
Network Working Group T. Hardjono, Ed.
Internet-Draft MIT
Intended status: Standards Track December 27, 2012
Expires: June 30, 2013

OAuth 2.0 Resource Set Registration
draft-hardjono-oauth-resource-reg-00

Abstract

 This specification defines a resource set registration mechanism
 between an OAuth 2.0 authorization server and resource server. The
 resource server registers information about the semantics and
 discovery properties of its resources with the authorization server.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 30, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hardjono Expires June 30, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth RReg December 2012

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3
1.2. Terminology . 4
1.3. Authorization Server Configuration Data 4

2. Resource Set Registration 4
2.1. Scope Type Descriptions 5
2.2. Resource Set Descriptions 6
2.3. Resource Set Registration API 7
2.3.1. Create Resource Set Description 8
2.3.2. Read Resource Set Description 9
2.3.3. Update Resource Set Description 10
2.3.4. Delete Resource Set Description 11
2.3.5. List Resource Set Descriptions 11

3. Error Messages . 12
4. Security Considerations 12
5. Privacy Considerations . 12
6. Conformance . 12
7. IANA Considerations . 13
8. Example of Registering Resource Sets 13
9. Acknowledgments . 18
10. Issues . 18
11. References . 18
11.1. Normative References 18
11.2. Informative References 19

Appendix A. Document History 19
 Author's Address . 19

Hardjono Expires June 30, 2013 [Page 2]

Internet-Draft OAuth RReg December 2012

1. Introduction

 There are various circumstances under which an OAuth 2.0 [OAuth2]
 resource server needs to communicate to its authorization server
 information about its protected resources. A resource server and
 authorization server may need to communicate with each other about
 resources in one of several circumstances:

 o In some OAuth 2.0 deployments, the resource server and
 authorization server are operated by the same organization and
 deployed in the same domain, but many resource servers share a
 single authorization server (a security token service (STS)
 component). Thus, even though the trust between these two is
 typically tightly bound, there is value in defining a singular
 standardized resource protection communications interface between
 the authorization server and each of the resource servers.

 o In some deployments of OpenID Connect, which has a dependency on
 OAuth 2.0, the OpenID Provider (OP) component is a specialized
 version of an OAuth authorization server that brokers availability
 of user attributes by dealing with with an ecosystem of attribute
 providers (APs). These APs effectively function as third-party
 resource servers. Thus, there is value in defining a mechanism by
 which all of the third-party APs can communicate with a central
 OP, as well as ensuring that trust between the authorization
 server and resource servers is able to be established in a
 dynamic, loosely coupled fashion.

 o In some deployments of User-Managed Access (UMA), which has a
 dependency on OAuth 2.0, an end-user resource owner (the "user" in
 UMA) may choose their own authorization server as an independent
 "CloudOS" authorization service, along with using any number of
 resource servers that make up their "personal cloud". Thus, there
 is value in defining a mechanism by which all of the third-party
 resource servers can outsource resource protection (and
 potentially discovery) to a central authorization server, as well
 as ensuring that trust between the authorization server and
 resource servers is able to be established by the resource owner
 in a dynamic, loosely coupled fashion.

 This specification defines an API through which the resource server
 can register information about resource sets with the authorization
 server.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this

Hardjono Expires June 30, 2013 [Page 3]

Internet-Draft OAuth RReg December 2012

 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol properties and values are
 case sensitive.

1.2. Terminology

 This specification introduces the following new terms and
 enhancements of OAuth term definitions.

 resource set One or more resources that the resource server manages
 as a set.

 scope type A bounded extent of access that is possible to perform on
 a resource set. In authorization policy terminology, a scope
 type is one of the potentially many "verbs" that can logically
 apply to a resource set ("object"). This specification extends
 the OAuth concept of a "scope" by defining scope types as
 applying to particular labeled resource sets, rather than
 leaving the relevant resources (such as API endpoints or URIs)
 implicit. A resource set can have any number of scope types,
 which together describe the universe of actions that _can be_
 taken on this protected resource set. For example, a resource
 set representing a status update API might have scope types
 that include adding an update or reading updates. A resource
 set representing a photo album might have scope types that
 include viewing a slideshow or printing the album. The
 resource server registers resource sets and their scope types
 when there is not yet any particular client in the picture.

 resource set registration endpoint The endpoint at which the
 resource server registers resource sets it wants the
 authorization server to know about. The operations available
 at this endpoint constitute a resource set registration API
 (see Section 2.3).

1.3. Authorization Server Configuration Data

 If the authorization server declares its endpoints and any other
 configuration data in a machine-readable form, for example
 [OAuth-linktypes], it SHOULD convey its resource set registration
 endpoint in this fashion as well.

2. Resource Set Registration

 This specification defines a resource set registration API. If this
 API is not open, it MUST be OAuth-protected. For any of the resource

https://datatracker.ietf.org/doc/html/rfc2119

Hardjono Expires June 30, 2013 [Page 4]

Internet-Draft OAuth RReg December 2012

 owner's sets of resources this authorization server needs to be aware
 of, the resource server MUST register these resource sets at the
 authorization server's registration endpoint.

2.1. Scope Type Descriptions

 A scope type is a bounded extent of access that is possible to
 perform on a resource set. A scope type description is a JSON
 document with the following properties:

 name REQUIRED. A human-readable string describing some scope
 (extent) of access. This name is intended for ultimate use in the
 authorization server's user interface to assist the user in
 setting policies for protected resource sets that have this
 available scope.

 icon_uri OPTIONAL. A URI for a graphic icon representing the scope.
 The referenced icon is intended for ultimate use in the
 authorization server's user interface to assist the user in
 setting policies for protected resource sets that have this
 available scope.

 For example, this description characterizes a scope type that
 involves reading or viewing resources (vs. creating them or editing
 them in some fashion):

 {
 "name": "View",
 "icon_uri": "http://www.example.com/icons/reading-glasses"
 }

 Scope type descriptions MAY contain extension properties that are not
 defined in this specification. Extension names that are unprotected
 from collisions are outside the scope of the current specification.

 A resource server MUST list a resource set's available scopes using
 URI references (as defined in Section 2.2). The scope types
 available for use at any one resource server MUST have unique URI
 references so that the resource server's scope descriptions are
 uniquely distinguishable. A scope type URI reference MAY include a
 fragment identifier. Scope type descriptions MAY reside anywhere.
 The resource server is not required to self-host scope type
 descriptions and may wish to point to standardized scope type
 descriptions residing elsewhere. Scope type description documents
 MUST be accessible to authorization servers through GET calls made to
 these URI references.

 See Section 8 for a long-form example of scope types used in resource

Hardjono Expires June 30, 2013 [Page 5]

Internet-Draft OAuth RReg December 2012

 set registration.

2.2. Resource Set Descriptions

 The resource server defines a resource set that the authorization
 server needs to be aware of by registering a resource set description
 at the authorization server.

 A resource set description is a JSON document with the following
 properties:

 name REQUIRED. A human-readable string describing a set of one or
 more resources. The authorization server SHOULD use the name in
 its user interface to assist the user in setting policies for
 protecting this resource set.

 icon_uri OPTIONAL. A URI for a graphic icon representing the
 resource set.

 scopes REQUIRED. An array providing the URI references of scope
 type descriptions that are available for this resource set.

 type OPTIONAL. A string uniquely identifying the semantics of the
 resource set. For example, if the resource set consists of a
 single resource that is an identity claim that leverages
 standardized claim semantics, the value of this property could be
 an identifying URI for this claim.

 For example, this description characterizes a resource set (a photo
 album) that can potentially be only viewed, or alternatively to which
 full access can be granted; the URIs point to scope descriptions as
 defined in Section 2.1:

 {
 "name": "Photo Album",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
],
 "resource_set_type": "http://www.example.com/rsets/photoalbum"
 }

 Resource set descriptions MAY contain extension properties that are
 not defined in this specification. Extension names that are
 unprotected from collisions are outside the scope of the current
 specification.

Hardjono Expires June 30, 2013 [Page 6]

Internet-Draft OAuth RReg December 2012

 When a resource server creates or updates a resource set description
 (see Section 2.3), the authorization server MUST attempt to retrieve
 the referenced scope descriptions so that it can present fresh data
 in resource owner interactions.

2.3. Resource Set Registration API

 The resource server uses the RESTful API at the authorization
 server's resource set registration endpoint to create, read, update,
 and delete resource set descriptions, along with listing groups of
 such descriptions. The resource server is free to use its own
 methods of identifying and describing resource sets.

 (Note carefully the similar but distinct senses in which the word
 "resource" is used in this section. The resource set descriptions
 are themselves managed as web resources at the authorization server
 through this API.)

 The authorization server MUST present an API for registering resource
 set descriptions at a set of URIs with the structure "{rsreguri}/
 resource_set/{rsid}", where the PAT provides sufficient context to
 distinguish between identical resource set identifiers assigned by
 different hosts.

 The components of these URIs are defined as follows:

 {rsreguri} The authorization server's resource set registration
 endpoint as advertised in its configuration data (see

Section 1.3).

 {rsid} An identifier for a resource set description.

 Without a specific resource set identifier path component, the URI
 applies to the set of resource set descriptions already registered.

 Following is a summary of the five registration operations the
 authorization server is REQUIRED to support. Each is defined in its
 own section below. All other methods are unsupported. This API uses
 ETag and If-Match to ensure the desired resource at the authorization
 server is targeted.

 o Create resource set description: PUT /resource_set/{rsid}

 o Read resource set description: GET /resource_set/{rsid}

 o Update resource set description: PUT /resource_set/{rsid} with If-
 Match

Hardjono Expires June 30, 2013 [Page 7]

Internet-Draft OAuth RReg December 2012

 o Delete resource set description: DELETE /resource_set/{rsid}

 o List resource set descriptions: GET /resource_set/ with If-Match

 If the request to the resource set registration endpoint is
 incorrect, then the authorization server responds with an error
 message by including one of the following error codes with the
 response:

 unsupported_method_type The resource server request used an
 unsupported HTTP method. The authorization server MUST respond
 with the HTTP 405 (Method Not Allowed) status code and MUST fail
 to act on the request.

 not_found The resource set requested from the authorization server
 cannot be found. The authorization server MUST respond with HTTP
 404 (Not Found) status code.

 precondition_failed The resource set that was requested to be
 deleted or updated at the authorization server did not match the
 If-Match value present in the request. The authorization server
 MUST respond with HTTP 412 (Precondition Failed) status code and
 MUST fail to act on the request.

2.3.1. Create Resource Set Description

 Adds a new resource set description using the PUT method, thereby
 putting it under the authorization server's protection. If the
 request is successful, the authorization server MUST respond with a
 status message that includes an ETag header and _id and _rev
 properties for managing resource set description versioning.

 Form of a "create resource set description" HTTP request:

 PUT /resource_set/{rsid} HTTP/1.1
 Content-Type: application/intro-resource-set+json
 ...

 (body contains JSON resource set description to be created)

Hardjono Expires June 30, 2013 [Page 8]

Internet-Draft OAuth RReg December 2012

 Form of a successful HTTP response:

 HTTP/1.1 201 Created
 Content-Type: application/intro-status+json
 ETag: (matches "_rev" property in returned object)
 ...

 {
 "status": "created",
 "_id": (id of created resource set),
 "_rev": (ETag of created resource set)
 }

 On successful registration, the authorization server MAY return a
 redirect policy URI to the resource server in a property with the
 name "policy_uri". This URI allows the resource server to redirect
 the user to a specific user interface within the authorization server
 where the user can immediately set or modify access policies for the
 resource set that was just registered.

 Form of a successful HTTP response:

 HTTP/1.1 201 Created
 Content-Type: application/intro-status+json
 ETag: (matches "_rev" property in returned object)
 ...

 {
 "status": "created",
 "_id": (id of created resource set),
 "_rev": (ETag of created resource set)
 "policy_uri":"http://as.example.com/rs/222/resource/333/policy"
 }

2.3.2. Read Resource Set Description

 Reads a previously registered resource set description using the GET
 method. If the request is successful, the authorization server MUST
 respond with a status message that includes an ETag header and _id
 and _rev properties for managing resource set description versioning.

 Form of a "read resource set description" HTTP request:

 GET /resource_set/{rsid} HTTP/1.1
 ...

Hardjono Expires June 30, 2013 [Page 9]

Internet-Draft OAuth RReg December 2012

 Form of a successful HTTP response:

 HTTP/1.1 200 OK
 Content-Type: application/intro-resource-set+json
 ...

 (body contains JSON resource set description, including _id and _rev)

 If the referenced resource does not exist, the authorization server
 MUST produce an error response with an error property value of
 "not_found", as defined in Section 2.3.

 On successful read, the authorization server MAY return a redirect
 policy URI to the resource server in a property with the name
 "policy_uri". This URI allows the resource server to redirect the
 user to a specific user interface within the authorization server
 where the user can immediately set or modify access policies for the
 resource set that was read.

2.3.3. Update Resource Set Description

 Updates a previously registered resource set description using the
 PUT method, thereby changing the resource set's protection
 characteristics. If the request is successful, the authorization
 server MUST respond with a status message that includes an ETag
 header and _id and _rev properties for managing resource set
 description versioning.

 Form of an "update resource set description" HTTfP request:

 PUT /resource_set/{rsid} HTTP/1.1
 Content-Type: application/resource-set+json
 If-Match: (entity tag of resource)
 ...

 (body contains JSON resource set description to be updated)

 Form of a successful HTTP response:

 HTTP/1.1 204 No Content
 ETag: "2"
 ...

 If the entity tag does not match, the authorization server MUST
 produce an error response with an error property value of
 "precondition_failed", as defined in Section 2.3.

 On successful update, the authorization server MAY return a redirect

Hardjono Expires June 30, 2013 [Page 10]

Internet-Draft OAuth RReg December 2012

 policy URI to the resource server in a property with the name
 "policy_uri". This URI allows the resource server to redirect the
 user to a specific user interface within the authorization server
 where the user can immediately set or modify access policies for the
 resource set that was just updated.

2.3.4. Delete Resource Set Description

 Deletes a previously registered resource set description using the
 DELETE method, thereby removing it from the authorization server's
 protection regime.

 Form of a "delete resource set description" HTTP request:

 DELETE /resource_set/{rsid}
 If-Match: (entity tag of resource)
 ...

 Form of a successful HTTP response:

 HTTP/1.1 204 No content
 ...

 As defined in Section 2.3, if the referenced resource does not exist
 the authorization server MUST produce an error response with an error
 property value of "not_found", and if the entity tag does not match
 the authorization server MUST produce an error response with an error
 property value of "precondition_failed".

2.3.5. List Resource Set Descriptions

 Lists all previously registered resource set identifiers for this
 user using the GET method. The authorization server MUST return the
 list in the form of a JSON array of {rsid} values.

 The resource server uses this method as a first step in checking
 whether its understanding of protected resources is in full
 synchronization with the authorization server's understanding.

 Form of a "list resource set descriptions" HTTP request:

 GET /resource_set HTTP/1.1
 ...

Hardjono Expires June 30, 2013 [Page 11]

Internet-Draft OAuth RReg December 2012

 HTTP response:

 HTTP/1.1 200 OK
 ...

 (body contains JSON array of {rsid} values)

3. Error Messages

 When a resource server attempts to access the resource set
 registration endpoint at the authorization server, if the request is
 successfully authenticated by OAuth means, but is invalid for another
 reason, the authorization server produces an error response by adding
 the following properties to the entity body of the HTTP response:

 error REQUIRED. A single error code, as noted in the API
 definition. Value for this property is defined in the specific
 authorization server endpoint description.

 error_description OPTIONAL. A human-readable text providing
 additional information, used to assist in the understanding and
 resolution of the error occurred.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error, used to provide the end-user
 with additional information about the error.

4. Security Considerations

 This specification relies on OAuth for API security and shares its
 security and vulnerability considerations.

5. Privacy Considerations

 The communication between the authorization server and resource
 server may expose personally identifiable information. The context
 in which this API is used SHOULD deal with its own unique privacy
 considerations.

6. Conformance

 This specification makes optional normative reference to [OAuth2] for
 API protection. This specification is anticipated to be used as a
 module in higher-order specifications, where additional constraints

Hardjono Expires June 30, 2013 [Page 12]

Internet-Draft OAuth RReg December 2012

 and profiling may appear.

7. IANA Considerations

 This document makes no request of IANA.

8. Example of Registering Resource Sets

 The following example illustrates the intent and usage of resource
 set descriptions and scope type descriptions as part of resource set
 registration for the purposes of User-Managed Access (UMA).

 This example contains some steps that are exclusively in the realm of
 user experience rather than web protocol, to achieve realistic
 illustration. These steps are labeled "User experience only". Some
 other steps are exclusively internal to the operation of the entity
 being discussed. These are labeled "Internal only".

 A resource owner, Alice Adams, has just uploaded a photo of her new
 puppy to a resource server, Photoz.example.com, and wants to ensure
 that this specific photo is not publicly accessible.

 Alice has already introduced this resource server to her
 authorization server, CopMonkey.example.com, and thus Photoz has
 already obtained a PAT from CopMonkey. However, Alice has not
 previously instructed Photoz to use CopMonkey to protect any other
 photos of hers.

 Alice has previously visited CopMonkey to map a default "do not share
 with anyone" policy to any resource sets registered by Photoz, until
 such time as she maps some other more permissive policies to those
 resources. (User experience only. This may have been done at the
 time Alice introduced the resource server to the authorization
 server, and/or it could have been a global or resource server-
 specific preference setting. A different constraint or no constraint
 at all might be associated with newly protected resources.) Other
 kinds of policies she may eventually map to particular photos or
 albums might be "Share only with husband@email.example.net" or "Share
 only with people in my 'family' group".

 Photoz itself has a publicly documented application-specific API that
 offers two dozen different methods that apply to single photos, such
 as "addTags" and "getSizes", but rolls them up into two photo-related
 scope types of access: "view" (consisting of various read-only
 operations) and "all" (consisting of various reading, editing, and
 printing operations). It defines two scope type descriptions that

Hardjono Expires June 30, 2013 [Page 13]

Internet-Draft OAuth RReg December 2012

 represent these scope types, which it is able to reuse for all of its
 users (not just Alice), and ensures that these scope type description
 documents are available through HTTP GET requests that may be made by
 authorization servers.

 The "name" property values are intended to be seen by Alice when she
 maps authorization constraints to specific resource sets and actions
 while visiting CopMonkey, such that Alice would see the strings "View
 Photo and Related Info" and "All Actions", likely accompanied by the
 referenced icons, in the CopMonkey interface. (Other users of Photoz
 might similarly see the same labels at CopMonkey or whatever other
 authorization server they use. Photoz could distinguish natural-
 language labels per user if it wishes, by pointing to scopes with
 differently translated names.)

 Example of the viewing-related scope type description document
 available at http://photoz.example.com/dev/scopes/view with a
 Content-Type of application/intro-scope+json:

 {
 "name": "View Photo and Related Info",
 "icon_uri": "http://www.example.com/icons/reading-glasses.png"
 }

 Example of the broader scope type description document available at
 http://photoz.example.com/dev/scopes/all, likewise with a Content-
 Type of application/intro-scope+json:

 {
 "name": "All Actions",
 "icon_uri": "http://www.example.com/icons/galaxy.png"
 }

 While visiting Photoz, Alice selects a link or button that instructs
 the site to "Protect" or "Share" this single photo (user experience
 only; Photoz could have made this a default or preference setting).

 As a result, Photoz defines for itself a resource set that represents
 this photo (internal only; Photoz is the only application that knows
 how to map a particular photo to a particular resource set). Photoz
 also prepares the following resource set description, which is
 specific to Alice and her photo. The "name" property value is
 intended to be seen by Alice in mapping authorization policies to
 specific resource sets and actions when she visits CopMonkey. Alice
 would see the string "Steve the puppy!", likely accompanied by the
 referenced icon, in the CopMonkey interface. The possible scopes of
 access on this resource set are indicated with URI references to the
 scope descriptions, as shown just above.

Hardjono Expires June 30, 2013 [Page 14]

Internet-Draft OAuth RReg December 2012

 {
 "name": "Steve the puppy!",
 "icon_uri": "http://www.example.com/icons/flower",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 Photoz uses the "create resource set description" method of
 CopMonkey's standard UMA resource set registration API, presenting
 its Alice-specific PAT there, to register and assign an identifier to
 the resource set description.

 PUT /resource_set/112210f47de98100 HTTP/1.1
 Content-Type: application/intro-resource-set+json
 ...

 {
 "name": "Steve the puppy!",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 If the registration attempt succeeds, CopMonkey responds in the
 following fashion.

 HTTP/1.1 201 Created
 Content-Type: application/intro-status+json
 ETag: "1"
 ...

 {
 "status": "created",
 "_id": "112210f47de98100",
 "_rev": "1"
 }

 At the time Alice indicates she would like this photo protected,
 Photoz can choose to redirect Alice to CopMonkey for further policy
 setting, access auditing, and other authorization server-related
 tasks (user experience only).

 Once it has successfully registered this description, Photoz is
 responsible for outsourcing to CopMonkey all questions of

Hardjono Expires June 30, 2013 [Page 15]

Internet-Draft OAuth RReg December 2012

 authorization for access attempts made to this photo.

 Over time, as Alice uploads other photos and creates and organizes
 photo albums, and as Photoz makes new action functionality available,
 Photoz can use additional methods of the resource set registration
 API to ensure that CopMonkey's understanding of Alice's protected
 resources matches its own.

 For example, if Photoz suspects that somehow its understanding of the
 resource set has gotten out of sync with CopMonkey's, it can ask to
 read the resource set description as follows.

 GET /resource_set/112210f47de98100 HTTP/1.1
 Host: as.example.com
 ...

 CopMonkey responds with the full content of the resource set
 description, including its _id and its current _rev, as follows:

 Example of an HTTP response to a "read resource set description"
 request, containing a resource set description from the authorization
 server:

 HTTP/1.1 200 OK
 Content-Type: application/intro-resource-set+json
 ETag: "1"
 ...

 {
 "_id": "112210f47de98100",
 "_rev": "1",
 "name": "Photo album",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 If for some reason Photoz and CopMonkey have gotten dramatically out
 of sync, Photoz can ask for the list of resource set identifiers
 CopMonkey currently knows about:

 GET /resource_set HTTP/1.1
 Host: as.example.com
 ...

 CopMonkey's response might look as follows:

Hardjono Expires June 30, 2013 [Page 16]

Internet-Draft OAuth RReg December 2012

 HTTP/1.1 200 OK
 ...

 ["112210f47de98100", "34234df47eL95300"]

 If Alice later changes the photo's title (user experience only) on
 Photoz from "Steve the puppy!" to "Steve on October 14, 2011", Photoz
 would use the "update resource set description" method to ensure that
 Alice's experience of policy-setting at CopMonkey remains consistent
 with what she sees at Photoz. Following is an example of this
 request.

 PUT /resource_set/112210f47de98100 HTTP/1.1
 Content-Type: application/intro-resource-set+json
 Host: as.example.com
 If-Match: "1"
 ...

 {
 "name": "Steve on October 14, 2011",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 CopMonkey would respond as follows.

 HTTP/1.1 201 Created
 Content-Type: application/intro-status+json
 ETag: "2"
 ...

 {
 "status": "updated",
 "_id": "112210f47de98100",
 "_rev": "2"
 }

 There are other reasons Photoz might want to update resource set
 descriptions, having nothing to do with Alice's actions or wishes.
 For example, it might extend its API to include new features, and
 want to add new scopes to all of Alice's and other users' resource
 set descriptions.

 if Alice later decides to entirely remove sharing protection (user
 experience only) on this photo while visiting Photoz, ensuring that

Hardjono Expires June 30, 2013 [Page 17]

Internet-Draft OAuth RReg December 2012

 the public can get access without any UMA-based protection, Photoz is
 responsible for deleting the relevant resource set registration, as
 follows:

 DELETE /resource_set/112210f47de98100 HTTP/1.1
 Host: as.example.com
 If-Match: "2"
 ...

9. Acknowledgments

 The current editor of this specification is Thomas Hardjono of MIT.
 The following people are co-authors:

 o Paul C. Bryan, ForgeRock US, Inc.

 o Domenico Catalano, Oracle Corp.

 o George Fletcher, AOL

 o Maciej Machulak, Newcastle University

 o Eve Maler, XMLgrrl.com

 o Lukasz Moren, Newcastle University

 o Christian Scholz, COMlounge GmbH

 o Nat Sakimura, NRI

 o Jacek Szpot, Newcastle University

10. Issues

 All issues are now captured at the project's GitHub site
 (<https://github.com/xmlgrrl/UMA-Specifications/issues>).

11. References

11.1. Normative References

 [OAuth2] Hammer-Lahav, E., "The OAuth 2.0 Protocol",
 September 2011,
 <http://tools.ietf.org/html/draft-ietf-oauth-v2>.

https://github.com/xmlgrrl/UMA-Specifications/issues
http://tools.ietf.org/html/draft-ietf-oauth-v2

Hardjono Expires June 30, 2013 [Page 18]

Internet-Draft OAuth RReg December 2012

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

11.2. Informative References

 [OAuth-linktypes]
 Richer, J., "Link Type Registrations for OAuth 2",
 October 2012,
 <http://tools.ietf.org/html/draft-wmills-oauth-lrdd>.

Appendix A. Document History

 NOTE: To be removed by RFC editor before publication as an RFC.

 From I-D rev 00:

 o Broken out of draft-oauth-umacore (post-rev 05) I-D and made
 generic to apply to a variety of OAuth-based use cases.

Author's Address

 Thomas Hardjono (editor)
 MIT

 Email: hardjono@mit.edu

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://tools.ietf.org/html/draft-wmills-oauth-lrdd
https://datatracker.ietf.org/doc/html/draft-oauth-umacore

Hardjono Expires June 30, 2013 [Page 19]

