
Network Working Group T. Hardjono, Ed.
Internet-Draft MIT
Intended status: Standards Track E. Maler
Expires: October 6, 2015 ForgeRock
 M. Machulak
 Cloud Identity
 D. Catalano
 Oracle
 April 4, 2015

OAuth 2.0 Resource Set Registration
draft-hardjono-oauth-resource-reg-06

Abstract

 This specification defines a resource set registration mechanism
 between an OAuth 2.0 authorization server and resource server. The
 resource server registers information about the semantics and
 discovery properties of its resources with the authorization server.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 6, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Hardjono, et al. Expires October 6, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft OAuth RSR April 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 3
1.2. Terminology . 3
1.3. Authorization Server Configuration Data 4

2. Resource Set Registration 4
2.1. Scope Descriptions 5
2.2. Resource Set Descriptions 5
2.3. Resource Set Registration API 6
2.3.1. Create Resource Set Description 8
2.3.2. Read Resource Set Description 9
2.3.3. Update Resource Set Description 9
2.3.4. Delete Resource Set Description 10
2.3.5. List Resource Set Descriptions 10

3. Error Messages . 11
4. Security Considerations 11
5. Privacy Considerations 12
6. IANA Considerations . 12
7. Example of Registering Resource Sets 12
8. Acknowledgments . 17
9. References . 17
9.1. Normative References 17
9.2. Informative References 17

 Authors' Addresses . 18

1. Introduction

 There are various circumstances under which an OAuth 2.0 [OAuth2]
 resource server may need to communicate information about its
 protected resources to its authorization server:

 o In some OAuth 2.0 deployments, the resource server and
 authorization server are operated by the same organization and
 deployed in the same domain, but many resource servers share a
 single authorization server (a security token service (STS)
 component). Thus, even though the trust between these two is
 typically tightly bound, there is value in defining a singular
 standardized resource protection communications interface between
 the authorization server and each of the resource servers.

 o In some deployments of OpenID Connect [OpenIDConnect], which has a
 dependency on OAuth 2.0, the OpenID Provider (OP) component is a

Hardjono, et al. Expires October 6, 2015 [Page 2]

Internet-Draft OAuth RSR April 2015

 specialized version of an OAuth authorization server that brokers
 availability of user attributes by dealing with an ecosystem of
 attribute providers (APs). These APs effectively function as
 third-party resource servers. Thus, there is value in defining a
 mechanism by which all of the third-party APs can communicate with
 a central OP, as well as ensuring that trust between the
 authorization server and resource servers is able to be
 established in a dynamic, loosely coupled fashion.

 o In some deployments of User-Managed Access [UMA], which has a
 dependency on OAuth 2.0, an end-user resource owner (the "user" in
 UMA) may choose their own authorization server as an independent
 cloud-based service, along with using any number of resource
 servers that make up their "personal cloud". Thus, there is value
 in defining a mechanism by which all of the third-party resource
 servers can outsource resource protection (and potentially
 discovery) to a central authorization server, as well as ensuring
 that trust between the authorization server and resource servers
 is able to be established by the resource owner in a dynamic,
 loosely coupled fashion.

 This specification defines an API through which the resource server
 can register information about resource sets with the authorization
 server.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all protocol properties and values are case
 sensitive. JSON [JSON] data structures defined by this specification
 MAY contain extension properties that are not defined in this
 specification. Any entity receiving or retrieving a JSON data
 structure SHOULD ignore extension properties it is unable to
 understand. Extension names that are unprotected from collisions are
 outside the scope of this specification.

1.2. Terminology

 This specification introduces the following new terms and
 enhancements of OAuth term definitions.

 resource set One or more resources that the resource server manages
 as a set, abstractly. A resource set may be a single API
 endpoint, a set of API endpoints, a classic web resource such
 as an HTML page, and so on. Defining this concept enables

https://datatracker.ietf.org/doc/html/rfc2119

Hardjono, et al. Expires October 6, 2015 [Page 3]

Internet-Draft OAuth RSR April 2015

 registering data about it, including, most importantly, scopes
 but also other data.

 scope A bounded extent of access that is possible to perform on a
 resource set. In authorization policy terminology, a scope is
 one of the potentially many "verbs" that can logically apply to
 a resource set ("object"). This specification enhances the
 OAuth concept of a "scope" by defining scopes as applying to
 particular registered resource sets, rather than leaving the
 relevant resources (such as API endpoints or URIs) implicit. A
 resource set can have any number of scopes, which together
 describe the universe of actions that _can be_ taken on this
 protected resource set. For example, a resource set
 representing a status update API might have scopes that include
 adding an update or reading updates. A resource set
 representing a photo album might have scopes that include
 viewing a slideshow or printing the album. The resource server
 registers resource sets and their scopes when there is not yet
 any particular client in the picture.

 resource set registration endpoint The endpoint defined by this
 specification at which the resource server registers resource
 sets it wants the authorization server to know about. The
 operations available at this endpoint constitute a resource set
 registration API (see Section 2.3).

1.3. Authorization Server Configuration Data

 If the authorization server declares its endpoints and any other
 configuration data in a machine-readable form, it SHOULD convey its
 resource set registration endpoint in this fashion as well.

2. Resource Set Registration

 This specification defines a resource set registration API. The
 endpoint for this API SHOULD also require some form of authentication
 to access this endpoint, such as Client Authentication as described
 in [OAuth2] or a separate OAuth access token. The methods of
 managing and validating these authentication credentials are out of
 scope of this specification.

 For any of the resource owner's sets of resources this authorization
 server needs to be aware of, the resource server MUST register these
 resource sets at the authorization server's registration endpoint.

Hardjono, et al. Expires October 6, 2015 [Page 4]

Internet-Draft OAuth RSR April 2015

2.1. Scope Descriptions

 A scope description is a JSON document with the following properties:

 name REQUIRED. A human-readable string describing some scope
 (extent) of access. This name MAY be used by the authorization
 server in any user interface it presents to the resource owner.

 icon_uri OPTIONAL. A URI for a graphic icon representing the scope.
 The referenced icon MAY be used by the authorization server in any
 user interface it presents to the resource owner.

 For example, this scope description characterizes a scope that
 involves reading or viewing resources (vs. creating them or editing
 them in some fashion):

 {
 "name" : "View",
 "icon_uri" : "http://www.example.com/icons/reading-glasses"
 }

 See Section 7 for a long-form example of scope descriptions used in
 resource set registration.

2.2. Resource Set Descriptions

 The resource server defines a resource set that the authorization
 server needs to be aware of by registering a resource set description
 at the authorization server. This registration process results in a
 unique identifier for the resource set that the resource server can
 later use for managing its description.

 The resource server is free to use its own methods of describing
 resource sets. A resource set description is a JSON document with
 the following properties:

 name REQUIRED. A human-readable string describing a set of one or
 more resources. This name MAY be used by the authorization server
 in its resource owner user interface for the resource owner.

 uri OPTIONAL. A URI that provides the network location for the
 resource set being registered. For example, if the resource set
 corresponds to a digital photo, the value of this property could
 be an HTTP-based URI identifying the location of the photo on the
 web. The authorization server can use this information in various
 ways to inform clients about a resource set's location.

Hardjono, et al. Expires October 6, 2015 [Page 5]

Internet-Draft OAuth RSR April 2015

 type OPTIONAL. A string uniquely identifying the semantics of the
 resource set. For example, if the resource set consists of a
 single resource that is an identity claim that leverages
 standardized claim semantics for "verified email address", the
 value of this property could be an identifying URI for this claim.

 scopes REQUIRED. An array of strings, any of which MAY be a URI,
 indicating the available scopes for this resource set. URIs MUST
 resolve to scope descriptions as defined in Section 2.1.
 Published scope descriptions MAY reside anywhere on the web; a
 resource server is not required to self-host scope descriptions
 and may wish to point to standardized scope descriptions residing
 elsewhere. It is the resource server's responsibility to ensure
 that scope description documents are accessible to authorization
 servers through GET calls to support any user interface
 requirements. The resource server and authorization server are
 presumed to have separately negotiated any required interpretation
 of scope handling not conveyed through scope descriptions.

 icon_uri OPTIONAL. A URI for a graphic icon representing the
 resource set. The referenced icon MAY be used by the
 authorization server in its resource owner user interface for the
 resource owner.

 For example, this description characterizes a resource set (a photo
 album) that can potentially be only viewed, or alternatively to which
 full access can be granted; the URIs point to scope descriptions as
 defined in Section 2.1:

 {
 "name" : "Photo Album",
 "icon_uri" : "http://www.example.com/icons/flower.png",
 "scopes" : [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
],
 "type" : "http://www.example.com/rsets/photoalbum"
 }

2.3. Resource Set Registration API

 The resource server uses the RESTful API at the authorization
 server's resource set registration endpoint to create, read, update,
 and delete resource set descriptions, along with retrieving lists of
 such descriptions.

 (Note carefully the similar but distinct senses in which the word
 "resource" is used in this section. The resource set descriptions

Hardjono, et al. Expires October 6, 2015 [Page 6]

Internet-Draft OAuth RSR April 2015

 are themselves managed as web resources at the authorization server
 through this API.)

 The authorization server MUST present an API for registering resource
 set descriptions at a set of URIs with the following structure:

 {rsreguri}/resource_set

 The {rsreguri} component is the authorization server's resource set
 registration endpoint as advertised in its configuration data (see

Section 1.3). Following is a summary of the five registration
 operations the authorization server is REQUIRED to support, where the
 ellipsis represents whatever path segments might appear before the
 required path structure. Each is defined in its own section below.
 All other methods are unsupported.

 o Create resource set description: POST .../resource_set

 o Read resource set description: GET .../resource_set/{rsid}

 o Update resource set description: PUT .../resource_set/{rsid}

 o Delete resource set description: DELETE .../resource_set/{rsid}

 o List resource set descriptions: GET .../resource_set

 The {rsid} is the authorization server-assigned identifier for the
 web resource corresponding to the resource set as returned in the
 Location header.

 Within the JSON body of a successful response, the authorization
 server includes common properties, possibly in addition to method-
 specific properties, as follows:

 _id REQUIRED (except for the List method). A string value repeating
 the {rsid} as appearing in the Location header. Its appearance in
 both locations allows specialized header and body client software
 to avoid extra parsing.

 user_access_policy_uri OPTIONAL. A URI that allows the resource
 server to redirect an end-user resource owner to a specific user
 interface within the authorization server where the resource owner
 can immediately set or modify access policies subsequent to the
 resource set registration action just completed. The
 authorization server is free to choose the targeted user
 interface, for example, in the case of a deletion action, enabling
 the resource server to direct the end-user to a policy-setting

Hardjono, et al. Expires October 6, 2015 [Page 7]

Internet-Draft OAuth RSR April 2015

 interface for an overall "folder" of resource sets where the
 deleted resource set once resided.

 If the request to the resource set registration endpoint is
 incorrect, then the authorization server instead responds with an
 error message by including one of the following error codes with the
 response (see Section 3):

 unsupported_method_type The resource server request used an
 unsupported HTTP method. The authorization server MUST respond
 with the HTTP 405 (Method Not Allowed) status code and MUST fail
 to act on the request.

 not_found The resource set requested from the authorization server
 cannot be found. The authorization server MUST respond with HTTP
 404 (Not Found) status code.

2.3.1. Create Resource Set Description

 Adds a new resource set description using the POST method. If the
 request is successful, the authorization server MUST respond with a
 status message that includes an _id property.

 Form of a create request, with an access token in the header:

 POST /rs/resource_set HTTP/1.1
 Content-Type: application/json
 Authorization: Bearer 204c69636b6c69
 ...

 (body contains JSON resource set description to be created)

 Form of a successful response:

HTTP/1.1 201 Created
Content-Type: application/json
Location: /rs/resource_set/12345
...

{
 "_id" : 12345,
 "user_access_policy_uri" : "http://as.example.com/rs/222/resource/333/policy"
}

Hardjono, et al. Expires October 6, 2015 [Page 8]

Internet-Draft OAuth RSR April 2015

2.3.2. Read Resource Set Description

 Reads a previously registered resource set description using the GET
 method. If the request is successful, the authorization server MUST
 respond with a status message that includes a body containing the
 referenced resource set description, along with an "_id" property.

 Form of a read request, with an access token in the header:

 GET /rs/resource_set/12345 HTTP/1.1
 Authorization: Bearer 204c69636b6c69
 ...

 Form of a successful response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...

 (body contains _id and resource set description)

 If the referenced resource does not exist, the authorization server
 MUST produce an error response with an error property value of
 "not_found", as defined in Section 2.3.

2.3.3. Update Resource Set Description

 Updates a previously registered resource set description using the
 PUT method. If the request is successful, the authorization server
 MUST respond with a status message that includes an "_id" property.

 Form of an update request, with an access token in the header:

 PUT /rs/resource_set/12345 HTTP/1.1
 Content-Type: application/json
 Authorization: Bearer 204c69636b6c69
 ...

 (body contains JSON resource set description to be updated)

Hardjono, et al. Expires October 6, 2015 [Page 9]

Internet-Draft OAuth RSR April 2015

 Form of a successful response:

 HTTP/1.1 200 OK
 ...

 {
 _"id": "12345"
 }

2.3.4. Delete Resource Set Description

 Deletes a previously registered resource set description using the
 DELETE method, thereby removing it from the authorization server's
 protection regime.

 Form of a delete request, with an access token in the header:

 DELETE /rs/resource_set/12345
 Authorization: Bearer 204c69636b6c69
 ...

 Form of a successful response:

 HTTP/1.1 204 No content
 ...

 As defined in Section 2.3, if the referenced resource does not exist
 the authorization server MUST produce an error response with an error
 property value of "not_found".

2.3.5. List Resource Set Descriptions

 Lists all previously registered resource set identifiers for this
 user using the GET method. The authorization server MUST return the
 list in the form of a JSON array of {rsid} string values.

 The resource server uses this method as a first step in checking
 whether its understanding of protected resources is in full
 synchronization with the authorization server's understanding.

 Form of a list request, with an access token in the header:

 GET /rs/resource_set HTTP/1.1
 Authorization: Bearer 204c69636b6c69
 ...

Hardjono, et al. Expires October 6, 2015 [Page 10]

Internet-Draft OAuth RSR April 2015

 Form of a successful response:

 HTTP/1.1 200 OK
 ...

 (body contains JSON array of {rsid} values)

3. Error Messages

 When a resource server attempts to access the resource set
 registration endpoint at the authorization server, if the request is
 successfully authenticated by OAuth means, but is invalid for another
 reason, the authorization server produces an error response by adding
 the following properties to the entity body of the HTTP response:

 error REQUIRED. A single error code, as noted in the API
 definition. Value for this property is defined in the specific
 authorization server endpoint description.

 error_description OPTIONAL. A human-readable text providing
 additional information, used to assist in the understanding and
 resolution of the error occurred.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error, used to provide the end-user
 with additional information about the error.

4. Security Considerations

 This specification largely relies on OAuth for API security and
 shares its security and vulnerability considerations.

 The resource server itself is presumed to have a trust relationship
 with the authorization server in question, and it registers resource
 sets in the context of a particular resource owner. A malicious
 resource server could register a bad icon URI at an authorization
 server, "infecting" the authorization server either when the icon is
 retrieved or by confusing a human resource owner about the nature of
 the resource set being protected. To accomplish this, the resource
 server would likely have to deceive a resource owner into authorizing
 it to, first, dynamically registering for client credentials at the
 authorization server, and second, outsourcing protection to the
 authorization server.

 An authorization server could mitigate this threat by not displaying
 scope or resource set icons of a dynamically registered resource
 server until such time as it establishes sufficient trust. A less-
 trusted resource server could increase the likelihood of an

Hardjono, et al. Expires October 6, 2015 [Page 11]

Internet-Draft OAuth RSR April 2015

 authorization server displaying its icons by choosing icons that are
 well-known and standardized by third parties.

5. Privacy Considerations

 The communication between the authorization server and resource
 server may expose personally identifiable information of a resource
 owner. The context in which this API is used SHOULD account for its
 own unique privacy considerations.

6. IANA Considerations

 This document makes no request of IANA.

7. Example of Registering Resource Sets

 The following example illustrates the intent and usage of resource
 set descriptions and scope descriptions as part of resource set
 registration in the context of [UMA].

 This example contains some steps that are exclusively in the realm of
 user experience rather than web protocol, to achieve realistic
 illustration. These steps are labeled "user experience only". Some
 other steps are exclusively internal to the operation of the entity
 being discussed. These are labeled "internal only".

 A resource owner, Alice Adams, has just uploaded a photo of her new
 puppy to a resource server, Photoz.example.com, and wants to ensure
 that this specific photo is not publicly accessible.

 Alice has already introduced this resource server to her
 authorization server, CopMonkey.example.com. However, Alice has not
 previously instructed Photoz to use CopMonkey to protect any photos
 of hers.

 Alice has previously visited CopMonkey to map a default "do not share
 with anyone" policy to any resource sets registered by Photoz, until
 such time as she maps some other more permissive policies to those
 resources. (User experience only. This may have been done at the
 time Alice introduced the resource server to the authorization
 server, and/or it could have been a global or resource server-
 specific preference setting. A different constraint or no constraint
 at all might be associated with newly protected resources.) Other
 kinds of policies she may eventually map to particular photos or
 albums might be "Share only with husband@email.example.net" or "Share
 only with people in my 'family' group".

Hardjono, et al. Expires October 6, 2015 [Page 12]

Internet-Draft OAuth RSR April 2015

 Photoz itself has a publicly documented application-specific API that
 offers two dozen different methods that apply to single photos, such
 as "addTags" and "getSizes", but rolls them up into two photo-related
 scopes of access: "view" (consisting of various read-only operations)
 and "all" (consisting of various reading, editing, and printing
 operations). It defines two scope descriptions that represent these
 scopes, which it is able to reuse for all of its users (not just
 Alice), and ensures that these scope description documents are
 available through HTTP GET requests that may be made by authorization
 servers.

 The "name" property values are intended to be seen by Alice when she
 maps authorization constraints to specific resource sets and actions
 while visiting CopMonkey, such that Alice would see the strings "View
 Photo and Related Info" and "All Actions", likely accompanied by the
 referenced icons, in the CopMonkey interface. (Other users of Photoz
 might similarly see the same labels at CopMonkey or whatever other
 authorization server they use. Photoz could distinguish natural-
 language labels per user if it wishes, by pointing to scopes with
 differently translated names.)

 Example of the viewing-related scope description document available
 at http://photoz.example.com/dev/scopes/view:

 {
 "name" : "View Photo and Related Info",
 "icon_uri" : "http://www.example.com/icons/reading-glasses.png"
 }

 Example of the broader scope description document available at
 http://photoz.example.com/dev/scopes/all:

 {
 "name" : "All Actions",
 "icon_uri" : "http://www.example.com/icons/galaxy.png"
 }

 While visiting Photoz, Alice selects a link or button that instructs
 the site to "Protect" or "Share" this single photo (user experience
 only; Photoz could have made this a default or preference setting).

 As a result, Photoz defines for itself a resource set that represents
 this photo (internal only; Photoz is the only application that knows
 how to map a particular photo to a particular resource set). Photoz
 also prepares the following resource set description, which is
 specific to Alice and her photo. The "name" property value is
 intended to be seen by Alice in mapping authorization policies to
 specific resource sets and actions when she visits CopMonkey. Alice

Hardjono, et al. Expires October 6, 2015 [Page 13]

Internet-Draft OAuth RSR April 2015

 would see the string "Steve the puppy!", likely accompanied by the
 referenced icon, in the CopMonkey interface. The possible scopes of
 access on this resource set are indicated with URI references to the
 scope descriptions, as shown just above.

 {
 "name" : "Steve the puppy!",
 "icon_uri" : "http://www.example.com/icons/flower",
 "scopes" : [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 Photoz uses the Create method of CopMonkey's standard OAuth resource
 set registration API, presenting its Alice-specific access token to
 use the API to register and assign an identifier to the resource set
 description.

 PUT /rs/resource_set HTTP/1.1
 Content-Type: application/json
 ...

 {
 "name" : "Steve the puppy!",
 "icon_uri" : "http://www.example.com/icons/flower.png",
 "scopes" : [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 If the registration attempt succeeds, CopMonkey responds in the
 following fashion.

 HTTP/1.1 201 Created
 Content-Type: application/json
 ...

 {
 "_id" : "112210f47de98100"
 }

 At the time Alice indicates she would like this photo protected,
 Photoz can choose to redirect Alice to CopMonkey for further policy
 setting, access auditing, and other authorization server-related
 tasks (user experience only).

Hardjono, et al. Expires October 6, 2015 [Page 14]

Internet-Draft OAuth RSR April 2015

 Once it has successfully registered this description, Photoz is
 responsible for outsourcing protection to CopMonkey for access
 attempts made to this photo.

 Over time, as Alice uploads other photos and creates and organizes
 photo albums, Photoz can use additional methods of the resource set
 registration API to ensure that CopMonkey's understanding of Alice's
 protected resources matches its own.

 For example, if Photoz suspects that somehow its understanding of the
 resource set has gotten out of sync with CopMonkey's, it can ask to
 read the resource set description as follows.

 GET /rs/resource_set/112210f47de98100 HTTP/1.1
 Host: as.example.com
 ...

 CopMonkey responds with the full content of the resource set
 description, including its _id, as follows:

 Example of an HTTP response to a "read resource set description"
 request, containing a resource set description from the authorization
 server:

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...

 {
 "_id" : "112210f47de98100",
 "name" : "Photo album",
 "icon_uri" : "http://www.example.com/icons/flower.png",
 "scopes" : [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 If for some reason Photoz and CopMonkey have gotten dramatically out
 of sync, Photoz can ask for the list of resource set identifiers
 CopMonkey currently knows about:

 GET /rs/resource_set HTTP/1.1
 Host: as.example.com
 ...

 CopMonkey's response might look as follows:

Hardjono, et al. Expires October 6, 2015 [Page 15]

Internet-Draft OAuth RSR April 2015

 HTTP/1.1 200 OK
 ...

 ["112210f47de98100", "34234df47eL95300"]

 If Alice later changes the photo's title (user experience only) on
 Photoz from "Steve the puppy!" to "Steve on October 14, 2011", Photoz
 would use the Update method to ensure that Alice's experience of
 policy-setting at CopMonkey remains consistent with what she sees at
 Photoz. Following is an example of this request.

 PUT /rs/resource_set/112210f47de98100 HTTP/1.1
 Content-Type: application/json
 Host: as.example.com
 ...

 {
 "name" : "Steve on October 14, 2011",
 "icon_uri" : "http://www.example.com/icons/flower.png",
 "scopes" : [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 CopMonkey would respond as follows.

 HTTP/1.1 201 Created
 Content-Type: application/json
 ...

 {
 "_id" : "112210f47de98100"
 }

 There are other reasons Photoz might want to update resource set
 descriptions, having nothing to do with Alice's actions or wishes.
 For example, it might extend its API to include new features, and
 want to add new scopes to all of Alice's and other users' resource
 set descriptions.

 if Alice later decides to entirely remove sharing protection (user
 experience only) on this photo while visiting Photoz, ensuring that
 the public can get access without any protection, Photoz is
 responsible for deleting the relevant resource set registration, as
 follows:

Hardjono, et al. Expires October 6, 2015 [Page 16]

Internet-Draft OAuth RSR April 2015

 DELETE /rs/resource_set/112210f47de98100 HTTP/1.1
 Host: as.example.com
 ...

8. Acknowledgments

 The following people made significant text contributions to the
 specification:

 o Paul C. Bryan, ForgeRock US, Inc. (former editor)

 o Mark Dobrinic, Cozmanova

 o George Fletcher, AOL

 o Lukasz Moren, Cloud Identity Ltd

 o Christian Scholz, COMlounge GmbH (former editor)

 o Mike Schwartz, Gluu

 o Jacek Szpot, Newcastle University

 Additional contributors to this specification include the Kantara UMA
 Work Group participants, a list of whom can be found at
 [UMAnitarians].

9. References

9.1. Normative References

 [JSON] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", March 2014,
 <https://tools.ietf.org/html/rfc7159>.

 [OAuth2] Hardt, D., "The OAuth 2.0 Authorization Framework",
 October 2012, <http://tools.ietf.org/html/rfc6749>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

9.2. Informative References

 [OpenIDConnect]
 Sakimura, N., "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

https://tools.ietf.org/html/rfc7159
http://tools.ietf.org/html/rfc6749
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://openid.net/specs/openid-connect-core-1_0.html

Hardjono, et al. Expires October 6, 2015 [Page 17]

Internet-Draft OAuth RSR April 2015

 [UMA] Hardjono, T., "User-Managed Access (UMA) Profile of OAuth
 2.0", December 2014,
 <http://docs.kantarainitiative.org/uma/

draft-uma-core.html>.

 [UMAnitarians]
 Maler, E., "UMA Participant Roster", December 2014,
 <http://kantarainitiative.org/confluence/display/uma/
 Participant+Roster>.

Authors' Addresses

 Thomas Hardjono (editor)
 MIT

 Email: hardjono@mit.edu

 Eve Maler
 ForgeRock

 Email: eve.maler@forgerock.com

 Maciej Machulak
 Cloud Identity

 Email: maciej.machulak@cloudidentity.co.uk

 Domenico Catalano
 Oracle

 Email: domenico.catalano@oracle.com

http://docs.kantarainitiative.org/uma/draft-uma-core.html
http://docs.kantarainitiative.org/uma/draft-uma-core.html
http://kantarainitiative.org/confluence/display/uma/

Hardjono, et al. Expires October 6, 2015 [Page 18]

