K-ar, K-ei, and K-er) are derived from
 the Diffie-Helman derived secret key (g^ir) and the init-nonce
 and resp-nonce values according to the procedures in Section

Section 6.3.

 15. These keys are stored in the session store according to the
 following mapping:

 store.incomingAuthenticationKey = generated.K-ai
 store.outgoingAuthenticationKey = generated.K-ar
 store.incomingEncryptionKey = generated.K-ei
 store.outgoingEncryptionKey = generated.K-er

 16. The max-window-size field of the SBSMInit2Encr sequence are
 filled in according to local policy.

 SBSMInit2Encr.max-window-size = policy.selected-window-value

 17. The resp-engineID field is filled in with a suitable default
 engineID which can be used in the engineID field of a ScopedPDU
 for transmissions requiring them from the remote side, or a zero
 length string if no value is suitable.

 SBSMInit2Encr.resp-engineID = policy.local-engineID

 18. The resp-accepted-identity-types field should be filled in with
 acceptable identity types, in order of preference, for the
 initiator to use when returning an identity. For a list of
 identity types specified by this document, see Section Section 8

 for a list of identity types.

 SBSMInit2Encr.resp-accepted-identity-types =
 policy.accepted-identity-types

 19. The resp-identity-type and resp-identity fields are filled in
 using the policy.selectedOutgoingIdentityType value selected
 above and the identity value for that type to be transmitted to
 the initiator. The proper format for this field is dictated by

Hardaker & Perkins Expires April 16, 2005 [Page 24]

Internet-Draft A Session-based security model for SNMP October 2004

 the resp-identity-type value being used and its associated
 implementation details in Section Section 8.

 SBSMInit2Encr.resp-identity-type =
 policy.selectedOutgoingIdentityType
 SBSMInit2Encr.resp-identity = policy.identity

 20. The securityName field of the session store is derived from the
 same policy.selectedOutgoingIdentityType security model's
 identity mapping transform, also described in Section Section 8.
 XXX: should be bi-directional sec names

 21. The resp-proof2 field is filled in using the results of a
 message authentication signature created using the algorithm
 indicated by the store.authenticationType value and the
 store.outgoingAuthenticationKey key to sign the contents of the
 resp-identity field.

 22. The resp-proof1 field is filled in using an identity
 authentication signature created using the key and signing
 algorithm associated with resp-identity (see Section Section 8)
 to sign an encoded SBSMResponderProofInfo SEQUENCE. This
 sequence includes the nonce value sent by the initiator as well
 as all of the messages sent by the responder to the initiator up
 till and including this message being sent. To include this
 message, it must be first encoded in its entirety except for the
 resp-proof1 field, which should be left as a proper length field
 containing as many 0x00 value octets as is needed to fill the
 field. Once the signature has been created, the field should be
 filled in with the newly generated value.

 Note: The init-nonce field within the SBSMResponderProofInfo
 sequence operation MUST include the BER tag and length fields
 from the on-the-wire packet format.

 To fill in the resp-information field during this identity
 authentication step, use the plain-text version of the
 SBSMInit2Encr sequence wrapped in an OCTET STRING and placed
 into the resp-information field.

 23. The entire SBSMInit2Encr SEQUENCE is encoded according to BER

 encoding rules and the resulting byte sequence is then encrypted
 using the store.encryptionType algorithm and the
 store.outgoingEncryptionKey key. The resulting cyphertext bytes
 are then stored, after being wrapped in an OCTET STING, in the
 resp-information field within the SBSMInit2 SEQUENCE.

 24. The entire SBSMInit2 message, once constructed, is returned to

Hardaker & Perkins Expires April 16, 2005 [Page 25]

Internet-Draft A Session-based security model for SNMP October 2004

 the sender of the initial SBSMInit1 message as a REPORT message.

 25. The messageStore[0].message value is set to the entire encoded
 SBSMInit2 SEQUENCE. The session store is stored for later
 retrieval.

 store.messageStore[0] = SBSMInit2

 26. Success is returned to the calling module, along with the
 contents of the SBSMInit1 packet to be sent. Note that the
 packet returned MUST NOT be processed by an application.

6.5.3 Reception of SBSMInit2 and generation of SBSMInit3

 When a SNMPv2Message is received containing a SBSMInit2 message
 encoded into the securityParameters field, it MUST follow the
 elements of procedure below to finish establishing it's side of the
 SBSM session:

 1. The local session store is examined to determine if a session
 exists where the store.local-identifier field matches the
 SBSMInit2.init-identifier field. If not, the message is dropped
 and processing is ceased. If one is found but the
 store.session-status field is set to up(2), the message is also
 dropped and processing is ceased. XXX: the only legal value
 should be init1

 2. The anti-replay processing discussed in Section Section 6.9.2 is
 performed. This should only happen when a responder needed to
 retransmit an SBSMInit2 message that was deemed to be lost.
 After the SBSMInit3 message is retransmitted, further processing
 of the incoming SBSMInit2 message is stopped.

 3. The diffie-helman exchange is completed using the appropriate
 store.diffieHelmanExponent value and the SBSMInit2.resp-DH-value
 value. This should produce a g^ir value.

 4. The session keys (K-ai, K-ar, K-ei, and K-er) are derived from
 the Diffie-Helman derived secret key (g^ir) and the init-nonce

 and resp-nonce values according to the procedures in Section
Section 6.3.

 5. The SBSMInit2.resp-information field is decrypted using the
 encryption type specified by the SBSMInit2.encryption-algorithm
 field, the SBSMInit2.encryption-parameters field and the
 generated.K-er key to produce a decrypted but possibly still
 compressed SBSMInit2Encr SEQUENCE. The results are then

Hardaker & Perkins Expires April 16, 2005 [Page 26]

Internet-Draft A Session-based security model for SNMP October 2004

 decompressed using the compression algorithm defined and the
 SBSMInit2.compression-parameters field. The values of the
 SBSMInit2Encr field are then parsed. If the values can not be
 parsed, then the snmpInASNParseErrs counter [RFC3418] is
 incremented, and an error indication (parseError) is returned to
 the calling module.

 6. The list of offered identity types, found in the
 SBSMInit2Encr.resp-accepted-identity-types field, are examined.
 If no acceptable identity type is found within the list then an
 authenticated and encrypted SBSMError message should be returned
 to the responder with an error-code of noSupportedIdentityType.
 If multiple acceptable identities are listed, then the first
 acceptable value in the list SHOULD be selected although
 responder implementations MAY choose to select a different one
 based on local policy. We will refer to this selection later as
 policy.selectedOutgoingIdentityType.

 7. The SBSMInit2Encr.resp-identity-type field is examined and
 checked to see if the identity type matches one of the types
 sent in the initial SBSMInit1 message and that it matches
 locally acceptable identity types. If not, then an
 authenticated and encrypted SBSMError message should be returned
 to the responder with an error-code of incorrectIdentityType.

 8. The SBSMInit2Encr.resp-identity field is examined, according to
 the security model and associated parameters (see Section

Section 8) and if it does not match the expected identity for
 the other side of the session, processing is stopped and an
 authenticated and encrypted SBSMError message should be returned
 to the responder with an error-code of identificationError.

 9. The SBSMInit2Encr.resp-proof1 field value is checked to ensure it
 matches the expected signature as described in Section Section

6.5.2 using the signing mode described by the security model in
 Section Section 8. If the signature in the
 SBSMInit2Encr.resp-proof1 field does not match the output of the
 signature alogrithm, then processing is stopped and an
 authenticated and encrypted SBSMError message should be returned
 to the responder with an error-code of
 identityAuthenticationError. Note that the session MUST NOT be
 dropped due to this error since a packet may arrive from the
 real identity with proper credentials.

https://datatracker.ietf.org/doc/html/rfc3418

 10. the SBSMInit2Encr.resp-proof2 field value is checked to ensure
 it matches the expected message authentication signature as
 described in Section Section 6.5.2 using the authentication mode
 described by the store.authentication-algorithm field along with

Hardaker & Perkins Expires April 16, 2005 [Page 27]

Internet-Draft A Session-based security model for SNMP October 2004

 the store.incomingAuthenticationKey key. If the signature in
 the SBSMInit2Encr.resp-proof2 field does not match the output of
 the authentication alogrithm, then an authenticated and
 encrypted SBSMError message should be returned to the responder
 with an error-code of messageAuthenticationError.

 11. Now that the SBSMInit2 message has been deemed authentic, the
 initiator can fully establish its side of the session
 parameters:

 store.session-status = init2(2)
 store.outgoingAuthenticationKey = generated.K-ai
 store.incomingAuthenticationKey = generated.K-ar
 store.outgoingEncryptionKey = generated.K-ei
 store.incomingEncryptionKey = generated.K-er
 store.authenticationType = SBSMInit2.authentication-algorithm
 store.encryptionType = SBSMInit2.encryption-algorithm
 store.remoteEngineID = SBSMInit2.resp-engineID
 store.incomingSequenceNumber = SBSMInit2.sequence-number
 store.window-size =
 min(policy.window-size, SBSMInit2Encr.max-window-size)
 store.startTime = generated.now
 store.legalSessionLength = policy.session-length

 A. The store.diffieHelmanExponent memory contents is erased/
 zeroed.

 B. The store.securityName field is filled in using the mapping
 described by the security model to extract it from the
 SBSMInit2.resp-identity field.

 12. The SBSMInit3 SEQUENCE is created, as is a SBSMInit3Encr
 SEQUENCE, and its values are filled in as follows:

 store.outgoingSequenceNumber = store.outgoingSequenceNumber + 1

 XXX: local-identifier not needed in init3?
 SBSMInit3.to-identifier = store.remote-identifier
 SBSMInit3Encr.window-size = store.window-size
 SBSMInit3.sequence-number = store.outgoingSequenceNumber

 A. The init-engineID field is filled in with a suitable default
 engineID which can be used in the engineID field of a
 ScopedPDU for transmissions requiring them from the remote
 side, or a zero length string if no value is suitable:

 SBSMInit3Encr.init-engineID = policy.local-engineID

Hardaker & Perkins Expires April 16, 2005 [Page 28]

Internet-Draft A Session-based security model for SNMP October 2004

 B. The init-identity-type and init-identity fields are filled
 in using the identity-type value selected above and the
 identity value for that type to be transmitted to the
 initiator. The proper format for this field is dictated by
 the init-identity-type value being used and its associated
 implementation details in Section Section 8.

 SBSMInit3Encr.init-identity-type =
 policy.selectedOutgoingIdentityType
 SBSMInit3Encr.init-identity = policy.identity

 C. The SBSMInit3Encr.init-proof1 field is filled in using a
 authentication signature created using the key associated
 with SBSMInit3Encr.init-identity (see Section Section 8) to
 sign an encoded SBSMInitiatorProofInfo SEQUENCE, which
 includes the necessary fields from the SBSMInit1, SBSMInit2
 and SBSMInit3 messages to ensure proper authentication can
 be determined by the responder.

 The SBSMResponderProofInfo SEQUENCE is encoded using the
 actual BER encoded values taken from the on-the-wire
 messages. They MUST be identical copies of the transmitted
 values using the exact same encoding as was transmitted on
 the wire. Care must be taken that the values transmitted by
 the other side are used exactly how they were sent.

 Note: Identity authentication schemes which require multiple
 negotiation might specify that the init-proof1 field is to
 be left blank and implementations supporting negotiating
 identity authentication mechanisms should except this.

 D. The SBSMInit3Encr.init-proof2 field is filled in using a
 HMAC authentication signature created using the
 store.outgoingAuthenticationKey to sign the contents of the
 SBSMInit3Encr.init-identity field using the
 store.authenticationType algorithm.

 Note: The resp-identity field value within the HMAC
 operation includes the BER tag and length fields from the
 on-the-wire packet format.

 Note: Identity authentication schemes which require multiple
 negotiation might specify that the init-proof2 field is to
 be left blank and implementations supporting negotiating
 identity authentication mechanisms should except this.

 E. The SBSMInit3Encr SEQUENCE is encrypted using the
 store.encryptionType encryption algorithm and

Hardaker & Perkins Expires April 16, 2005 [Page 29]

Internet-Draft A Session-based security model for SNMP October 2004

 store.outgoingEncryptionKey and then wrapped in an OCTET
 STRING and placed into the SBSMInit3.resp-information field.
 For the vector generation, described in Section Section

6.4.1, a sequence-number of SBSMInit3.sequence-number MUST
 be used.

 13. The initiator of the session MAY begin transmitting messages
 under protection of the newly created session at this point,
 assuming the identity authentication for the initiator is
 complete. However, it should be noted that the SBSMInit3
 message may not have been received by the responder and thus
 retransmissions may be necessary at a future time. Thus, the
 initiator SHOULD wait for the reception of a proper SBSMRunning
 acknowledgment message first.

 14. Timers should be used to determine if the SBSMInit3 message was
 lost (IE, no SBSMRunning acknowledgment message was received)
 and to retransmit the exact same copy of the SBSMInit3 message
 after a suitable period of time (as dictated by local policy).
 A new SNMPv3 message MAY be created, but a new SBSMInit3 message
 MUST NOT be created and the previous exact same bitwise copy
 MUST be sent. Once the local session status has been set to
 up(3) by related processing from Section Section 6.6.2 then
 retransmissions of SBSMInit3 MUST stop. After an implementation
 dependent number of retries, the session SHOULD be deleted and a
 failure should be returned to the application which requested
 session creation.

 15. Success is returned to the calling module, along with the
 contents of the packet to be sent. Note that the packet
 returned MUST NOT be processed by an application and is only
 intended for use by the SNMP engine.

6.5.4 Reception of the SBSMInit3 message and generation of the
 SBSMRunning REPORT

 When a SNMPv3Message is received containing a SBSMInit3 message
 encoded into the securityParameters field, it MUST follow the
 elements of procedure below to finish establishing it's side of the
 SBSM session:

 1. The local session store is examined to determine if a session
 exists where the store.local-identifier field matches the
 SBSMInit3.to-identifier field. If not, the message is dropped
 and processing is ceased.

 2. If the store.session-status field is already set to up(2) then

Hardaker & Perkins Expires April 16, 2005 [Page 30]

Internet-Draft A Session-based security model for SNMP October 2004

 processing continues as in Section Section 6.6.2, as the
 store.messageStore must contain an already generated answer for
 the SBSMInit3 message. XXX move to an independent section. XXX
 state should only be one state (init1?)

 3. The SBSMInit3.init-information field is decrypted using the
 store.encryptionType and store.incomingEncryptionKey fields from
 the session store to produce a decrypted SBSMInit3Encr SEQUENCE.
 The values of the SBSMInit3Encr field are then parsed. If the
 values can not be parsed, then the snmpInASNParseErrs counter
 [RFC3418] is incremented, and an error indication (parseError)
 is returned to the calling module.

 4. The SBSMInit3Encr.init-identity field is examined, according to
 the security model and associated parameters (see section

Section 8) and if it does not match an acceptable identity for
 the other side of the session then: an authenticated SBSMError
 message should be returned to the responder with an error-code
 of unacceptableIdentity, processing is stopped and an error
 indication (authenticationFailed?) is returned. The store can
 be freed and the session establishment dropped.

 5. The SBSMInit3Encr.init-proof1 field value is checked to ensure it
 matches the expected signature as described in Section Section

6.5.3 using the signing mode described by the security model in
 section Section 8.

 If the identity authentication mechanism specifies that further
 processing is needed, a SBSMError message should be returned to
 the responder with an error-code of identityContinuationNeeded
 and a error-description field specificly encoded according to
 the needs of identity authentication mechanism. Processing of
 the incoming message should be stopped, although the session
 should be left in its current state.

 If the signature in the SBSMInit3Encr.init-proof1 field does not
 match the output of the signature alogrithm, then: an
 authenticated SBSMError message should be returned to the
 responder with an error-code of identityAuthenticationError,
 processing is stopped and an error indication
 (authenticationFailed?) is returned. The store can be freed and
 the session establishment dropped.

https://datatracker.ietf.org/doc/html/rfc3418

 6. The SBSMInit3Encr.init-proof2 field value is checked to ensure it
 matches the expected message authentication signature as
 described in Section Section 6.5.3 using the authentication mode
 described by the store.authenticationType field along with the
 store.incomingAuthenticationKey.

Hardaker & Perkins Expires April 16, 2005 [Page 31]

 If the identity authentication mechanism specifies that further
 processing is needed, a SBSMError message should be returned to
 the responder with an error-code of identityContinuationNeeded
 and a error-description field specificly encoded according to
 the needs of identity authentication mechanism. Processing of
 the incoming message should be stopped, although the session
 should be left in its current state.

 If the signature in the SBSMInit3Encr.init-proof1 field does not
 match the output of the message authentication alogrithm, then:
 an authenticated SBSMError message should be returned to the
 responder with an error-code of messageAuthenticationError,
 processing is stopped and an error indication
 (authenticationFailed?) is returned. The store can be freed and
 the session establishment dropped.

 7. Now that the SBSMInit3 message has been deemed authentic and the
 remote identity has been verified, the responder can fully
 establish the remaining portions of its side of the session
 parameters:

 store.session-status = up(2)
 store.window-size =
 min(policy.maximum-window-size, SBSMInit3Encr.window-size)
 store.startTime = generated.now
 store.legalSessionLength = policy.session-length
 store.remoteEngineID = SBSMInit3.init-engineID

 A. The store.securityName field is filled in using the mapping
 described by the security model to extract it from the
 init-identity field.

 8. A REPORT message is generated with a PDU containing the
 sbsmSessionsEstablished counter after it has been incremented.
 The REPORT is sent using the newly created session with a
 security level of authPriv and the mechanisms described in
 Section Section 6.6.1 using a SBSMRunning message. This message
 will be the first message sent over the live session, from the
 viewpoint of the responder and serves as an acknowledgment to
 the initiator that the SBSMInit3 message was received.

 9. The responder of the session may begin transmitting messages
 under protection of the newly created session at this point.

 10. XXX: store processing

Hardaker & Perkins Expires April 16, 2005 [Page 32]

Internet-Draft A Session-based security model for SNMP October 2004

6.6 Processing messages in an active session.

 Once a session has been established, messages may be then sent and
 received through it using the procedures defined in this section.

6.6.1 Outgoing Messages on an open session.

 This section describes the procedure followed by an SNMP engine
 whenever it generates a message containing a management operation
 (like a request, a response, a notification, or a report) through an
 open SBSM session. The elements of procedure below define how to
 fill in the values within the sbsm-running element which is then
 encoded by wrapping it as an OCTET STRING and placing it in the
 SNMPv3Message's msgSecurityParameters field.

 1. If any securityStateReference is passed (EG, for a Response or
 Report message), then information concerning the session is
 extracted from the storedSecurityData. The storedSecurityData
 can now be discarded after its two values, the local-identifier
 and the from-sequence-number fields, are extracted from the
 securityStateReference.

 2. If a securityStateReference is not passed, then a
 local-identifier must have been passed. If not, then a error
 indication (unknownSBSMSession) is returned to the calling
 module.

 3. The security session state is looked up based on the value of the
 local-identifier parameter, and if not found then an error
 indication (unknownSBSMSession) is returned to the calling
 module.

 4. If the current time minus the store.startTime is greater than the
 number of seconds from the store.legalSessionLength field (or
 any other value from a policy that restricts session time
 lengths), then the session MUST be immediately closed (see
 Section Section 6.1.1 for information on closing a session) and
 a unknownSBSMSession error returned to the calling module.

 Applications MAY choose to initiate another session under which

 the new message will be sent if the message type is not in
 reponse to another message (E.G., a Response-PDU or a Report-PDU
 and thus no storedSecurityData was passed in and thus no
 from-sequence-number value is available). If it is a
 reponse-class message then no new session is open and processing
 of the PDU MUST be dropped after the unknownSBSMSession error is
 returned.

Hardaker & Perkins Expires April 16, 2005 [Page 33]

Internet-Draft A Session-based security model for SNMP October 2004

 5. If the passed securityLevel specifies that the message is to be
 protected from disclosure, but the session does not support both
 an authentication and a encryption protocol then the message
 cannot be sent. An error indication (unsupportedSecurityLevel)
 is returned to the calling module.

 6. If the securityLevel specifies that the message is not to be
 authenticated, then the message cannot be sent. An error
 indication (unsupportedSecurityLevel) is returned to the calling
 module.

 SBSMRunning.to-identifier = store.remote-identifier

 7. The procedures for anti-replay protection described in Section
Section 6.9.1 MUST be followed at this point.

 8. If the session is making use of a compression algorithm, then the
 ScopedPDU is compressed according to the
 store.compression-algorithm and any compression-parameters
 required by the algorithm are stored in the
 SBSMRunning.compression-parameters field.

 9. Possibly encrypt the ScopedPDU

 A. If the securityLevel specifies that the message is not to be
 protected from disclosure, then a zero-length OCTET STRING
 is encoded into the SBSMRunning.encryption-parameters field
 and the plaintext scopedPDU serves as the payload of the
 message being prepared.

 B. If the securityLevel specifies that the message is to be
 protected from disclosure, then the octet sequence
 representing the serialized scopedPDU is encrypted according
 to the store.encryptionType encryption protocol (see Section

Section 6.4 for more details) . To do so a call is made to
 the encryption module that implements the
 store.encryptionType encryption algorithm using the
 store.outgoingEncryptionKey as the encryption key.

 If the encryption module returns failure, then the message

 cannot be sent and an error indication (encryptionError) is
 returned to the calling module.

 If the encryption module returns success, then the returned
 privParameters (if any, see Section Section 6.4.1) are put
 into the SBSMRunning.encryption-parameters field and the
 encryptedPDU serves as the payload of the message being
 prepared.

Hardaker & Perkins Expires April 16, 2005 [Page 34]

Internet-Draft A Session-based security model for SNMP October 2004

 10. The message is authenticated according to the session's
 authentication protocol (see Section Section 6.4). To do so a
 call is made to the authentication module that implements the
 store.authenticationType algorithm using the
 store.outgoingAuthenticationKey as the authentication key.

 If the authentication module returns failure, then the message
 cannot be sent and an error indication (authenticationFailure)
 is returned to the calling module.

 If the authentication module returns success, then the
 authentication-parameters field is put into the sbsm-running and
 the authenticatedWholeMsg represents the serialization of the
 authenticated message being prepared.

 11. The completed message with its length is returned to the calling
 module with the statusInformation set to success.

6.6.2 Incoming Messages on an open session.

 This section describes the procedure followed by an SNMP engine
 whenever it receives a message sent through an active SBSM session
 with a particular securityLevel.

 XXX: delete? To simplify the elements of procedure, the release of
 state information is not always explicitly specified. As a general
 rule, if state information is available when a message gets
 discarded, the state information should also be released. Also, an
 error indication can return an OID and value for an incremented
 counter and optionally a value for securityLevel, and values for
 engineID or contextID (from ScopedPDU) for the counter. In addition,
 the securityStateReference data is returned if any such information
 is available at the point where the error is detected.

 1. If the received securityParameters is not the serialization
 (according to the conventions of [RFC3417]) of an OCTET STRING
 formatted according to the SBSMSecurityParameters defined in

section 2.4, then the snmpInASNParseErrs counter [RFC3418] is
 incremented, and an error indication (parseError) is returned to
 the calling module. Note that we return without the OID and

https://datatracker.ietf.org/doc/html/rfc3417
https://datatracker.ietf.org/doc/html/rfc3418

 value of the incremented counter, because in this case there is
 not enough information to generate a Report PDU.

 2. The values of the SBSMRunning fields are extracted and the value
 of the SBSMRunning.to-identifier is used to look up a session
 store with a store.local-identifier equal to the
 SBSMRunning.to-identifier. If no such session store is found,

Hardaker & Perkins Expires April 16, 2005 [Page 35]

Internet-Draft A Session-based security model for SNMP October 2004

 processing is stopped and a unknownSBSMSession is returned to
 the calling module.

 3. If the current session is considered closed, then an
 unknownSBSMSession error returned to the calling module.

 4. check against valid session states... must be up or just have
 sent init3 right?

 5. If the current time minus the store.startTime is greater than the
 number of seconds from the store.legalSessionLength field (or
 any other value from a policy that restricts session time
 lengths), then the session MUST be immediately closed (see
 Section Section 6.1.1 for information on closing a session) and
 an unknownSBSMSession error returned to the calling module.

 6. If the SNMPv3 message's securityLevel specifies that the message
 was not authenticated, then processing is stopped, the
 sbsmStatsUnsupportedSecLevels counter is incremented and an
 error indication (unsupportedSecurityLevel) together with the
 OID and value of the incremented counter is returned to the
 calling module. IE, message authentication is a requirement of
 the SBSM security model.

 7. The anti-replay processing described in Section Section 6.9.2
 MUST be followed at this point.

 8. The store.session-status field is set to up(3) if it is not set
 to up(3) yet (IE, it might be set to init2(2) if no response had
 been received from the SBSMInit3 message yet).

 9. If the SNMPv3 message's securityLevel indicates that the message
 was not protected from disclosure, then the scopedPDU is assumed
 to be in plain text format.

 10. If the securityLevel indicates that the message was protected
 from disclosure, then the OCTET STRING representing the
 encryptedPDU is decrypted according to the store.encryptionType
 encryption protocol, the message.encryption-parameters field and
 the store.incomingEncryptionKey to obtain an unencrypted

 serialized scopedPDU value. To do so a call is made to the
 encryption module that implements the store.encryptionType
 encryption protocol using the store.incomingEncryptionKey as the
 encryption secret key.

 If the encryption module returns failure, then the message can
 not be processed, so the sbsmStatsDecryptionErrors counter is
 incremented and an error indication (messageEncryptionError)

Hardaker & Perkins Expires April 16, 2005 [Page 36]

Internet-Draft A Session-based security model for SNMP October 2004

 together with the OID and value of the incremented counter is
 returned to the calling module.

 If the encryption module returns success, then the decrypted
 scopedPDU is used as the message payload to be later returned to
 the calling module.

 11. If the session.compression-algorithm field indicates the packet
 should be compressed, then the compression algorithm is passed
 the scopedPDU field and the message.compression-parameters field
 and the results are used as the new scopedPDU. If the
 compression algorithm fails, then the sbsmStatsCompressionErrors
 counter is incremented and an error condition
 (messageCompressionError) is returned to the calling module and
 processing is stopped.

 12. If the PDU contained within the scopedPDU is a REPORT message of
 type sbsmSessionEstablished, then the message is dropped and
 processing is stopped. Success is returned to the calling
 module.

 13. The maxSizeResponseScopedPDU is calculated. This is the maximum
 size allowed for a scopedPDU for a possible Response message.
 Provision is made for a message header that allows the same
 securityLevel as the received Request.

 14. The securityName to be used when processing this message is
 retrieved from store.securityName.

 15. The security data is stored as storedSecurityData, so that a
 possible response to this message can and will use the same
 authentication and encryption parameters. Information to be
 saved/stored is as follows:

 local-identifier

 sequence-number

 16. The store.messageStoreList[sequence-number mod
 window-size].sequence-number field from the session store is set

 to the SBSMRunning.sequence-number of the incoming message.

 17. The statusInformation is set to success and a return is made to
 the calling module passing back the OUT parameters as specified
 in the processIncomingMsg primitive. Note that the application,
 especially for purposes of access control determination, should
 process the message as if it came through a security module
 equivalent to the security-model from the session store. IE, a

Hardaker & Perkins Expires April 16, 2005 [Page 37]

Internet-Draft A Session-based security model for SNMP October 2004

 application should not need be aware of SBSM processing but
 should only be aware of the identity mechanism used instead,
 which maps to a real SNMP security model number.

6.7 Processing SBSMError messages.

6.7.1 Processing outgoing SBSMError messages.

 Outgoing error codes are generated using a SBSMError message, used
 only when indicated by the elements of procedure in either Section

Section 6.5 or Section Section 6.6, are combined with a REPORT PDU
 containing a varbind with an incremented sbsmProtocolError counter
 contained within it and sent in response to the previous message that
 triggered an error. The procedure for generating the values of the
 SBSMError message are as follows. These procedures assume that a
 session store has already been found to process the error in.

 1. A SBSMError sequence is created and the SBSMError.error-code and
 SBSMError.error-description fields are filled according to the
 passed values.

 2. The procedures set forth in Section Section 6.6.1 should
 generally be followed, although XXX

6.7.2 Processing incoming SBSMError messages.

 When SBSMError mesasges are received either during session creation
 or during a running session, they should be processed according to
 the following procedures, depending on the value of the contained
 error-code. If no store.local-identifier matches the
 SBSMError.to-identifier, then the message is to be dropped and
 processing of the error message is ceased.

 1. When the SBSMError.to-identifier matches a store.local-identifier
 and the store.session-status is equal to anything other than
 up(3), then the following error codes are all processed in the
 same manner:

 * genErr(5)

 * resourceUnavailable

 * noSupportedAuthAlgorthim

 * noSupportedPrivAlgorthim

Hardaker & Perkins Expires April 16, 2005 [Page 38]

Internet-Draft A Session-based security model for SNMP October 2004

 * insufficientNonce

 * insufficientEncryptionParameters

 * noSupportedIdentityType

 * incorrectIdentityType

 * identificationError

 * identityAuthenticationError

 * unacceptableIdentity

 * messageAuthenticationError

 Specifically, all these errors indicate that the remote and gin
 was unable to process a SBSMInit1 message properly due to an
 unsupported value.

 Most importantly, an implementation MUST NOT accept one of these
 error messages as authoritative. They have not been
 cryptographically signed and are thus untrustworthy. Even if
 they have been properly signed by the negotiated diffie-helman
 key, the identity of the remote side has yet to be proven and
 thus the packet may be the work of an imposter (a
 man-in-the-middle). They are, however, useful for informational
 purposes. Upon reception of one of these messages, an action
 SHOULD NOT be taken until a suitable time out has passed, and no
 other corresponding error message or SBSM message was received.

 Reception of one of these messages can be dealt with and one of
 two ways, after the suitable timeout period has passed:

 M. Cease attempting the establishment of a session, delete the
 local corresponding session store, and log an error. The
 SBSMError.error-description field might contain a message
 intended for human consumption and implications.

 N. Attempt to renegotiate the establishment of a session after
 fixing the parameters associated with the error code in
 question. After new parameters have been generated, the SBSM
 message may be sent again containing the new parameters,
 assuming the session is in a suitable state to do so (E.G.,
 it is known that the other side of the connection hasn't
 closed their side of the negotiation).

Hardaker & Perkins Expires April 16, 2005 [Page 39]

Internet-Draft A Session-based security model for SNMP October 2004

 2. When the SBSMError.to-identifier matches a store.local-identifier
 and the store.session-status is equal to anything other than
 up(3) and the error-code is set to identityContinuationNeeded and
 the message is properly protected, then the error-description
 field should be passed to the identity authentication module as
 part of a continuing series of identification messages. The
 identity authentication module should then indicate what should
 happen next: either another SBSMInit3 message should be sent to
 the responder, or the session should be closed as an
 unrecoverable failure was hit (see Section Section 6.1.1 for
 information on closing a session). When further SBSMInit3 fields
 are sent, it is likely that new init-proof1 and a new init-proof2
 field should be encoded into the new SBSMInit3 message. Other
 than that, the other fields can be calculated according to the
 procedures outlined in Section Section 6.5.3.

 XXX: sequence-number and caching check

6.8 Closing an active session from either side

 Although implementations must expect the case where the other side of
 a session may have lost its session information, when possible
 closing messages should be sent in order to assist in
 resource-freeing and other cleanup tasks.

 To send a closing-session message, an empty GET PDU is constructed
 and sent to the opposite side with a SBSMError message where the
 error-code value is set to sessionClosing. This is responded to from
 the other side with a sessionClosed SBSMError message sent coupled
 with a REPORT PDU. If a REPORT message is not received by the side
 initiating the session closing, it SHOULD resend the close request
 (retrying with a suitable number of close attempts over a suitable
 period of time). Note that if the remote side has already closed its
 session, it will send a unknownSBSMSession SBSMError REPORT although
 it will be unable to properly authenticate it.

 When closing a session, the session cache must be cleaned according
 to the description in Section Section 6.1.1.

6.9 Processing the SBSM messages for anti-replay support.

 there are multiple points within the SBSM protocol where messages may
 be resent or retransmitted either intentionally by one side of the
 session or maliciously by an attacker. For these cases, the SBSM
 protocol is designed to officially take care of such messages. This
 section describes the processing required to support this for both
 incoming and outgoing messages of all types.

Hardaker & Perkins Expires April 16, 2005 [Page 40]

Internet-Draft A Session-based security model for SNMP October 2004

 The most fundamental concept to understand is that once a response to
 an incoming message it is stored by the security model so that the
 application and SNMP engine does not have to regenerate the response
 at a future time. Each SBSM message contains a sequence-number
 field, which is monotonically increasing in nature, deficit this
 sequence number that helps provide this replay protection. The size
 of this outgoing cash is dependent on a number of factors: the local
 implementation supported maximum, the locally defined policy, and the
 negotiated window-size parameter.

 Another important point is that the real transmission of previous
 requests do not result in an application reprocessing the request.
 Only the security model and the SNMP engine needs to be aware of the
 reach transmission, which should save computational cycles and used
 to lead to denial of service attacks. It should be noted that
 message indication and encryption services are still exercised again,
 but this competition should be lower than what would be needed to
 completely recompute a new response. It is recommended that engines
 which currently deal with retransmissions of lost requests now do so
 using these services when possible.

6.9.1 Processing outgoing messages

 Anytime a new outgoing message is being sent which is a direct
 response to an incoming message, it is stored as follows:

 /* update the caching information for the current message */
 store.outgoingSequenceNumber = store.outgoingSequenceNumber + 1
 outgoingMessage.sequence-number = store.outgoingSequenceNumber

 If the outgoing message is in response to an incoming message, then
 the sequence-number field must be available and the following
 processing is performed:

 /* put the outgoing message in the store in the right place */
 tempvar.N =
 incomingMessage.sequence-number mod store.window-size

 store.messageStore[tempvar.N].sequence-number =

 incomingMessage.sequence-number
 store.messageStore[tempvar.N].message =
 outgoingMessageData /* see below */
 store.messageStore[tempvar.N].timestamp = generated.now()

 If the value of the store.outgoingSequenceNumber wraps in the above
 process, the session MUST be immediately closed (see Section Section

Hardaker & Perkins Expires April 16, 2005 [Page 41]

Internet-Draft A Session-based security model for SNMP October 2004

 6.1.1 for information on closing a session)and unknownSBSMSession
 error returned to the calling module.

 For the outgoingMessageData, whatever data is needed to reconstruct
 the response properly should be stored here. For messages which are
 specific to the negotiation portion of the SBSM protocol, this would
 generally be the protocol fields as well as the possibly-mostly-blank
 ScopedPDU. In general, sensed this specification can not mandate
 that the other side of the session use an identical SNMPv3 message,
 it must be possible to receive a new SNMPv3 message from the other
 side which contains a new msgID field and still be able to
 reauthenticate the message without regenerating any of the other SBSM
 fields or the enclosed ScopedPDU. For outgoing messages on a running
 session, the only outgoingMessageData that is to be saved should be
 the unencrypted ScopedPDU. Note that the unencrypted version must be
 saved since the retransmission of the SNMPv3 message may have dropped
 the encryption flag.

6.9.2 Processing Incoming Messages

 When an incoming message is received, it should be subject to the
 following processing procedures for all message types except
 SBSMInit1 messages:

 1. If the incomingMessage.sequence-number is less than the
 store.incomingMinSequenceNumber, then an error indication
 (authenticationFailure) is returned to the calling module and
 processing is stopped.

 2. If the message is an SBSMInit2 or SBSMInit3 message or is a
 SBSMRunning message but is not a response class message, and the
 second three of both these statements are both true:

 tempvar.N =
 incomingMessage.sequence-number mod store.window-size

 incomingMessage.sequence-number <
 store.incomingMinSequenceNumber + store.window-size

 incomingMessage.sequence-number ==

 store.messageStoreList[tempvar.N].sequence-number

 store.messageStoreList[tempvar.N].timestamp >=
 generated.now() + 300 seconds

 Then: the message stored in the

Hardaker & Perkins Expires April 16, 2005 [Page 42]

Internet-Draft A Session-based security model for SNMP October 2004

 store.messageStoreList[tempvar.N].message field is returned as
 the answer to the incoming request and is returned to the calling
 module. An application MUST NOT process this request and the
 resulting response message contained within the store message
 MUST be used to generate a duplicate response. Processing should
 then continue through the outgoing processing steps for the given
 outgoing message type, but using the
 store.messageStoreList[tempvar.N].message value as the returned
 message.

 3. If the message is a response class message, and if both of the
 following two statements are true:

 incomingMessage.sequence-number <
 store.incomingMinSequenceNumber + store.window-size

 store.messageStoreList[tempvar.N].sequence-number ==
 incomingMessage.sequence-number field

 Then the message is dropped as it has already been previously
 received.

 4. The message's authentication is checked according to the
 store.authenticationType authentication protocol and
 store.incomingAuthenticationKey. To do so a call is made to the
 authentication module that implements the
 store.authenticationType authentication protocol using the
 store.incomingAuthenticationKey as the authentication secret key.

 If the authentication module returns failure, then the message
 cannot be trusted, so the sbsmStatsWrongDigests counter is
 incremented and an error indication (sbsmIntegrityFailure)
 together with the OID and value of the incremented counter is
 returned to the calling module.

 If the authentication module returns success, then the message is
 authentic and can be trusted so processing continues.

 5. The store.incomingMinSequenceNumber is then updated: to be the
 maximum of:

 store.incomingMinSequenceNumber =
 min(store.incomingMinSequenceNumber,
 incomingMessage.sequence-number - store.window-size)

 If the new incomingMinSequenceNumber number wraps or is set to
 2^32-1-store.window-size, then the session MUST be closed after
 this message is processed (see Section Section 6.1.1 for

Hardaker & Perkins Expires April 16, 2005 [Page 43]

Internet-Draft A Session-based security model for SNMP October 2004

 information on closing a session).

7. MIB Definitions

 The MIB included below is only minimal in nature (obviously) but it
 is a start. Feedback on useful objects to be placed into this MIB
 would be highly appreciated.

 SBSM-MIB DEFINITIONS ::= BEGIN

 IMPORTS
 MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Integer32,
 Unsigned32, Counter32 FROM SNMPv2-SMI

 TEXTUAL-CONVENTION
 FROM SNMPv2-TC

 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP
 FROM SNMPv2-CONF

 InetAddressType, InetAddress, InetPortNumber
 FROM INET-ADDRESS-MIB
 ;

 --
 -- module identity
 --

 sbsmMIB MODULE-IDENTITY
 LAST-UPDATED "200402150000Z"
 ORGANIZATION "IETF non-existent SBSM Working Group"
 CONTACT-INFO "Wes Hardaker
 Sparta, Inc.
 P.O. Box 382
 Davis, CA 95617
 Phone: +1 530 792 1913
 Email: hardaker@tislabs.com"
 DESCRIPTION
 "This MIB module defines objects for managing the SNMPv3 SBSM

 security module.

 Copyright (C) The Internet Society (2004). This version of
 this MIB module is part of RFC XXXX, see the RFC itself for
 full legal notices."

 -- Revision History

Hardaker & Perkins Expires April 16, 2005 [Page 44]

Internet-Draft A Session-based security model for SNMP October 2004

 REVISION "200402150000Z"
 DESCRIPTION "Initial version, published as RFC xxxx."
 -- RFC-editor assigns xxxx

 -- XXX: To be assigned by IANA
 ::= { XXX }

 --
 -- groups of related objects
 --

 sbsmObjects OBJECT IDENTIFIER
 ::= { sbsmMIB 1 }
 sbsmNotificationObjects OBJECT IDENTIFIER
 ::= { sbsmMIB 2 }
 sbsmConformanceObjects OBJECT IDENTIFIER
 ::= { sbsmMIB 3 }

 --
 -- Textual Conventions
 --

 sbsmCounterObjects OBJECT IDENTIFIER ::= { sbsmObjects 1 }
 sbsmSessionObjects OBJECT IDENTIFIER ::= { sbsmObjects 2 }
 sbsmCompressionDefinitions
 OBJECT IDENTIFIER ::= { sbsmObjects 3 }

 --
 -- Counter objects
 --
 sbsmSessionsEstablished OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmCounterObjects 1}

 sbsmStatsUnsupportedSecLevels OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only

 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmCounterObjects 2}

 sbsmStatsDecryptionErrors OBJECT-TYPE
 SYNTAX Counter32

Hardaker & Perkins Expires April 16, 2005 [Page 45]

Internet-Draft A Session-based security model for SNMP October 2004

 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmCounterObjects 3}

 sbsmStatsCompressionErrors OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmCounterObjects 4}

 sbsmProtocolError OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmCounterObjects 5}

 sbsmStatsWrongDigests OBJECT-TYPE
 SYNTAX Counter32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmCounterObjects 6}

 --
 -- Established sessions
 --

 sbsmSessionTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SbsmSessionEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A table describing currenly open, currently being established
 or recently closed SBSM sessions."
 ::= { sbsmSessionObjects 1 }

 sbsmSessionEntry OBJECT-TYPE
 SYNTAX SbsmSessionEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION

Hardaker & Perkins Expires April 16, 2005 [Page 46]

Internet-Draft A Session-based security model for SNMP October 2004

 ""
 INDEX { sbsmId }
 ::= { sbsmSessionTable 1 }

 SbsmSessionEntry ::= SEQUENCE {
 sbsmId Unsigned32
 }

 sbsmId OBJECT-TYPE
 SYNTAX Unsigned32
 MAX-ACCESS read-only
 STATUS current
 DESCRIPTION
 ""
 ::= { sbsmSessionEntry 1 }

 -- remote ID, state, alg types in use, started when, misc counters, ...
 -- (suggestions welcome)

 --
 -- Compression algorithms
 --
 sbsmNullCompressionAlgorithm
 OBJECT IDENTIFIER ::= { sbsmCompressionDefinitions 1 }

 sbsmGZipCompressionAlgorithm
 OBJECT IDENTIFIER ::= { sbsmCompressionDefinitions 1 }

 sbsmBZip2CompressionAlgorithm
 OBJECT IDENTIFIER ::= { sbsmCompressionDefinitions 1 }

 --
 -- other MIB items to do:
 --
 -- o notifications
 -- o configuration of policy. eg: user A using algorthim B/C
 -- is different than user X using Y/Z.

 END

8. Identification Mechanisms

 overall picture: TBD

Hardaker & Perkins Expires April 16, 2005 [Page 47]

Internet-Draft A Session-based security model for SNMP October 2004

8.1 Public Key Based Identities

8.1.1 Security Model assignment

 This mechanism defines multiple identity types, all of which are
 based on public-key mechanisms for authentication. The SNMP security
 model numbers will be assigned by (IANA). These models include:

 o BER encoded signature-based X.509 certificate.

 o PGP certificate.

 o ssh public key.

 o PKIX certificate

 o XXX

8.1.2 Format of the identity field

 Certificate based identities are identities which are represented by
 public key based certificates. Multiple types of certificates are
 defined below, but not all types of certificates may be supported by
 all implementations.

 The identity, when transmitted, will be formated according to the
 following definition:

 CertificateSecurityIdentity DEFINITIONS IMPLICIT TAGS ::= BEGIN

 CertificateIdentityInformation ::=
 SEQUENCE {
 certificate-user OCTET STRING,
 certificate-list CertificateList
 }

 CertificateList ::=
 SEQUENCE (SIZE (0..32)) OF OCTET STRING
 END

 Where:

 certificateUser: The local account the certificate is expected to be
 authorized to grant access for.

Hardaker & Perkins Expires April 16, 2005 [Page 48]

Internet-Draft A Session-based security model for SNMP October 2004

 certificate-list The certificate itself, along with any required
 supporting certificates (E.G. parent certificates if required),
 all of which are encoded as dictated by the corresponding identity
 type (IE, security model number).

8.1.3 Signatures

 init-proof1 and resp-proof1 are generated by creating a public key
 signing and the resulting signature is used as the value for the
 init-proof1 and resp-proof1 fields.

 Checking the value of the init-proof1 and resp-proof1 fields require
 the following steps:

 1. If the security model number must be checked and if it is not a
 support typed, then a authentication field error MUST be
 returned.

 2. The user name mapping must be a legitimate mapping, as explained
 in Section Section 8.1.4 below.

 3. The value of the signature field should be checked against the
 expected generated value.

8.1.4 Security Name Mapping

 The certificate-user field indicates which securityName the given
 certificate is expected to access. Legitimate access to this
 securityName via the given certificate MUST be checked for
 authorization for the mapping to take place. If the provided
 certificate is not allowed to "log into" the given securityName
 account, an authentication error MUST result.

8.2 Local Accounts

 When one side of a session wants to perform a traditional login for
 authentication purposes, this identification mechanism can be used to

 achieve that purpose. Note that this mechanism is not recommended
 since the user's password is transmitted over the wire, although it
 is encrypted within the session. It is expected that the mechanism
 will be needed to match current security deployment practices,
 however. One such example is unix systems which do not have a copy
 of the user's password and must obtain a copy of it to hash and
 ensure that the local password database hash matches the incoming
 password's hash. A better identification mechanism is specified in
 Section XXX which should be used instead whenever possible.

Hardaker & Perkins Expires April 16, 2005 [Page 49]

Internet-Draft A Session-based security model for SNMP October 2004

 It is critical for security that this mechanism MUST NOT be used to
 authenticate a responder to an initiator.

8.2.1 Security Model assignment

 This mechanism will be assigned the security number XXX (IANA).

8.2.2 Format of the identity field

 The identity, when transmitted, will be formated according to the
 following definition:

 LocalAccountSecurityIdentity DEFINITIONS IMPLICIT TAGS ::= BEGIN

 LocalAccountIdentityInformation ::=
 SEQUENCE {
 userName OCTET STRING,
 passPhrase OCTET STRING
 }
 END

8.2.3 Signatures

 Generating init-proof1 requires that a signature be generated to sign
 the protocol values that have been passed over the wire. To do this,
 the user's passPhrase is converted into a key of an appropriate
 length by using the authentication algorithm, as negotiated via the
 authentication-algorithm field of SBSMInit2, as follows:

 PASSHASH = ALGORITHM_HASH(passPhrase)
 KEY = ALGORITHM_HMAC_HASH(PASSHASH,
 init-engineID | resp-engineID)

 The KEY is then used to generate a digest using the authentication
 algorithm and protocol indicated by the authentication-algorithm
 value. It is potentially truncated according to the authentication
 protocol specifications of the authentication-algorithm before being
 inserted into the init-proof1 field of the SBSMInit2Encr portion of

 the message.

 DIGEST = ALGORITHM_HMAC_HASH(KEY, DATA_TO_DIGEST)

 XXX: todo change the engineIDs into proper random nonce data.

8.2.4 Security Name Mapping

 Mapping a local account user name into a securityName for storage in

Hardaker & Perkins Expires April 16, 2005 [Page 50]

Internet-Draft A Session-based security model for SNMP October 2004

 the session store and for use in access control is done using a
 one-to-one mapping. IE, the userName passed in via the
 IdentityInformation sequence is used directly as the securityName.

8.3 EAP Authentication and Identification

 Although not defined yet, the EAP identification mechanism will
 support a number of important identification concepts missing from
 the previous mechanisms, such as Generic Token Card, One Time
 Password, and two factor authentication support.

 XXX

8.4 SSH Authentication and Identification

 Although not defined yet, the SSH identification mechanism will
 support identifying users and hosts based on the configured ssh keys
 for them. It will not make use of SSH itself, just the keys to do
 authentication and identification. Once a SBSM running session has
 been established no use of the SSH identity keys will be needed. The
 SBSM negotiated algorithms and keys will be used for SBSM/SNMPv3
 running message integrity.

 XXX

9. Compression Algorithms

9.1 sbsmNullCompressionAlgorithm

 The sbsmNullCompressionAlgorithm algorithm is a NULL compression
 algorithm. No compression occurs as a result of this algorithm and
 the input and output of the algorithm for both compression and
 decompression are identical. The compression-parameters field of all
 messages must be set a zero length string.

9.2 sbsmGZipCompressionAlgorithm

 The sbsmGZipCompressionAlgorithm algorithm uses the GZip algorithm to

 compress the SBSM messages. The compression-parameters field of all
 messages is unneeded and must be set to a zero length string.

9.3 sbsmBZip2CompressionAlgorithm

 The sbsmBZip2CompressionAlgorithm algorithm uses the BZip2 algorithm
 to compress the SBSM messages. The compression-parameters field of
 all messages is unneeded and must be set to a zero length string.

Hardaker & Perkins Expires April 16, 2005 [Page 51]

Internet-Draft A Session-based security model for SNMP October 2004

10. Security Considerations

 This document defines a security protocol to be used within the SNMP
 framework for providing authentication, integrity, and encryption of
 SNMP messages. The elements of procedure defined in this document
 were carefully constructed and must be followed in the proper order
 to ensure the security properties of the SBSM hold true.

 XXX: Write more.

11. TODO list

 1. discuss timeout values (don't negotiate, just deny those packets
 in the future? Doesn't work, necessarily, if managers want to
 know they have an active open session. But then why not just
 offer a MIB object instead of burdening the security section with
 more fields that won't matter)

12. History and Acknowledgments

 o Comments from David:

 Back in 1999 after the updates for SNMPv3 where completed for it
 to be elevated to DRAFT-Standard status, feedback was gathered to
 determine how SNMPv3 was being used in operational networks. The
 feedback showed that SNMPv3 was not being as widely deployed as
 anticipated. Only a few vendors were supporting SNMPv3 agents,
 and there was little support in management platforms. Also, where
 it was supported, it was typically not deployed (turned on).

 This resulted in the start of interactions between the operator
 community and the SNMP community. Over time, it became clear that
 there was a gap between the needs of the operators and the
 technology defined by the SNMP community. There were several
 areas where there were gaps. In the security area, the phrase
 that was heard over and again was that Radius and SSH were used to
 manage user authentication for access to managed devices, and
 SNMPv3/USM created a parallel set of users that had no
 coordination with the existing security infrastructure.

 There were several IETF working groups started to address issues
 unrelated to security, but none were started to address the
 security related issues. Thus, the investigation into security
 issues was uncordinated by the IETF. Several individuals attacked
 the security issues. Ken Hornstein (?sp) looked at creating a
 security model using Kerberos security. I (and others) looked at
 what it would take to use Radius for user authentication. After

Hardaker & Perkins Expires April 16, 2005 [Page 52]

Internet-Draft A Session-based security model for SNMP October 2004

 some study, I was convinced that directly using Radius "would not
 work". This was due to two problems. The first was that with
 USM, the user identity is carried in each message, and to check
 the user identity with a Radius server would mean that the
 processing of an SNMPv3 message would be delayed until the Radius
 server could authenticate a user's identity. The added delay,
 recovery from dropped traffic to/from the Radius server, and the
 additional network traffic were judged to be high costs. The
 second problem was how to support authentication and encryption of
 SNMP messages using Radius technology. Several approaches were
 considered, but none were determined workable.

 So, if per SNMP operation identity authentication, and then
 message authentication and optionally message encryption are not
 feasible using Radius, how could Radius be used? It was at that
 point that the idea of creating a session where identity
 authentication was determined, and then creation of session keys
 for message in the session authentication and optional encryption
 was determined. This fundamentally different approach to
 providing security to SNMPv3 had the promise that many different
 mechanisms could be used to provide identity authentication, and
 negotiated algorithms could be used for message in the session
 authentication and encryption. Also, I was convinced that
 sessions could be created the ran over UDP, and the overhead of
 the maintained session state was not too costly.

 A sketchy description of this session-based security model was put
 together in June 2001, and shown to a select few during the London
 IETF in July 2001. The fundamental approach, which is that used
 in this proposal, was contained in that sketchy proposal. The
 problem was to work through all of the security details. That is
 when one after another security experts were asked to provide some
 assistance.

 None volunteered until Wes was convinced that there might be merit
 in the approach. And it took some time before he could start
 focusing on the security details. This document has only occurred
 due to his dedication to the effort in spite of my delays.

 o From Wes:

 Much of the work in this document is directly derived from the
 SIGMA protocol [SIGMA]. Specifically, the protocol within this

 document is derived from the SIGMA-I variation of the SIGMA
 protocol. Some of the design decisions made by the IPsec working
 group surrounding the use of SIGMA in the IKEv2 specification
 [IKEv2] is also reflected here where appropriate (note that IKEv2
 is based on SIGMA-R though). Finally, some of the text in this

Hardaker & Perkins Expires April 16, 2005 [Page 53]

Internet-Draft A Session-based security model for SNMP October 2004

 document was plagiarized directly from the User Based Security
 module document [RFC3414].

 Discussions Wes has held with the following people over the past
 few years influenced the contents of this document through either
 generation of requirements or design ideas:

 Michael Baer

 Chris Elliot

 Eric Fleishman

 David Harrington

 Ken Hornstein

 Sean O'Keeffe

 David and I have disagreements about where various ideas within
 the draft came from and whether they were derived in parallel or
 not. He has promised me, though, that I have thought of at least
 one idea in the paper and has thanked me for being an efficient
 pen.

13. References

13.1 Normative References

 [refs.RFC3412]
 Case, J., "Message Processing and Dispatching for the
 Simple Network Management Protocol (SNMP)", RFC 3412, STD
 62, December 2002.

 [refs.RFC3415]

https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3412
https://datatracker.ietf.org/doc/html/rfc3415

 Wijen, B., Presuhn, R. and K. McCloghrie, "View-based
 Access Control Model (VACM) for the Simple Network
 Management Protocol (SNMP)", RFC 3415, STD 62, December
 2002.

 [refs.RFC3414]
 Wijen, B. and U. Blumenthal, "User-based Security Model
 (USM) for version 3 of the Simple Network Management
 Protocol (SNMPv3)", RFC 3414, STD 62, December 2002.

Hardaker & Perkins Expires April 16, 2005 [Page 54]

https://datatracker.ietf.org/doc/html/rfc3415
https://datatracker.ietf.org/doc/html/rfc3414
https://datatracker.ietf.org/doc/html/rfc3414

Internet-Draft A Session-based security model for SNMP October 2004

13.2 Informative References

 [refs.v3overview]
 Perkins, D., "An Consolidated Overview of the SNMPv3
 Protocol (Internet-Draft)", February 2004.

Authors' Addresses

 Wes Hardaker
 Sparta
 P.O. Box 382
 Davis 95617
 US

 EMail: hardaker@tislabs.com

 David T. Perkins
 SNMPInfo
 548 Quailbrook Ct
 San Jose 95110
 US

 EMail: dperkins@snmpinfo.com

Appendix A. Diffie-Helman Group information

A.1 Diffie-Helman Group IKEv2-N5

 This group is represented during negotiations by the OID XXX.

 The Diffie-Helman properties to be used for Diffie-Helman
 calculations using this group is the following. (Note that this is
 Group 5 from the IKEv2 specification).

 The prime is 2^1536 - 2^1472 - 1 + 2^64 * {[2^1406 pi] + 741804}.
 Its hexadecimal value is

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1 29024E08
 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD EF9519B3 CD3A431B
 302B0A6D F25F1437 4FE1356D 6D51C245 E485B576 625E7EC6 F44C42E9
 A637ED6B 0BFF5CB6 F406B7ED EE386BFB 5A899FA5 AE9F2411 7C4B1FE6
 49286651 ECE45B3D C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8
 FD24CF5F 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA237327 FFFFFFFF FFFFFFFF

 The generator is 2.

Hardaker & Perkins Expires April 16, 2005 [Page 55]

Internet-Draft A Session-based security model for SNMP October 2004

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78, and
 except as set forth therein, the authors retain all their rights.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr
https://datatracker.ietf.org/doc/html/bcp78

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hardaker & Perkins Expires April 16, 2005 [Page 56]

