
Network Working Group T. Hardjono, Ed.
Internet-Draft MIT
Intended status: Standards Track M. Machulak
Expires: October 28, 2012 Newcastle University
 E. Maler
 XMLgrrl.com
 C. Scholz
 COM.lounge GmbH
 April 26, 2012

OAuth Dynamic Client Registration Protocol
draft-hardjono-oauth-dynreg-03

Abstract

 This specification proposes an OAuth Dynamic Client Registration
 protocol.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 28, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Hardjono, et al. Expires October 28, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth Dynamic Client Registration April 2012

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3
1.2. Terminology . 3

2. Use Cases . 4
3. Requirements . 5

 3.1. The client needs to be uniquely identifiable by the
 authorization server 5
 3.2. The authorization server must collect metadata about a
 client for later user interaction 5
 3.3. The authorization server must have the option of
 strongly authenticating the client and its metadata . . . 5
 3.4. Dynamic client registration must be possible from both
 web-server applications and applications with other
 capabilities and limitations, such as native
 applications . 6
 3.5. Transaction integrity must be ensured in large
 deployments where data propagation can be an issue 6

3.6. Use of standardized discovery protocol 6
3.7. UMA design principles and requirements 7

4. Analysis of Registration Flow Options 7
5. Client Registration with Pushed Metadata 8
5.1. Client Registration Request 9
5.2. Client Registration Response 10
5.3. Error Response . 11

6. Client Registration with Pushed URL and Pulled Metadata . . . 12
6.1. Client Registration Request 13
6.2. Client Discovery . 13
6.3. Client Registration Response 13
6.4. Error Response . 14

7. Native Application Client Registration 15
8. Security Considerations 16
9. Acknowledgments . 17
10. Document History . 17
11. References . 17
11.1. Normative References 17
11.2. Non-Normative References 18

 Authors' Addresses . 18

Hardjono, et al. Expires October 28, 2012 [Page 2]

Internet-Draft OAuth Dynamic Client Registration April 2012

1. Introduction

 This draft discusses a number of requirements for and approaches to
 automatic registration of clients with an OAuth authorization server,
 with special emphasis on the needs of the OAuth-based User-Managed
 Access protocol [UMA-Core]. This draft also proposes a dynamic
 registration protocol for an OAuth authorization server.

 In some use-case scenarios it is desirable or necessary to allow
 OAuth clients to obtain authorization from an OAuth authorization
 server without the two parties having previously interacted.
 Nevertheless, in order for the authorization server to accurately
 represent to end-users which client is seeking authorization to
 access the end-user's resources, a method for automatic and unique
 registration of clients is needed.

 The goal of this proposed registration protocol is for an
 authorization server to provide a client with a client identifier and
 optionally a client secret in a dynamic fashion. To accomplish this,
 the authorization server must first be provided with information
 about the client, with the client-name being the minimal information
 provided. In practice, additional information will need to be
 furnished to the authorization server, such as the client's homepage,
 icon, description, and so on.

 The dynamic registration protocol proposed here is envisioned to be
 an additional task to be performed by the OAuth authorization server,
 namely registration of a new client identifier and optional secret
 and the issuance of this information to the client. This task would
 occur prior to the point at which the client wields its identifier
 and secret at the authorization server in order to obtain an access
 token in normal OAuth fashion.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol parameter names and values
 are case sensitive.

1.2. Terminology

https://datatracker.ietf.org/doc/html/rfc2119

Hardjono, et al. Expires October 28, 2012 [Page 3]

Internet-Draft OAuth Dynamic Client Registration April 2012

 resource server
 A server capable of accepting and responding to protected
 resource requests.

 resource owner
 An entity capable of granting access to a protected resource.

 client
 An application obtaining authorization and making protected
 resource requests.

 authorization server
 A server capable of issuing tokens after successfully
 authenticating the resource owner and obtaining authorization.
 The authorization server may be the same server as the resource
 server, or a separate entity.

 authorization manager
 An UMA-defined variant of an authorization server that carries
 out an authorizing user's policies governing access to a
 protected resource.

 end-user authorization endpoint
 The authorization server's HTTP endpoint capable of
 authenticating the end-user and obtaining authorization.

 token endpoint
 The authorization server's HTTP endpoint capable of issuing
 tokens and refreshing expired tokens.

 client identifier
 An unique identifier issued to the client to identify itself to
 the authorization server. Client identifiers may have a
 matching secret.

 client registration endpoint The authorization server's HTTP
 endpoint capable of issuing client identifiers and optional
 client secrets.

2. Use Cases

 The UMA protocol involves two instances of OAuth flows. In the
 first, an end-user introduces a host (essentially an enhanced OAuth
 resource server) to an authorization manager (an enhanced OAuth
 authorization server) as a client of it, possibly without that host
 having obtained client identification information from that server
 previously. In the second, a requester (an enhanced OAuth client)

Hardjono, et al. Expires October 28, 2012 [Page 4]

Internet-Draft OAuth Dynamic Client Registration April 2012

 approaches a host and authorization manager to get and use an access
 token in approximately the normal OAuth fashion, again possibly
 without that client having obtained client identification information
 from that server previously. Both the host-as-client and the
 requester-as-client thus may need dynamic client registration in
 order for the UMA protocol flow to proceed.

 The needs for inter-party trust vary in different UMA use cases. In
 lightweight Web circumstances such as person-to-person calendar
 sharing, dynamic registration is entirely appropriate. In cases
 where high-sensitivity information is being protected or where a
 regulatory environment puts constraints on the building of trust
 relationships, such as sharing health records with medical
 professionals or giving access to tax records to outsourced
 bookkeeping staff, static means of provisioning client identifiers
 may be imposed.

 More information about UMA use cases is available at [UMA-UC].

3. Requirements

 Following are proposed requirements for dynamic client registration.

3.1. The client needs to be uniquely identifiable by the authorization
 server

 In order for an authorization server to do proper user-delegated
 authorization and prevent unauthorized access it must be able to
 identify clients uniquely. As is done today in OAuth, the client
 identifier (and optional secret) should thus be issued by the
 authorization server and not simply accepted as proposed by the
 client.

3.2. The authorization server must collect metadata about a client for
 later user interaction

 In order for the authorization server to describe a client to an end-
 user in an authorization step it needs information about the client.
 This can be the client name at a minimum, but today servers usually
 request at least a description, a homepage URL, and an icon when
 doing manual registration.

3.3. The authorization server must have the option of strongly
 authenticating the client and its metadata

 In order to prevent spoofing of clients and enable dynamic building
 of strong trust relationships, the authorization server should have

Hardjono, et al. Expires October 28, 2012 [Page 5]

Internet-Draft OAuth Dynamic Client Registration April 2012

 the option to verify the provided information. This might be solved
 using message signature verification; relatively weaker
 authentication might be achieved in a simpler way by pulling metadata
 from a trusted client URL.

3.4. Dynamic client registration must be possible from both web-server
 applications and applications with other capabilities and
 limitations, such as native applications

 In the UMA context, alternative types of applications might serve as
 both hosts (for example, as a device-based personal data store) and
 requesters (for example, to subscribe to a calendar or view a photo).
 Such applications, particularly native applications, may have special
 limitations, so new solutions to meeting the set of requirements
 presented here may be needed. We anticipate that each instance of a
 native application (that is, the specific instance running on each
 device) that is installed and run by the same user may need the
 option of getting a unique client identifier. In this case, there
 are implications around gathering and displaying enough information
 to ensure that the end-user is delegating authorization to the
 intended application.

3.5. Transaction integrity must be ensured in large deployments where
 data propagation can be an issue

 When a client sends information to a server endpoint, it might take
 time for this data to propagate through big server installations that
 spread across various data centers. Care needs to be taken that
 subsequent interactions with the user after the registration process,
 such as an authorization request, show the correct data.

 In the UMA context, dynamic registration of a host at an AM is almost
 certain to take place in the middle of an introduction and
 authorization process mediated by the end-user; even though the host
 needs a client identifier from the AM no matter which end-user caused
 the registration process to take place, the end-user may need to wait
 for the registration sub-process to finish in order to continue with
 the overall process. It may be necessary to ensure that the host
 interacts with the same AM server throughout.

3.6. Use of standardized discovery protocol

 Regardless of flow option, the client needs to discover the
 authorization server's client registration endpoint. The client MUST
 use the [RFC5785] and [hostmeta] discovery mechanisms to learn the
 URI of the client registration endpoint at the authorization server.
 The authorization server MUST provide a host-meta document that
 clearly defines the registration end-point at the server.

https://datatracker.ietf.org/doc/html/rfc5785

Hardjono, et al. Expires October 28, 2012 [Page 6]

Internet-Draft OAuth Dynamic Client Registration April 2012

3.7. UMA design principles and requirements

 In addition to general requirements for dynamic client registration,
 UMA seeks to optimize for the design principles and requirements
 found in the UMA Requirements document [UMA-Reqs], most particularly:

 o DP1: Simple to understand, implement in an interoperable fashion,
 and deploy on an Internet-wide scale

 o DP6: Able to be combined and extended to support a variety of use
 cases and emerging application functionality

 o DP8: Avoid adding crypto requirements beyond what existing web app
 implementations do today

 o DP10: Complexity should be borne by the authorization endpoint vs.
 other endpoints

4. Analysis of Registration Flow Options

 This section analyzes some options for exchanging client metadata for
 a client identifier and optional secret.

 It currently seems impossible to specify a single registration flow
 that will satisfy all requirements, deployment needs, and client
 types. This document, therefore, presents as small a variety of
 options as possible. If it is possible to construct a single unified
 flow in the ultimate design, all other things being equal this would
 be preferred.

 Client provides metadata on every request
 In this approach, the client passes all necessary metadata such
 as its name and icon on every request to the authorization
 server, and the client doesn't wield a client identifier as
 such. This option makes it more difficult (though not
 impossible) to meet the first and second requirements since
 different clients could theoretically represent themselves to
 an authorization server with the same metadata and the same
 client could represent itself on subsequent visits with
 different metadata. Also, today's OAuth protocol requires the
 use of a client identifier. Because of the UMA simplicity
 principle we do not recommend this flow option and and have not
 provided a candidate solution.

Hardjono, et al. Expires October 28, 2012 [Page 7]

Internet-Draft OAuth Dynamic Client Registration April 2012

 Client pushes metadata
 In this approach, the client discovers the registration
 endpoint of the authorization server and sends its metadata
 directly to that endpoint in a standard format. The
 authorization server answers with a client identifier and
 optional secret in the response. This approach may be
 necessary in cases where the client is behind a firewall, but
 strong authentication of the client metadata may be more
 difficult or costly with this approach than with a "pull"
 approach, discussed just below. Further, this approach is
 problematic in the case of applications that can't function as
 POST-capable web servers. A proposal for "push" is presented
 in this document.

 Client pushes URL, server pulls metadata from it
 In this approach, the client sends only a URL to the
 authorization server, which then uses that URL to pull metadata
 about the client in some standard format, returning
 identification information in the response to the initial
 request. This approach more easily allows for strong
 authentication of clients because the metadata can be
 statically signed. (The message containing the URL could be
 signed as well.) However, caution should be exercised around
 the propagation issue if the initial URL push is made to a
 server different from the one the end-user is interacting with.
 Further, this approach is problematic in the case of
 applications that cannot themselves serve as "pull-able"
 metadata repositories. A proposal for "pull" is presented in
 this document.

 Native-app client collaborates with home-base web app to provide
 metadata
 An instance of a native application (for example, on a mobile
 device) may have difficulty directly conveying trustworthy
 metadata but may also have difficulty providing a trustworthy
 third-party source from which a server can pull metadata. This
 document explores one option for meeting the requirements, but
 does not present a full-fledged proposal.

5. Client Registration with Pushed Metadata

 This registration flow works as follows:

 1. The client sends its metadata in JSON form to the client
 registration endpoint. The client MUST send its name,
 description, and redirection URI and MAY send a URI for its icon.
 The client MAY sign the metadata as a JSON Token issuer, using

Hardjono, et al. Expires October 28, 2012 [Page 8]

Internet-Draft OAuth Dynamic Client Registration April 2012

 the mechanisms defined in [OAuth-Sig].

 2. The authorization server checks the data, verifying the signature
 as necessary, and returns a client identifier and an optional
 client secret.

 +--------+ +---------------+
 | Client |--(A)--- Registration Request --->| Authorization |
 | | with Metadata | Server |
 | | | |
 | |<-(B)----Registration Response ---| |
 | | with Client ID Info | |
 +--------+ +---------------+

 Figure 1: Client Registration Flow with Pushed Metadata

5.1. Client Registration Request

 The client sends a JSON formatted document to the client registration
 endpoint. The client includes the following parameters in the
 request:

 type
 REQUIRED. This parameter must be set to "push".

 client_name
 REQUIRED. This field contains a human-readable name of the
 client.

 client_url
 REQUIRED. This field contains the URL of the homepage of the
 client.

 client_description
 REQUIRED. This field contains a text description of the
 client.

 client_icon
 OPTIONAL. This field contains a URL for an icon for the
 client.

 redirect_url
 REQUIRED. This field contains the URL to which the
 authorization server should send its response.

Hardjono, et al. Expires October 28, 2012 [Page 9]

Internet-Draft OAuth Dynamic Client Registration April 2012

 The client MAY include additional metadata in the request and the
 authorization server MAY ignore this additional information.

 For example, the client might send the following request:

 POST /register HTTP/1.1
 Host: server.example.com
 Content-Type: application/json

 {
 type: "push",
 client_name: "Online Photo Gallery",
 client_url: "http://onlinephotogallery.com",
 client_description: "Uploading and also editing capabilities!",
 client_icon: "http://onlinephotogallery.com/icon.png",
 redirect_url: "https://onlinephotogallery.com/client_reg"
 }

 The parameters are included in the entity body of the HTTP request
 using the "application/json" media type as defined by [JSON]. The
 parameters are serialized into a JSON structure by adding each
 parameter at the highest structure level. Parameter names and string
 values are included as JSON strings.

5.2. Client Registration Response

 After receiving and verifying information received from the client,
 the authorization server issues a client identifier and an optional
 client secret, and constructs the response by adding the following
 parameters to the entity body of the HTTP response with a 200 status
 code (OK):

 client_id
 REQUIRED.

 client_secret
 OPTIONAL.

 issued_at
 OPTIONAL. Specifies the timestamp when the identifier was
 issued. The timestamp value MUST be a positive integer. The
 value is expressed in the number of seconds since January 1,
 1970 00:00:00 GMT.

Hardjono, et al. Expires October 28, 2012 [Page 10]

Internet-Draft OAuth Dynamic Client Registration April 2012

 expires_in
 OPTIONAL; if supplied, the "issued_at" parameter is REQUIRED.
 Specifies the valid lifetime, in seconds, of the identifier.
 The value is represented in base 10 ASCII.

 The parameters are included in the entity body of the HTTP response
 using the "application/json" media type as defined by [JSON]. The
 parameters are serialized into a JSON structure by adding each
 parameter at the highest structure level. Parameter names and string
 values are included as JSON strings.

 The authorization server MUST include the HTTP "Cache-Control"
 response header field with a value of "no-store" in any response
 containing "client_secret".

 For example, the authorization server might return the following
 response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 client_id: "5UO9XcL4TQTa",
 client_secret: "WdRKN3zeTc20"
 }

5.3. Error Response

 If the request for registration is invalid or unauthorized, the
 authorization server constructs the response by adding the following
 parameters to the entity body of the HTTP response with a 400 status
 code (Bad Request) using the "application/json" media type:

 o "error" (REQUIRED).

 o "error_description" (OPTIONAL). Human-readable text providing
 additional information, used to assist in the understanding and
 resolution of the error occurred.

 o "error_uri" (OPTIONAL). A URI identifying a human-readable web
 page with information about the error, used to provide the end-
 user with additional information about the error.

Hardjono, et al. Expires October 28, 2012 [Page 11]

Internet-Draft OAuth Dynamic Client Registration April 2012

 An example error response (with line breaks for readability):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error": "unauthorized_client",
 "description": "This client is not on the
 white list of this Authorization Server."
 }

6. Client Registration with Pushed URL and Pulled Metadata

 This registration flow works as follows:

 1. The client sends its metadata URI to the client registration
 endpoint. The client MAY sign the metadata as a JSON Token
 issuer, using the mechanisms defined in [OAuth-Sig].

 2. The authorization server verifies the signature as necessary, and
 uses the [RFC5785] and [hostmeta] discovery mechanisms on this
 URI to retrieve the host-meta document describing the client.
 The host-meta document MUST contain the client name, description,
 and redirection URI, and MAY contain a URI for the client icon.

 +--------+ +---------------+
 | Client |--(A)--- Registration Request --->| Authorization |
 | | with URL | Server |
 | | | |
 | |<-(B)--- Client Discovery --------| |
 | | | |
 | |--(C)---- Host-Meta Document ---->| |
 | | | |
 | |<-(D)--- Registration Response ---| |
 | | with Client ID Info | |
 +--------+ +---------------+

 Figure 2: Client Registration Flow with Pushed URL and Pulled
 Metadata

https://datatracker.ietf.org/doc/html/rfc5785

Hardjono, et al. Expires October 28, 2012 [Page 12]

Internet-Draft OAuth Dynamic Client Registration April 2012

6.1. Client Registration Request

 The client sends a JSON formatted document to the client registration
 endpoint. The client includes the following parameters in the
 request:

 type
 REQUIRED. This parameter must be set to "pull".

 client_url
 REQUIRED. This field contains the URL of the homepage of the
 client.

 The client MUST NOT include other metadata parameters, such as those
 defined in the pushed-metadata scenario.

 For example, the client might send the following request:

 POST /register HTTP/1.1
 Host: server.example.com
 Content-Type: application/json

 {
 type: "pull",
 url: "http://onlinephotogallery.com"
 }

 The parameters are included in the entity body of the HTTP request
 using the "application/json" media type as defined by [JSON]. The
 parameters are serialized into a JSON structure by adding each
 parameter at the highest structure level. Parameter names and string
 values are included as JSON strings.

6.2. Client Discovery

 The authorization server evaluates this request and MAY perform a
 [RFC5785] and [hostmeta] discovery mechanism on the provided URL to
 the host-meta document for the client.

6.3. Client Registration Response

 After receiving and verifying information retrieved from the client,
 the authorization server issues the client identifier and an optional
 client secret, and constructs the response by adding the following
 parameters to the entity body of the HTTP response with a 200 status

https://datatracker.ietf.org/doc/html/rfc5785

Hardjono, et al. Expires October 28, 2012 [Page 13]

Internet-Draft OAuth Dynamic Client Registration April 2012

 code (OK):

 o "client_id" (REQUIRED)

 o "client_secret" (OPTIONAL)

 The parameters are included in the entity body of the HTTP response
 using the "application/json" media type as defined by [JSON]. The
 parameters are serialized into a JSON structure by adding each
 parameter at the highest structure level. Parameter names and string
 values are included as JSON strings.

 The authorization server MUST include the HTTP "Cache-Control"
 response header field with a value of "no-store" in any response
 containing the "client_secret".

 For example the authorization server might return the following
 response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "client_id":"5UO9XcL4TQTa",
 "client_secret":"WdRKN3zeTc20"
 }

6.4. Error Response

 If the request for registration is invalid or unauthorized, the
 authorization server constructs the response by adding the following
 parameters to the entity body of the HTTP response with a 400 status
 code (Bad Request) using the "application/json" media type:

 o "error" (REQUIRED). A single error code.

 o "error_description" (OPTIONAL). Human-readable text providing
 additional information, used to assist in the understanding and
 resolution of the error occurred.

 o "error_uri" (OPTIONAL). A URI identifying a human-readable web
 page with information about the error, used to provide the end-
 user with additional information about the error.

Hardjono, et al. Expires October 28, 2012 [Page 14]

Internet-Draft OAuth Dynamic Client Registration April 2012

 An example error response (with line breaks for readability):

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error": "unauthorized_client",
 "description": "This client is not on the
 white list of this Authorization Server."
 }

 If the host-meta discovery was not successful, the authorization
 server MUST use the error code "hostmeta_error".

 An example error response (with line breaks for readability):

 HTTP/1.1 404 Not Found
 Content-Type: application/json
 Cache-Control: no-store

 {
 "error": "hostmeta_error",
 "description": "The hostmeta document could
 not be retrieved from the URL."
 }

7. Native Application Client Registration

 For a native application serving as an UMA host, we anticipate that
 the need for dynamic client registration to introduce this app to an
 UMA authorization manager may typically happen only once (or very
 infrequently), likely to a single authorization manager, and
 registration could usefully take place at the time the app is
 provisioned onto a device. By contrast, for a native app serving as
 an UMA requester, it may need to register at multiple authorization
 managers over time when seeking access tokens, at moments much later
 than the original provisioning of the app onto the device.

 When a native application is provisioned on a device, such as through
 an app store model, often it has an associated "home base" web server
 application component with which it registers (outside of any UMA-
 related or OAuth-related interactions). This pairwise relationship

Hardjono, et al. Expires October 28, 2012 [Page 15]

Internet-Draft OAuth Dynamic Client Registration April 2012

 can be exploited in a number of ways to allow trustable, unique
 metadata to be conveyed to an OAuth server and for this instance of
 the app to receive a client identifier and optional secret. We have
 discussed "device-initiated" and "home base-initiated" pattern
 options for OAuth dynamic client registration in these circumstances.
 Device-initiated flows seem more generically applicable (for example,
 for both UMA host and UMA requester needs). However, a home base-
 initiated flow may be preferable in case it is necessary to pre-
 determine a trust level towards an OAuth server. In this case, the
 home base server could initiate the registration process if and only
 if there exists a trust relationship between the two parties.

 Following is one option for a device-initiated flow:

 1. User provisions native app on device and registers with and
 authenticates to app's home-base web application.

 2. Home base provisions native app with home base-signed metadata.

 3. Whenever user tries to use native app to access a protected
 resource, native app provides home base-provided metadata to
 server.

 4. Server verifies home base signature by pulling public key from
 home base URL and generates client identifier and secret for
 native app.

 5. Server returns client identifier and secret to native app.

8. Security Considerations

 Following are some security considerations:

 o No client authentication: The server should treat unsigned pushed
 client metadata as self-asserted.

 o Weak client authentication: The server should treat unsigned
 pulled client metadata as self-asserted unless the the domain of
 the client matches the client metadata URL and the URL is well-
 known and trusted.

 o Strong client authentication: The server should treat signed
 client metadata (pushed or pulled) and a signed metadata URL as
 self-asserted unless it can verify the signature as being from a
 trusted source.

Hardjono, et al. Expires October 28, 2012 [Page 16]

Internet-Draft OAuth Dynamic Client Registration April 2012

9. Acknowledgments

 The authors thank the User-Managed Access Work Group participants,
 particularly the following, for their input to this document:

 o Domenico Catalano

 o George Fletcher

 o Nat Sakimura

10. Document History

 [[to be removed by RFC editor before publication as an RFC]]

11. References

11.1. Normative References

 [JSON] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", 2006,
 <http://tools.ietf.org/html/rfc4627>.

 [OAuth-Sig]
 Balfanz, D., "OAuth Signature proposals", 2010, <http://

www.ietf.org/mail-archive/web/oauth/current/
msg03893.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [hostmeta]
 Hammer-Lahav, E., "Web Host Metadata", 2010, <draft-hammer-
hostmeta-13.xml">http://

draft-hammer-hostmeta-13.xml">xml.resource.org/public/rfc/
bibxml3/

draft-hammer-hostmeta-13.xml">reference.I-D.draft-hammer-
hostmeta-13.xml>.

http://tools.ietf.org/html/rfc4627
http://www.ietf.org/mail-archive/web/oauth/current/msg03893.html
http://www.ietf.org/mail-archive/web/oauth/current/msg03893.html
http://www.ietf.org/mail-archive/web/oauth/current/msg03893.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc5785
http://xml.resource.org/public/rfc/bibxml3/reference.I-D.%3Ca%20href=
http://xml.resource.org/public/rfc/bibxml3/reference.I-D.%3Ca%20href=
http://xml.resource.org/public/rfc/bibxml3/reference.I-D.%3Ca%20href=
http://xml.resource.org/public/rfc/bibxml3/reference.I-D.%3Ca%20href=
https://datatracker.ietf.org/doc/html/draft-hammer-hostmeta-13
https://datatracker.ietf.org/doc/html/draft-hammer-hostmeta-13

Hardjono, et al. Expires October 28, 2012 [Page 17]

Internet-Draft OAuth Dynamic Client Registration April 2012

11.2. Non-Normative References

 [UMA-Core]
 Hardjono, T., "UMA Core Specification", 2012, <http://

tools.ietf.org/id/draft-hardjono-oauth-umacore-04.txt>.

 [UMA-Reqs]
 Maler, E., "UMA Requirements", 2010, <http://
 kantarainitiative.org/confluence/display/uma/
 UMA+Requirements>.

 [UMA-UC] Akram, H., "UMA Explained", 2010, <http://
 kantarainitiative.org/confluence/display/uma/
 UMA+Scenarios+and+Use+Cases>.

Authors' Addresses

 Thomas Hardjono (editor)
 MIT

 Phone:
 Fax:
 Email: hardjono@mit.edu
 URI:

 Maciej Machulak
 Newcastle University

 Email: m.p.machulak@ncl.ac.uk
 URI: http://ncl.ac.uk/

 Eve Maler
 XMLgrrl.com

 Email: eve@xmlgrrl.com
 URI: http://www.xmlgrrl.com

http://tools.ietf.org/id/draft-hardjono-oauth-umacore-04.txt
http://tools.ietf.org/id/draft-hardjono-oauth-umacore-04.txt
http://ncl.ac.uk/
http://www.xmlgrrl.com

Hardjono, et al. Expires October 28, 2012 [Page 18]

Internet-Draft OAuth Dynamic Client Registration April 2012

 Christian Scholz
 COM.lounge GmbH

 Phone:
 Fax:
 Email:
 URI:

Hardjono, et al. Expires October 28, 2012 [Page 19]

