
Network Working Group T. Hardjono, Ed.
Internet-Draft MIT
Intended status: Standards Track October 1, 2012
Expires: April 4, 2013

User-Managed Access (UMA) Core Protocol
draft-hardjono-oauth-umacore-05

Abstract

 This specification defines the User-Managed Access (UMA) core
 protocol. This protocol provides a method for users to control
 access to their protected resources, residing on any number of host
 sites, through an authorization manager that governs access decisions
 based on user policy.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 4, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hardjono Expires April 4, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft UMA Core Protocol October 2012

Table of Contents

1. Introduction . 4
1.1. Notational Conventions 6
1.2. Basic Terminology . 6
1.3. Endpoints, Endpoint Protection, and Tokens 8
1.4. Scopes, Resource Sets, Permissions, and Authorization . . 10
1.5. AM Configuration Data 11

2. Protecting a Resource . 14
2.1. Host Looks Up AM Configuration Data 15
2.2. Host Registers with AM 15
2.3. Host Obtains Protection API Token 16
2.4. Host Registers Sets of Resources to Be Protected 16
2.4.1. Scope Descriptions 16
2.4.2. Resource Set Descriptions 17
2.4.3. Resource Set Registration API 19
2.4.3.1. Create Resource Set Description 20
2.4.3.2. Read Resource Set Description 21
2.4.3.3. Update Resource Set Description 22
2.4.3.4. Delete Resource Set Description 23
2.4.3.5. List Resource Set Descriptions 23

3. Getting Authorization and Accessing a Resource 24
3.1. Requester-Host: Attempt Access at Protected Resource . . . 25
3.1.1. Requester Presents No Requester Permission Token . . . 26

 3.1.2. Requester Presents a Requester Permission Token
 That Has Insufficient Permission 26
 3.1.3. Requester Presents a Valid Requester Permission
 Token with Sufficient Permissions 27

3.2. Host-AM: Register a Permission 27
3.3. Host Determines the Requester Permission Token Status . . 29
3.3.1. UMA Bearer Token Profile 29

 3.4. Requester-AM: Ask for Requester Permission Token and
 Permission . 31

3.4.1. Requester Looks Up AM Configuration Data 32
3.4.2. Requester Registers with AM 32
3.4.3. Requester Obtains Authorization API Token 32
3.4.4. Requester Obtains Requester Permission Token 33
3.4.5. Requester Asks for Authorization to Add Permission . . 34

3.5. Claims-Gathering Flows 36
 3.5.1. Claims-Gathering Flow for Requester Apps Operated
 by End-Users . 36

3.5.1.1. OpenID Connect Claim Profile 37
4. Error Messages . 38
4.1. OAuth Error Responses 38
4.2. UMA Error Responses 38

5. Specification of Additional Profiles 39
5.1. Specifying UMA Profiles 40
5.2. Specifying UMA Token Profiles 41

Hardjono Expires April 4, 2013 [Page 2]

Internet-Draft UMA Core Protocol October 2012

6. Security Considerations 41
7. Privacy Considerations . 42
8. Conformance . 42
9. IANA Considerations . 43
10. Example of Registering Resource Sets 43
11. Acknowledgments . 48
12. Issues . 48
13. References . 49
13.1. Normative References 49
13.2. Informative References 50

Appendix A. Document History 50
 Author's Address . 51

Hardjono Expires April 4, 2013 [Page 3]

Internet-Draft UMA Core Protocol October 2012

1. Introduction

 The User-Managed Access (UMA) core protocol provides a method based
 on OAuth 2.0 [OAuth2] for users to control access to their protected
 resources, residing on any number of host sites, through a single
 authorization manager (AM) that governs access decisions based on
 user policy.

 There are numerous use cases for UMA, where a resource owner elects
 to have a third party to control access to these resources
 potentially without the real-time presence of the resource owner. A
 typical example is the following: a web user (authorizing user) can
 authorize a web app (requester) to gain one-time or ongoing access to
 a resource containing his home address stored at a "personal data
 store" service (host), by telling the host to act on access decisions
 made by his authorization decision-making service (authorization
 manager or AM). The requesting party might be an e-commerce company
 whose site is acting on behalf of the user himself to assist him/her
 in arranging for shipping a purchased item, or it might be his friend
 who is using an online address book service to collect addresses, or
 it might be a survey company that uses an online service to compile
 population demographics. Other scenarios and use cases for UMA usage
 can be found in [UMA-usecases] and [UMA-userstories].

 Practical control of access among loosely coupled parties requires
 more than just messaging protocols. This specification defines only
 the technical "contract" between UMA-compliant entities; its
 companion Trust Model specification [UMA-trustmodel] defines the
 expected behaviors of parties operating and using these entities.
 Parties operating entities that claim to be UMA-compliant MUST
 provide documentation affirmatively stating their acceptance of the
 binding obligations contractual framework defined in the Trust Model
 specification.

 In enterprise settings, application access management often involves
 letting back-office applications serve only as policy enforcement
 points (PEPs), depending entirely on access decisions coming from a
 central policy decision point (PDP) to govern the access they give to
 requesters. This separation eases auditing and allows policy
 administration to scale in several dimensions. UMA makes use of a
 separation similar to this, letting the authorizing user serve as a
 policy administrator crafting authorization strategies on his or her
 own behalf.

 The UMA protocol can be considered an advanced application of
 [OAuth2] in that it profiles, extends, and embeds OAuth in various
 ways. In the big picture, an AM can be thought of as an enhanced
 OAuth authorization server; a host as an enhanced resource server;

Hardjono Expires April 4, 2013 [Page 4]

Internet-Draft UMA Core Protocol October 2012

 and a requester as an enhanced client, acquiring an access token and
 the requisite authorization to access a protected resource at the
 host.

 The UMA protocol has three broad phases, as shown in Figure 1.

 The Three Phases of the UMA Protocol
 +-----+----------------+
 | UA | authorizing |
 +-------Manage (A)--| | user |
 | +-----+----------------+
 | Phase 1: | UA |
 | protect a +----------------+
 | resource |
 | Control (B)
 | |
 v v
 +-----------+ +-----+----------------+
 | host |<-Protect-(C)-|prot | authorization |
 | | | API | manager (AM) |
 +-----------+ +-----+----------------+
 | protected | | authorization |
 | resource | | API |
 +-----------+ +----------------+
 ^ |
 | Phases 2 and 3: Authorize (D)
 | get authz and |
 | access a resource v
 | +----------------+
 +-------Access (E)--------| requester |
 +----------------+
 (requesting party)

 Figure 1

 In broad strokes, the phases are as follows:

 1. Protect a resource (described in Section 2).

 2. Get authorization (described in Section 3).

 3. Access a resource (described along with Phase 2 in Section 3).

 In more detail, the phases work as follows:

 1. _Protect a resource:_ The authorizing user has chosen to use a
 host for managing online resources ("A"), and introduces this
 host to an AM using an OAuth-mediated interaction that results in

Hardjono Expires April 4, 2013 [Page 5]

Internet-Draft UMA Core Protocol October 2012

 the AM giving the host a protection API token (PAT). The host
 uses AM's protection API to tell the AM what sets of resources to
 protect ("C"). Out of band of the UMA protocol, the authorizing
 user instructs the AM what policies to attach to the registered
 resource sets ("B"). Requesters are not yet in the picture.

 2. _Get authorization:_ This phase involves the requester (along
 with its operator, the requesting party or that party's human
 agent), host, and AM. It may also involve synchronous action by
 the authorizing user if this person is the same person as the
 requesting party. This phase is dominated by a loop of activity
 in which the requester approaches the host seeking access to a
 protected resource ("E"). In order to access the protected
 resource at the host, the requester must obtain a requester
 permission token (RPT) from the AM. The requester is then
 directed to the AM ask for authorization for the permissions it
 seeks. In doing so, it must demonstrate to the AM that it
 satisfies the resource owner's authorization policy governing the
 sought-for resource and scope of access if it does not already
 have the required access permission ("D"). To use the AM's
 authorization API in the first place, the requesting party has to
 consent to deal with the AM in providing claims, which results in
 the requester obtaining an authorization API token (AAT) from the
 AM.

 3. _Access a resource:_ This phase involves the requester
 successfully presenting an RPT that has sufficient permission
 associated with it to the host in order to gain access to the
 desired resource ("E"). In this sense, it is the "happy path"
 within phase 2.

 In deploying UMA, implementers are expected to develop one or more
 UMA Profiles (described in Section 5) that specify and restrict the
 various UMA protocol options, according to the deployment conditions.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol properties and values are
 case sensitive.

1.2. Basic Terminology

 UMA introduces the following terms, utilizing OAuth and other
 identity and access management concepts.

https://datatracker.ietf.org/doc/html/rfc2119

Hardjono Expires April 4, 2013 [Page 6]

Internet-Draft UMA Core Protocol October 2012

 authorizing user
 The "user" in User-Managed Access. An UMA-defined variant of
 an OAuth resource owner, typically a web user who configures an
 authorization manager with policies that control how it assigns
 access permissions to requesters for a protected resource. The
 authorizing user can also be corporation or other legal person.

 authorization manager (AM)
 An UMA-defined variant of an OAuth authorization server that
 carries out an authorizing user's policies governing access to
 a protected resource.

 protected resource
 An access-restricted resource at a host, which is being policy-
 protected by an AM.

 host
 An UMA-defined variant of an OAuth resource server that
 enforces access to the protected resources it hosts, as
 governed by an authorization manager.

 claim
 A statement of the value or values of one or more identity
 attributes of a requesting party. A requesting party may need
 to provide claims to an authorization manager in order to
 satisfy policy and gain permission for access to a protected
 resource.

 requester
 An UMA-defined variant of an OAuth client that seeks access to
 a protected resource.

 requesting party
 A web user, or a corporation or other legal person, that uses a
 requester to seek access to a protected resource. The
 requesting party may or may not be the same person as the
 authorizing user.

 resource set A host-managed set of one or more resources to be AM-
 protected. In authorization policy terminology, a resource set
 is the "object" being protected.

 scope A bounded extent of access that is possible to perform on a
 resource set. In authorization policy terminology, a scope is
 one of the potentially many "verbs" that can logically apply to
 a resource set. Whereas OAuth scopes apply to resource sets
 that are implicit, UMA associates scopes with explicitly
 labeled resource sets ("objects").

Hardjono Expires April 4, 2013 [Page 7]

Internet-Draft UMA Core Protocol October 2012

 permission A scope of access over a particular resource set at a
 particular host that is being asked for by, or being granted
 to, a requester. In authorization policy terminology, a
 permission includes a "subject" (requesting party), "verbs"
 (one or more scopes of access), and an "object" (resource set).

1.3. Endpoints, Endpoint Protection, and Tokens

 Various UMA entities present protected APIs for other UMA entities to
 use. These APIs are as follows:

 o The AM presents a _protection API_ to the host, as standardized by
 this specification. This API is OAuth-protected, requiring a host
 to obtain from the AM an OAuth access token, referred to in this
 specification as a _protection API token (PAT)_ to distinguish it
 from other tokens with other purposes. The host must present the
 PAT for successful use of OAuth-protected endpoints at this API.

 o The AM presents an _authorization API_ to the requester, as
 standardized by this specification. This API is OAuth-protected,
 requiring a requester to obtain from the AM an OAuth access token,
 referred to in this specification as an _authorization API token
 (AAT)_ to distinguish it from other tokens with other purposes.
 The requester must present the AAT for successful use of OAuth-
 protected endpoints at this API.

 o The host presents a _protected resource_ to the requester, which
 can be considered an application-specific or proprietary API.
 This API is UMA-protected, requiring a requester to obtain from
 the AM an UMA-specific token referred to in this specification as
 a _requester permission token (RPT)_ to distinguish it from other
 tokens with other purposes. The requester must present the RPT
 with sufficient permissions (also issued by the AM) for successful
 access to an UMA-protected resource.

 The AM presents standard OAuth endpoints for token issuance and user
 authorization in protecting its own UMA APIs, as follows. Hosts
 asking to use the protection API would be issued a PAT. Requesters
 asking to use the authorization API would be issued an AAT.

 token endpoint Part of standard OAuth, as profiled by UMA. The
 endpoint at which the host asks for a PAT and the requester
 asks for an AAT. (The AM may also choose to issue a refresh
 token.) This specification makes the OAuth token profile
 "bearer" mandatory for the AM to implement. The AM can declare
 its ability to handle other token profiles.

Hardjono Expires April 4, 2013 [Page 8]

Internet-Draft UMA Core Protocol October 2012

 user authorization endpoint Part of standard OAuth, as profiled by
 UMA. The endpoint to which the host or requester redirects an
 authorizing user or end-user requesting party, respectively, to
 authorize it to use this AM in resource protection or
 authorization, if the OAuth authorization code grant type
 (mandatory for the AM to implement) is being used.

 The AM presents the following endpoints to the host as part of its
 protection API; these endpoints are OAuth-protected and require a PAT
 for access, for which the
 "http://docs.kantarainitiative.org/uma/scopes/prot.json" OAuth scope
 is required:

 resource set registration endpoint The endpoint at which the host
 registers resource sets it wants the AM to protect. The
 operations available at this endpoint constitute a resource set
 registration API that is a subset of the protection API (see

Section 2.4.3).

 permission registration endpoint The endpoint at which the host
 registers permissions that it anticipates a requester will
 shortly be asking for from the AM.

 RPT status endpoint The endpoint at which the host submits
 (forwards) an RPT that has accompanied an access request, to
 learn what currently valid permissions are associated with it.
 This specification defines an UMA token profile, "bearer",
 which is mandatory for the AM to implement and which, if used,
 REQUIRES the host to use this endpoint (see Section 3.3).

 The AM presents the following endpoints to the requester as part of
 its authorization API; these endpoints are OAuth-protected and
 requires an AAT for access, for which the
 "http://docs.kantarainitiative.org/uma/scopes/authorization" OAuth
 scope is required:

 RPT endpoint The endpoint at which the requester asks the AM for the
 issuance of an RPT relating to this requesting party, host, and
 AM.

 permission request endpoint The endpoint at which the requester asks
 for authorization to have permissions associated with an RPT.

 The host presents one or more protected resource endpoints to the
 requester; these endpoints are UMA-protected and require an RPT with
 sufficient permissions for access:

Hardjono Expires April 4, 2013 [Page 9]

Internet-Draft UMA Core Protocol October 2012

 protected resource endpoint An application-specific endpoint at
 which a requester attempts to access resources. This can be a
 singular API endpoint, one of a set of API endpoints, a URI
 corresponding to an HTML document, or any other URI.

 Similarly to OAuth authorization servers, an UMA AM has the
 opportunity to manage the validity periods of the access tokens, the
 corresponding refresh tokens (in the case of the PAT and AAT), and
 even the client credentials that it issues. Different lifetime
 strategies may be suitable for different resources and scopes of
 access, and the AM has the opportunity to give the authorizing user
 control through policy. These options are all outside the scope of
 this specification.

1.4. Scopes, Resource Sets, Permissions, and Authorization

 UMA extends the OAuth concept of a "scope" by defining scopes as
 applying to particular labeled resource sets, rather than leaving the
 relevant resources (such as API endpoints or URIs) implicit. A
 resource set can have any number of scopes, which together describe
 the universe of actions that _can be_ taken on this protected
 resource set. For example, a resource set representing a status
 update API might have scopes that include adding an update or reading
 updates. A resource set representing a photo album might have scopes
 that include viewing a slideshow or printing the album. Hosts
 register resource sets and their scopes when there is not yet any
 particular requesting party or requester in the picture.

 Resource sets and scopes have meaning only to hosts and their users,
 in the same way that application-specific host APIs have meaning only
 to these entities. The AM is merely a conveyor of labels and
 descriptions for these constructs, to help the authorizing user set
 policies that guide eventual authorization processes.

 In contrast to an UMA scope, an UMA permission reflects an _actual_
 result of an authorization process for a specific requester (on
 behalf of a specific requesting party) to access a particular
 resource set in a scoped (bounded) manner. Hosts register permission
 requests with AMs on behalf of requesters that have attempted access
 there and transmit the resulting temporary permission tickets to
 requesters. Requesters subsequently ask AMs for permissions to be
 associated with their RPTs. AMs grant (or deny) permissions to
 requesters.

 An RPT is bound to a requesting party, the requester (client) being
 used by that party, the host at which protected resources of interest
 reside, and the AM that protects those resources. It becomes
 associated with as many permissions as are appropriate for gaining

Hardjono Expires April 4, 2013 [Page 10]

Internet-Draft UMA Core Protocol October 2012

 authorized access to resources protected at that host by any single
 AM (even if those permissions apply to resources managed by two or
 more different authorizing users at the same host using the same AM).
 Each individual permission is associated, in addition, with the
 authorizing user whose policies drove the authorization process.
 This enables meaningful, auditable, and potentially legally
 enforceable authorization for access (see [UMA-trustmodel]).

 Unlike UMA scopes (but similarly to tokens themselves; see
Section 1.3), permissions have a validity period that the AM has the

 opportunity to control independently or with input from the
 authorizing user. These options are outside the scope of this
 specification.

1.5. AM Configuration Data

 The AM MUST provide configuration data to other entities it interacts
 with in aJSON [RFC4627] document that resides in an /uma-
 configuration directory at at its hostmeta [RFC6415] location. The
 configuration data documents major conformance options supported by
 the AM (described further in Section 8) and protection and
 authorization API endpoints (as described in Section 1.3).

 The configuration data has the following properties and a Content-
 Type of application/uma-configuration+json. All endpoint URIs
 supplied SHOULD require the use of a transport-layer security
 mechanism such as TLS.

 version
 REQUIRED. The version of the UMA core protocol to which this
 AM conforms. The value MUST be the string "1.0".

 issuer
 REQUIRED. A URI indicating the party operating the AM.

 dynamic_client_registration_supported
 OPTIONAL. Whether dynamic client registration, such as through
 [DynClientReg], is supported for both hosts and requesters.
 The value, if this property is present, MUST be the string
 "yes" (dynamic registration is supported, using an unspecified
 method) or "no" (it is not supported; hosts and requesters are
 required to pre-register). The default is AM-specific. This
 property is not currently extensible. (This conformance option
 is largely a placeholder for now.)

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc6415

Hardjono Expires April 4, 2013 [Page 11]

Internet-Draft UMA Core Protocol October 2012

 oauth_token_profiles_supported
 REQUIRED. PAT and AAT profiles produced by this AM. The
 property value is an array of string values. Currently the
 only string value for this property defined by this
 specification is "bearer", corresponding to the OAuth bearer
 token profile [OAuth-bearer]. The AM is REQUIRED to support
 this profile, and to supply this string value explicitly. The
 AM MAY declare its support for additional access token profiles
 by providing a unique absolute URI in a string value in the
 array for each one.

 uma_token_profiles_supported
 REQUIRED. RPT types produced by this AM. The property value
 is an array of string values. Currently the only string value
 for this property defined by this specification is "bearer",
 whose associations the host MUST determine through a token
 status interaction with the AM (see Section 3.3 for the
 definition of this profile). The AM is REQUIRED to support the
 UMA bearer token profile, and to supply this string value
 explicitly. The AM MAY declare its support for RPTs using
 additional UMA token profiles by providing a unique absolute
 URI in a string value in the array for each one.

 oauth_grant_types_supported
 REQUIRED. OAuth grant types supported by this AM in issuing
 PATs and AATs. The property value is an array of string
 values. Each string value MUST be one of the grant_type values
 defined in [OAuth2], or alternatively an extension grant type
 indicated by a unique absolute URI.

 claim_profiles_supported
 OPTIONAL. Claim formats and associated sub-protocols for
 gathering claims from requesting parties, as supported by this
 AM. The property value is an array of string values.
 Currently the only string value for this property defined by
 this specification is "openid", for which details are supplied
 in Section 3.5.1.1. The AM MAY declare its support for
 additional claim profiles by assigning a unique absolute URI in
 a string value in the array for each one.

 token_endpoint
 REQUIRED. The endpoint URI at which the host or requester asks
 the AM for a PAT or AAT, respectively. A requested scope of
 "http://docs.kantarainitiative.org/uma/scopes/prot.json"
 results in a PAT. A requested scope of
 "http://docs.kantarainitiative.org/uma/scopes/authorization"
 results in an AAT. Available HTTP methods are as defined by
 [OAuth2] for a token endpoint.

Hardjono Expires April 4, 2013 [Page 12]

Internet-Draft UMA Core Protocol October 2012

 user_endpoint
 REQUIRED. The endpoint URI at which the host gathers the
 consent of the authorizing user or end-user requesting party,
 if the "authorization_code" grant type is used. Available HTTP
 methods are as defined by [OAuth2] for an end-user
 authorization endpoint.

 resource_set_registration_endpoint
 REQUIRED. The endpoint URI at which the host registers
 resource sets with the AM to put them under its protection (see

Section 2.4.3). A PAT MUST accompany requests to this
 protected endpoint.

 permission_registration_endpoint
 REQUIRED. The endpoint URI at which the host registers
 permissions with the AM for which a requester will be seeking
 authorization (see Section 3.2). A PAT MUST accompany requests
 to this protected endpoint.

 rpt_endpoint
 REQUIRED. The endpoint URI at which the requester ask the AM
 for an RPT. An AAT token MUST accompany requests to this
 protected endpoint.

 rpt_status_endpoint
 REQUIRED. The endpoint URI at which the host requests the
 status of an RPT presented to it by a requester (see

Section 3.3). A PAT MUST accompany requests to this protected
 endpoint.

 permission_request_endpoint
 REQUIRED. The endpoint URI at which the requester asks for
 authorization to have a new permission associated with its RPT
 (possibly assigned dynamically if it had not existed before).
 An AAT MUST accompany requests to this protected endpoint.

Hardjono Expires April 4, 2013 [Page 13]

Internet-Draft UMA Core Protocol October 2012

 Example of AM configuration data that resides at
 https://example.com/.well-known/uma-configuration (note the use of
 https: for endpoints throughout):
{
"version":"1.0",
"issuer":"https://example.com",
"dynamic_client_registration_supported":"yes",
"oauth_token_profiles_supported":[
 "bearer"
],
"uma_token_profiles_supported":[
 "bearer"
],
"oauth_grant_types_supported":[
 "authorization_code"
],
"claim_profiles_supported":[
 "openid"
],
"token_endpoint":"https://am.example.com/token_uri",
"user_endpoint":"https://am.example.com/user_uri",
"resource_set_registration_endpoint":"https://am.example.com/host/rsrc_uri",
"rpt_status_endpoint":"https://am.example.com/host/status_uri",
"permission_registration_endpoint":"https://am.example.com/host/perm_uri",
"rpt_endpoint":"https://am.example.com/requester/rpt_uri",
"permission_request_endpoint":"https://am.example.com/requester/perm_uri"
}

 AM configuration data MAY contain extension properties that are not
 defined in this specification. Extension names that are unprotected
 from collisions are outside the scope of the current specification.

2. Protecting a Resource

 Phase 1 of UMA is protecting a resource. The user, host, and AM
 perform the following steps in order to successfully complete Phase
 1:

 1. The host (having learned the general location of the relevant AM
 out of band) looks up the AM's configuration data and learns
 about its relevant endpoints and supported formats.

 2. If the host has not yet obtained a unique OAuth client identifier
 and optional secret from the AM, it registers with the AM as
 required.

Hardjono Expires April 4, 2013 [Page 14]

Internet-Draft UMA Core Protocol October 2012

 3. The host obtains a protection API token (PAT) from the AM with
 the authorizing user's consent, by asking for the
 "http://docs.kantarainitiative.org/uma/scopes/prot.json" scope.

 4. The host registers any resource sets with the AM that are
 intended to be protected. (This step is repeated when and as
 needed.)

 If the host undertakes these actions successfully, the results are as
 follows:

 o The host has received configuration data about the AM, such as
 endpoints it needs to use in interacting with the AM.

 o The host has received a PAT that represents this authorizing
 user's approval for the host to work with the AM in protecting
 resources.

 o The AM has acquired information about resource sets at this host
 that it is supposed to protect on behalf of this authorizing user.

2.1. Host Looks Up AM Configuration Data

 The host needs to learn the AM's protection API endpoints before they
 can begin interacting. To get the host started in this process, the
 authorizing user might provide the AM's location to it, for example,
 by typing a URL into a web form field or clicking a button.
 Alternatively, the host might already be configured to work with a
 single AM without requiring any user input. The exact process is
 beyond the scope of this specification, and it is up to the host to
 choose a method to learn the AM's general location.

 From the data provided, discovered, or configured, the host MUST
 retrieve the AM's configuration data document, as described in

Section 2 of hostmeta [RFC6415]. For example, if the user supplied
 "example.com" as the Authorization Manager's domain, the host creates
 the URL "https://example.com/.well-known/uma-configuration" and
 performs a GET request on it. The AM MUST return content that
 includes UMA protection API endpoints as defined in Section 1.5.

2.2. Host Registers with AM

 If the host has not already obtained an OAuth client identifier and
 optional secret from this AM, in this step it MUST do so in order to
 engage in OAuth-based interactions with the AM. It MAY do this using
 [DynClientReg], if the AM supports it (see Section 1.5 for how the AM
 MAY indicate support).

https://datatracker.ietf.org/doc/html/rfc6415

Hardjono Expires April 4, 2013 [Page 15]

Internet-Draft UMA Core Protocol October 2012

2.3. Host Obtains Protection API Token

 In this step, the host acquires a PAT from the AM. The token
 represents the approval of the authorizing user for this host to
 trust this AM for protecting resources belonging to this user.

 The host MUST use OAuth 2.0 [OAuth2] to obtain the protection API
 token. Here the host acts in the role of an OAuth client requesting
 the "http://docs.kantarainitiative.org/uma/scopes/prot.json" scope;
 the authorizing user acts in the role of an OAuth end-user resource
 owner; and the AM acts in the role of an OAuth authorization server.
 Once the host has obtained its PAT, it presents it to the AM at
 various protection API endpoints; in presenting these endpoints the
 AM acts in the role of a resource server.

 The AM MAY support the use of any grant type, but MUST support the
 authorization_code grant type, and SHOULD support the SAML bearer
 token grant type [OAuth-SAML]
 (urn:ietf:params:oauth:grant-type:saml2-bearer) if it anticipates
 working with hosts that are operating in environments where the use
 of SAML is prevalent. The AM MUST indicate all grant types it
 supports in its configuration data, as defined in Section 1.5.

 The host has completed this step successfully when it possesses a PAT
 it can use to get access to the AM's protection API on this user's
 behalf.

2.4. Host Registers Sets of Resources to Be Protected

 Once the host has received a PAT, for any of the user's sets of
 resources that are to be protected by this AM, it MUST register these
 resource sets at the AM's registration endpoint.

 Note that the host is free to offer the option to protect any subset
 of the user's resources using different AMs or other means entirely,
 or to protect some resources and not others. Additionally, the
 choice of protection regimes can be made explicitly by the user or
 implicitly by the host. Any such partitioning by the host or user is
 outside the scope of this specification.

 See Section 10 for an extended example of registering resource sets.

2.4.1. Scope Descriptions

 A scope is a bounded extent of access that is possible to perform on
 a resource set. A scope description is a JSON document with the
 following properties and a Content-Type of application/
 uma-scope+json:

Hardjono Expires April 4, 2013 [Page 16]

Internet-Draft UMA Core Protocol October 2012

 name REQUIRED. A human-readable string describing some scope
 (extent) of access. This name is intended for ultimate use in the
 AM's user interface to assist the user in setting policies for
 protected resource sets that have this available scope.

 icon_uri OPTIONAL. A URI for a graphic icon representing the scope.
 The referenced icon is intended for ultimate use in the AM's user
 interface to assist the user in setting policies for protected
 resource sets that have this available scope.

 For example, this description characterizes a scope that involves
 reading or viewing resources (vs. creating them or editing them in
 some fashion):

 {
 "name": "View",
 "icon_uri": "http://www.example.com/icons/reading-glasses"
 }

 Scope descriptions MAY contain extension properties that are not
 defined in this specification. Extension names that are unprotected
 from collisions are outside the scope of the current specification.

 A host MUST list a resource set's available scopes using URI
 references (as defined in Section 2.4.2). The scopes available for
 use at any one host MUST have unique URI references so that the
 host's scope descriptions are uniquely distinguishable. A scope URI
 reference MAY include a fragment identifier. Scope descriptions MAY
 reside anywhere. The host is not required to self-host scope
 descriptions and may wish to point to standardized scope descriptions
 residing elsewhere. Scope description documents MUST be accessible
 to AMs through GET calls made to these URI references.

 See Section 1.4 for further discussion of scope-related concepts, and
Section 10 for a long-form example of scopes used in resource set

 registration.

2.4.2. Resource Set Descriptions

 The host defines a resource set that needs protection by registering
 a resource set description at the AM. The host registers the
 description and manages its lifecycle at the AM's host resource set
 registration endpoint by using the resource set registration API, as
 defined in Section 2.4.3.

 A resource set description is a JSON document with the following
 properties and a Content-Type of application/uma-resource-set+json:

Hardjono Expires April 4, 2013 [Page 17]

Internet-Draft UMA Core Protocol October 2012

 name REQUIRED. A human-readable string describing a set of one or
 more resources. The AM SHOULD use the name in its user interface
 to assist the user in setting policies for protecting this
 resource set.

 icon_uri OPTIONAL. A URI for a graphic icon representing the
 resource set. If provided, the AM SHOULD use the referenced icon
 in its user interface to assist the user in setting policies for
 protecting this resource set.

 scopes REQUIRED. An array providing the URI references of scope
 descriptions that are available for this resource set. The AM
 SHOULD use the scope names and any icons defined as part of the
 referenced scopes in its user interface to assist the user in
 setting policies for protecting this resource set.

 For example, this description characterizes a resource set (a photo
 album) that can potentially be only viewed, or alternatively to which
 full access can be granted; the URIs point to scope descriptions as
 defined in Section 2.4.1:

 {
 "name": "Photo Album",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 Resource set descriptions MAY contain extension properties that are
 not defined in this specification. Extension names that are
 unprotected from collisions are outside the scope of the current
 specification.

 When a host creates or updates a resource set description (see
Section 2.4.3), the AM MUST attempt to retrieve the referenced scope

 descriptions. It MAY cache such descriptions as long as indicated in
 the HTTP cache-control header for the scope description resource
 unless the resource set description is subsequently updated within
 the validity period. At the beginning of an authorizing user's login
 session at the AM, the AM MUST attempt to re-retrieve scope
 descriptions applying to that user whose cached versions have
 expired.

Hardjono Expires April 4, 2013 [Page 18]

Internet-Draft UMA Core Protocol October 2012

2.4.3. Resource Set Registration API

 The host uses the RESTful API at the AM's resource set registration
 endpoint to create, read, update, and delete resource set
 descriptions, along with listing groups of such descriptions. The
 host MUST use its valid PAT obtained previously to gain access to
 this endpoint. The resource set registration API is a subset of the
 protection API.

 The host is free to use its own methods of identifying and describing
 resource sets. The AM MUST treat them as opaque for the purpose of
 authorizing access, other than associating them with the authorizing
 user (as represented by the PAT used to access the API). On
 successfully registering a resource set, the host MUST use UMA
 mechanisms to limit access to any resources corresponding to this
 resource set, relying on the AM to supply currently valid permissions
 for authorized access. The host MUST outsource protection to the AM
 according to the currently registered state of a resource set. This
 requirement holds true so long as the host has one or more registsred
 resource sets.

 (Note carefully the similar but distinct senses in which the word
 "resource" is used in this section. UMA resource set descriptions
 are themselves managed as web resources at the AM through this API.)

 The AM MUST present an API for registering resource set descriptions
 at a set of URIs with the structure "{rsreguri}/resource_set/{rsid}",
 where the PAT provides sufficient context to distinguish between
 identical resource set identifiers assigned by different hosts.

 The components of these URIs are defined as follows:

 {rsreguri} The AM's resource set registration endpoint as advertised
 in its configuration data (see Section 1.5).

 {rsid} An identifier for a resource set description.

 Without a specific resource set identifier path component, the URI
 applies to the set of resource set descriptions already registered.

 Following is a summary of the five registration operations the AM is
 REQUIRED to support. Each is defined in its own section below. All
 other methods are unsupported. This API uses ETag and If-Match to
 ensure the desired resource at the AM is targeted.

 o Create resource set description: PUT /resource_set/{rsid}

Hardjono Expires April 4, 2013 [Page 19]

Internet-Draft UMA Core Protocol October 2012

 o Read resource set description: GET /resource_set/{rsid}

 o Update resource set description: PUT /resource_set/{rsid} with If-
 Match

 o Delete resource set description: DELETE /resource_set/{rsid}

 o List resource set descriptions: GET /resource_set/ with If-Match

 If the request to the resource set registration endpoint is
 incorrect, then the AM responds with an error message (see

Section 4.2) by including one of the following error codes with the
 response:

 unsupported_method_type The host request used an unsupported HTTP
 method. The AM MUST respond with the HTTP 405 (Method Not
 Allowed) status code and MUST fail to act on the request.

 not_found The resource set requested from the AM cannot be found.
 The AM MUST respond with HTTP 404 (Not Found) status code.

 precondition_failed The resource set that was requested to be
 deleted or updated at the AM did not match the If-Match value
 present in the request. The AM MUST respond with HTTP 412
 (Precondition Failed) status code and MUST fail to act on the
 request.

2.4.3.1. Create Resource Set Description

 Adds a new resource set description using the PUT method, thereby
 putting it under the AM's protection. If the request is successful,
 the AM MUST respond with a status message that includes an ETag
 header and _id and _rev properties for managing resource set
 description versioning.

 Form of a "create resource set description" HTTP request:

 PUT /resource_set/{rsid} HTTP/1.1
 Content-Type: application/uma-resource-set+json
 ...

 (body contains JSON resource set description to be created)

Hardjono Expires April 4, 2013 [Page 20]

Internet-Draft UMA Core Protocol October 2012

 Form of a successful HTTP response:

 HTTP/1.1 201 Created
 Content-Type: application/uma-status+json
 ETag: (matches "_rev" property in returned object)
 ...

 {
 "status": "created",
 "_id": (id of created resource set),
 "_rev": (ETag of created resource set)
 }

 On successful registration, the AM MAY return a redirect policy URI
 to the host in a property with the name "policy_uri". This URI
 allows the host to redirect the user to a specific user interface
 within the AM where the user can immediately set or modify access
 policies for the resource set that was just registered.

 Form of a successful HTTP response:

 HTTP/1.1 201 Created
 Content-Type: application/uma-status+json
 ETag: (matches "_rev" property in returned object)
 ...

 {
 "status": "created",
 "_id": (id of created resource set),
 "_rev": (ETag of created resource set)
 "policy_uri":"http://am.example.com/host/222/resource/333/policy"
 }

2.4.3.2. Read Resource Set Description

 Reads a previously registered resource set description using the GET
 method. If the request is successful, the AM MUST respond with a
 status message that includes an ETag header and _id and _rev
 properties for managing resource set description versioning.

 Form of a "read resource set description" HTTP request:

 GET /resource_set/{rsid} HTTP/1.1
 ...

Hardjono Expires April 4, 2013 [Page 21]

Internet-Draft UMA Core Protocol October 2012

 Form of a successful HTTP response:

 HTTP/1.1 200 OK
 Content-Type: application/uma-resource-set+json
 ...

 (body contains JSON resource set description, including _id and _rev)

 If the referenced resource does not exist, the AM MUST produce an
 error response with an error property value of "not_found", as
 defined in Section 2.4.3.

 On successful read, the AM MAY return a redirect policy URI to the
 host in a property with the name "policy_uri". This URI allows the
 host to redirect the user to a specific user interface within the AM
 where the user can immediately set or modify access policies for the
 resource set that was read.

2.4.3.3. Update Resource Set Description

 Updates a previously registered resource set description using the
 PUT method, thereby changing the resource set's protection
 characteristics. If the request is successful, the AM MUST respond
 with a status message that includes an ETag header and _id and _rev
 properties for managing resource set description versioning.

 Form of an "update resource set description" HTTP request:

 PUT /resource_set/{rsid} HTTP/1.1
 Content-Type: application/resource-set+json
 If-Match: (entity tag of resource)
 ...

 (body contains JSON resource set description to be updated)

 Form of a successful HTTP response:

 HTTP/1.1 204 No Content
 ETag: "2"
 ...

 If the entity tag does not match, the AM MUST produce an error
 response with an error property value of "precondition_failed", as
 defined in Section 2.4.3.

 On successful update, the AM MAY return a redirect policy URI to the
 host in a property with the name "policy_uri". This URI allows the
 host to redirect the user to a specific user interface within the AM

Hardjono Expires April 4, 2013 [Page 22]

Internet-Draft UMA Core Protocol October 2012

 where the user can immediately set or modify access policies for the
 resource set that was just updated.

2.4.3.4. Delete Resource Set Description

 Deletes a previously registered resource set description using the
 DELETE method, thereby removing it from the AM's protection regime.

 Form of a "delete resource set description" HTTP request:

 DELETE /resource_set/{rsid}
 If-Match: (entity tag of resource)
 ...

 Form of a successful HTTP response:

 HTTP/1.1 204 No content
 ...

 As defined in Section 2.4.3, if the referenced resource does not
 exist the AM MUST produce an error response with an error property
 value of "not_found", and if the entity tag does not match the AM
 MUST produce an error response with an error property value of
 "precondition_failed".

2.4.3.5. List Resource Set Descriptions

 Lists all previously registered resource set identifiers for this
 user using the GET method. The AM MUST return the list in the form
 of a JSON array of {rsid} values.

 The host uses this method as a first step in checking whether its
 understanding of protected resources is in full synchronization with
 the AM's understanding.

 Form of a "list resource set descriptions" HTTP request:

 GET /resource_set HTTP/1.1
 ...

 HTTP response:

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...

 (body contains JSON array of {rsid} values)

Hardjono Expires April 4, 2013 [Page 23]

Internet-Draft UMA Core Protocol October 2012

3. Getting Authorization and Accessing a Resource

 Phase 2 of UMA is getting authorization, and Phase 3 is accessing a
 resource. In these phases, an AM orchestrates and controls
 requesting parties' access to an authorizing user's protected
 resources at a host, under conditions dictated by that user.

 Phase 3 is merely the successful completion of a requester's access
 attempt that initially involved several embedded interactions among
 the requester, AM, and host in Phase 2. Phase 2 always begins with
 the requester attempting access at a protected resource endpoint at
 the host. How the requester came to learn about this endpoint is out
 of scope for this specification. The authorizing user might, for
 example, have advertised its availability publicly on a blog or other
 website, listed it in a discovery service, or emailed a link to a
 particular intended requesting party.

 The host responds to the requester's access request in one of several
 ways depending on the circumstances of the request, either
 immediately or having first performed one or more embedded
 interactions with the AM. Depending on the nature of the host's
 response to an failed access attempt, the requester itself engages in
 embedded interactions with the AM before re-attempting access.

 The interactions are as follows. Each interaction MAY be the last,
 if the requester chooses not to continue pursuing the access attempt
 or the host chooses not to continue facilitating it.

 1. The requester attempts access at a particular protected resource
 at a host (see Section 3.1).

 A. If the access attempt is unaccompanied by a requester access
 token, the host responds immediately with an HTTP 401
 (Unauthorized) response and instructions on where to go to
 obtain one (see Section 3.4.4).

 B. If the access attempt was accompanied by an RPT, the host
 checks the RPT's status (see Section 3.3).

 1. If the RPT is invalid (for example, it is not applicable
 to this host), the host responds to the requester with an
 HTTP 401 (Unauthorized) response and instructions on
 where to go to obtain a token (see Section 3.4.4).

 2. If the RPT is valid but has insufficient permission, the
 host registers a suitable permission request on the
 requester's behalf at the AM (see Section 3.2), and then
 responds to the requester with an HTTP 403 (Forbidden)

Hardjono Expires April 4, 2013 [Page 24]

Internet-Draft UMA Core Protocol October 2012

 response and instructions on where to go to request
 authorization to associate that permission with its token
 (see Section 3.1.2).

 3. If the RPT is valid, and at least one of the permissions
 associated with the token matches the scope of attempted
 access, the host responds to the requester's access
 attempt with an HTTP 200 (OK) response and a
 representation of the resource (see Section 3.1.3).

 2. If the requester (possessing no RPT or an invalid RPT) received a
 401 response and an RPT endpoint, it then requests an RPT from
 that endpoint (see Section 3.4.4).

 3. If the requester (posessing a valid RPT) received a 403 response
 and a permission ticket, it then requests from the AM the
 permission that matches the ticket (Section 3.4.5). If the AM
 needs requesting party claims in order to assess this requester's
 suitability to have the permission, it engages in a claims-
 gathering flow with the requesting party (see Section 3.5).

 A. If the requester does not already have an AAT at the
 appropriate AM to be able to use its permission request
 endpoint, it first engages in an OAuth grant flow to obtain
 one (see Section 3.4.3).

 The interactions are described in detail in the following sections.

3.1. Requester-Host: Attempt Access at Protected Resource

 This interaction assumes that the host has previously registered with
 an AM one or more resource sets that correspond to the resource to
 which access is being attempted, such that the host considers this
 resource to be UMA-protected by a particular AM.

 The requester typically attempts to access the desired resource at
 the host directly (for example, when a human operator of the
 requester software clicks on a thumbnail representation of the
 resource). The requester is expected to discover, or be provisioned
 or configured with, knowledge of the protected resource and its
 location out of band. Further, the requester is expected to acquire
 its own knowledge about the application-specific methods made
 available by the host for operating on this protected resource (such
 as viewing it with a GET method, or transforming it with some complex
 API call) and the possible scopes of access.

Hardjono Expires April 4, 2013 [Page 25]

Internet-Draft UMA Core Protocol October 2012

 Example of a request carrying no RPT:

 GET /album/photo.jpg HTTP/1.1
 Host: photoz.example.com
 ...

 Example of a request carrying an RPT:

 GET /album/photo.jpg HTTP/1.1
 Authorization: Bearer vF9dft4qmT
 Host: photoz.example.com
 ...

 The host responds in one of the following ways.

3.1.1. Requester Presents No Requester Permission Token

 If the requester does not present any access token with the request,
 the host MUST return an HTTP 401 (Unauthorized) status code, along
 with providing the AM's URI in an "am_uri" property to facilitate AM
 metadata discovery, including discovery of the endpoint where the
 requester can request an RPT (Section 3.4.4), by the requester.

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: UMA realm="example",
 host_id="photoz.example.com",
 am_uri="http://am.example.com"
 ...

3.1.2. Requester Presents a Requester Permission Token That Has
 Insufficient Permission

 If the requester presents an RPT with its request, the host SHOULD
 determine the RPT's status (see Section 3.3). If the RPT is invalid,
 the host redirects the requester to the RPT endpoint at the AM in
 order to obtain a correct RPT (see Section 3.4.4).

 If the RPT is valid but has insufficient permission for the type of
 access sought, the Host SHOULD register a permission with the AM that
 would suffice for that scope of access (see Section 3.2), and then
 respond to the requester with the HTTP 403 (Forbidden) status code,
 along with providing the AM's URI in the header of the message and
 the permission ticket it just received from the AM in the body in
 JSON form.

Hardjono Expires April 4, 2013 [Page 26]

Internet-Draft UMA Core Protocol October 2012

 Example of the host's response:

 HTTP/1.1 403 Forbidden
 WWW-Authenticate: UMA realm="example",
 host_id="photoz.example.com",
 am_uri="http://am.example.com"

 {
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

3.1.3. Requester Presents a Valid Requester Permission Token with
 Sufficient Permissions

 If the RPT's status is associated with at least one currently valid
 permission that applies to the scope of access attempted by the
 requester (see Section 3.3), the host MUST give access to the desired
 resource.

 Example of the host's response:

 HTTP/1.1 200 OK
 Content-Type: image/jpeg
 ...

 /9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja
 3kAAQAEAAAAPAAA/+4ADkFkb2JlAGTAAAAAAf
 /bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAo
 KCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwb

 This response constitutes the conclusion of Phase 3 of UMA.

 The host MUST NOT give access where the token's status is not
 associated with at least one currently active permission that
 suffices for that scope of access.

3.2. Host-AM: Register a Permission

 In response to receiving an access request accompanied by an RPT that
 is invalid or has insufficient permissions, the host SHOULD register
 a permission with the AM that would be sufficient for the type of
 access sought. The AM returns a permission ticket for the host to
 give to the requester in its response.

 The permission ticket is a short-lived opaque structure whose form is
 determined by the AM. The ticket value MUST be securely random (for
 example, not merely part of a predictable sequential series), to
 avoid denial-of-service attacks. Since the ticket is an opaque

Hardjono Expires April 4, 2013 [Page 27]

Internet-Draft UMA Core Protocol October 2012

 structure from the point of view of the requester, the AM is free to
 include information regarding expiration time within the opaque
 ticket for its own consumption. When the requester subsequently asks
 the AM to add permissions to its RPT, it will submit this ticket to
 the AM.

 The host registers the permission using the POST method at the AM's
 permission registration endpoint. In doing so the host MUST provide
 its PAT to the AM in order to get access to this endpoint. The body
 of the HTTP request message contains a JSON document providing the
 requested permission.

 The requested scope is an object with the name "requested_permission"
 and the following properties:

 resource_set_id REQUIRED. The identifier for a resource set, access
 to which this requester is seeking access. The identifier MUST
 correspond to a resource set that was previously registered.

 scopes REQUIRED. An array referencing one or more identifiers of
 scopes to which access is needed for this resource set. Each
 scope identifier MUST correspond to a scope that was registered by
 this host for the referenced resource set.

 Example of an HTTP request that registers a permission at the AM's
 permission registration endpoint:

 POST /host/scope_reg_uri/photoz.example.com HTTP/1.1
 Content-Type: application/uma-requested-permission+json
 Host: am.example.com

 {
 "resource_set_id": "112210f47de98100",
 "scopes": [
 "http://photoz.example.com/dev/actions/view",
 "http://photoz.example.com/dev/actions/all"
]
 }

 If the registration request is successful, the AM responds with an
 HTTP 201 (Created) status code and includes the Location header in
 its response as well as the "ticket" property in the JSON-formatted
 body.

Hardjono Expires April 4, 2013 [Page 28]

Internet-Draft UMA Core Protocol October 2012

 For example:

HTTP/1.1 201 Created
Content-Type: application/uma-permission-ticket+json
Location: https://am.example.com/permreg/host/photoz.example.com/
5454345rdsaa4543
...

{
"ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
}

 If the registration request is authenticated properly but fails due
 to other reasons, the AM responds with an HTTP 400 (Bad Request)
 status code and includes one of the following UMA error codes (see

Section 4.2):

 invalid_resource_set_id The provided resource set identifier was not
 found at the AM.

 invalid_scope At least one of the scopes included in the request was
 not registered previously by this host.

3.3. Host Determines the Requester Permission Token Status

 On receiving an RPT, the host MUST ascertain its status before
 granting or denying access to the requester. An RPT that a requester
 provides to a host in order to get access is associated with a set of
 permissions that govern whether the requester is authorized for
 access. The token's nature and format are dictated by its defined
 profile; the profile might allow it to be self-contained, such that
 the host is able to ascertain its status locally, or might require or
 allow the host to make a run-time status request of the AM that
 issued the token.

 This specification makes one type of RPT mandatory to implement: the
 UMA bearer token profile, as defined in Section 3.3.1. Alternate RPT
 profiles MAY define their own unique token formats and MAY require,
 allow, or prohibit use of the RPT status endpoint.

3.3.1. UMA Bearer Token Profile

 This section defines the format and protocol requirements for the UMA
 bearer token profile. An AM MUST support the UMA bearer token
 profile and must indicate its support in the
 "uma_token_profiles_supported" property in the configuration data
 (see Section 1.5).

 On receiving an RPT of the "Bearer" type in an authorization header

Hardjono Expires April 4, 2013 [Page 29]

Internet-Draft UMA Core Protocol October 2012

 from a requester making an access attempt, the host MUST ask the AM
 for the RPT's status unless it has an unexpired cached status
 description for this RPT, which it MAY use instead. In order to ask
 the AM for an RPT's status, the host makes the request to the AM with
 a POST request to the AM's RPT status endpoint. The body of the HTTP
 request message contains a JSON document providing the RPT. The host
 MUST provide its own PAT in the request in order to gain access to
 the RPT status endpoint.

 Note that although the host's request is a safe operation, which
 normally would use the GET operation, this specification dictates the
 use of POST because it is advantageous for security of bearer tokens.
 Since the host provides its own PAT in the authorization header of
 the request, the RPT appears in the request body. A GET operation
 would expose the message to being recorded in AM access logs.

 Example of a request to the RPT status endpoint that provides the PAT
 in the header:

 POST /token_status HTTP/1.1
 Host: am.example.com
 Authorization: Bearer vF9dft4qmT
 Content-Type: application/json
 ...

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "resource_set_id": "112210f47de98100",
 "host_id": "photoz.example.com"
 }

 The AM returns the RPT's status in an HTTP response using the 200 OK
 status code, containing a JSON document supplying the RPT status
 description. The RPT status description either contains all of the
 permissions that are currently valid for this RPT or indicates that
 the RPT is invalid (see Section 1.4). The AM MAY set a cache period
 for the returned RPT status description that allows the host to reuse
 it over some period of time when it later sees the same RPT.

 The status description for a valid RPT is a JSON array of zero or
 more permission objects, each with the following properties:

 resource_set_id REQUIRED. A string that uniquely identifies the
 resource set, access to which has been granted to this requester
 on behalf of this requesting party. The identifier MUST
 correspond to a resource set that was previously registered as
 protected.

Hardjono Expires April 4, 2013 [Page 30]

Internet-Draft UMA Core Protocol October 2012

 scopes REQUIRED. An array referencing one or more URIs of scopes to
 which access was granted for this resource set. Each scope MUST
 correspond to a scope that was registered by this host for the
 referenced resource set.

 exp REQUIRED. An integer representing the expiration time on or
 after which the permission MUST NOT be accepted for authorized
 access. The processing of the exp property requires that the
 current date/time MUST be before the expiration date/time listed
 in the exp claim. Host implementers MAY provide for some small
 leeway, usually no more than a few minutes, to account for clock
 skew.

 Example:

 HTTP/1.1 200 OK
 Content-Type: application/uma-rpt-status+json
 Cache-Control: no-store
 ...

 [
 {
 "resource_set_id": "112210f47de98100",
 "scopes": [
 "http://photoz.example.com/dev/actions/view",
 "http://photoz.example.com/dev/actions/all"
],
 "exp": 1300819380
 }
]

 The token status description for an invalid RPT is a JSON structure,
 as follows.

 HTTP/1.1 200 OK
 Content-Type: application/uma-rpt-status+json
 ...

 {
 "rpt_status": "invalid"
 }

3.4. Requester-AM: Ask for Requester Permission Token and Permission

 A requester making an access attempt accompanied by no RPT or by an
 invalid RPT will receive a 401 response back from the host, along
 with the AM's location from which it can learn the RPT endpoint. In
 this case, the requester must obtain a valid RPT from the AM's RPT

Hardjono Expires April 4, 2013 [Page 31]

Internet-Draft UMA Core Protocol October 2012

 endpoint provided in the response (see Section 3.4.4).

 A requester making an access attempt with a valid RPT that has
 insufficient permissions associated with it will receive a 403
 response back from the host, along with a permission ticket and the
 AM's location from which it can learn the permission request
 endpoint. In this case, the requester uses the permission ticket to
 ask for the necessary permission to be associated with its RPT. This
 process necessarily involves the requesting party (the natural or
 legal person operating the requester application).

 The requester takes action in the following ways.

3.4.1. Requester Looks Up AM Configuration Data

 The requester needs to learn the AM's various authorization API
 endpoints. From the "am_uri" information provided in the host's
 response, the requester MUST retrieve the AM's configuration data
 document, as described in Section 2 of hostmeta [RFC6415]. For
 example, if the "am_uri" is "example.com", the requester creates the
 URL "https://example.com/.well-known/uma-configuration" and performs
 a GET request on it. The AM MUST return content that includes UMA
 authorization API endpoints as defined in Section 1.5.

3.4.2. Requester Registers with AM

 If the requester has not already obtained an OAuth client identifier
 and optional secret from this AM, in this step it MUST do so in order
 to engage in OAuth-based interactions with the AM. It MAY do this
 using [DynClientReg], if the AM supports it (see Section 1.5 for how
 the AM MAY indicate support).

3.4.3. Requester Obtains Authorization API Token

 In this step, the requester acquires an AAT from the AM. The token
 represents the approval of this requesting party for this requester
 to engage with this AM to supply claims, ask for permissions, and
 perform any other tasks needed for obtaining authorization for access
 to resources at all hosts that use this AM.

 The requester MUST use OAuth 2.0 [OAuth2] to obtain the AAT. Here
 the requester acts in the role of an OAuth client requesting the
 "http://docs.kantarainitiative.org/uma/scopes/authz.json" scope; the
 requesting party acts in the role of an OAuth resource owner; and the
 AM acts in the role of an OAuth authorization server. Once the
 requester has obtained its AAT, it presents it to the AM at the
 permission request API endpoint; in presenting this endpoint the AM
 acts in the role of a resource server.

https://datatracker.ietf.org/doc/html/rfc6415

Hardjono Expires April 4, 2013 [Page 32]

Internet-Draft UMA Core Protocol October 2012

 By virtue of being able to identify this requester/requesting party
 pair uniquely across all hosts, the AM is able to manage the process
 of authorization and claims-gathering efficiently. These management
 processes are outside the scope of this specificaiton.

 The AM MAY support the use of any grant type, but MUST support the
 authorization_code grant type, and SHOULD support the SAML bearer
 token grant type [OAuth-SAML]
 (urn:ietf:params:oauth:grant-type:saml2-bearer) if it anticipates
 working with requesters that are operating in environments where the
 use of SAML is prevalent. The AM MUST indicate all grant types it
 supports in its configuration data, as defined in Section 1.5.

 The requester has completed this step successfully when it possesses
 a AAT it can use to get access to the AM's authorization API on the
 requesting party's behalf.

3.4.4. Requester Obtains Requester Permission Token

 In this step, if the requester needs an RPT that applies to this
 requesting party for this host and this AM, the requester obtains an
 RPT from the AM. On first issuance the RPT is associated with no
 permissions and thus does not convey any authorizations for access.
 Once the requester obtains an RPT from the AM, it can ask the AM for
 authorization to have permissions associated with the RPT (see

Section 3.4.5).

 The requester performs a POST on the RPT endpoint. In doing so the
 requester MUST provide its own AAT in the header in order to gain
 access to the RPT endpoint.

 Example of a request message containing an AAT:
 POST /rpt HTTP/1.1
 Host: am.example.com
 Authorization: Bearer jwfLG53^sad$#f
 Content-Type: application/json
 ...

 The AM responds with an HTTP 201 (Created) status code and provides a
 new RPT.

Hardjono Expires April 4, 2013 [Page 33]

Internet-Draft UMA Core Protocol October 2012

 For example:

 HTTP/1.1 201 Created
 Content-Type: application/uma-rpt+json

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv"
 }

 If the content-type of the request is not recognized by the AM, the
 AM MUST produce an HTTP error.

 The requester might need an RPT if it has never before requested an
 RPT for this combination of requesting party, host, and AM, or if it
 has lost control of a previous issued RPT and needs a refreshed one.
 If the AAT provided in the header is the same as one provided for a
 previously issued RPT by this AM, the AM invalidates the old RPT and
 its permissions and issues a new RPT.

 If the request fails due to missing or invalid parameters, or is
 otherwise malformed, the AM SHOULD inform the requester of the error
 by sending an HTTP error response.

 If the request fails due to an invalid, missing, or expired AAT or
 requires higher privileges at this endpoint than provided by the AAT,
 the AM responds with an OAuth error (see Section 4.1).

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer realm="example",
 error="invalid_token",
 error_description="The access token expired"

3.4.5. Requester Asks for Authorization to Add Permission

 Once in possession of an AAT for this AM, an RPT that applies to this
 requesting party for this host and this AM, and a permission ticket,
 the requester asks the AM to give it a permission for the sought-for
 access. The requester performs a POST on the permission request
 endpoint at the AM, supplying the items below. In doing so the
 requester MUST provide its own AAT in order to gain access to the
 permission request endpoint.

 o The permission ticket it received from the host

 o Its RPT for this host

Hardjono Expires April 4, 2013 [Page 34]

Internet-Draft UMA Core Protocol October 2012

 o Its own AAT in the header

 Example of a request message containing a permission ticket and RPT:
 POST /token_status HTTP/1.1
 Host: am.example.com
 Authorization: Bearer jwfLG53^sad$#f
 Content-Type: application/json
 ...

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 In this interaction, the requester uses the AM's permission request
 endpoint. The AM uses the ticket to look up the previously
 registered permission, maps the requested permission to operative
 user policies, undergoes any authorization flows required (see

Section 3.5), and ultimately responds to the request positively or
 negatively.

 If the request fails due to an invalid, missing, or expired AAT (or
 RPT) or requires higher privileges at this endpoint than provided by
 the AAT, the AM responds with an OAuth error (see Section 4.1).

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: Bearer realm="example",
 error="invalid_token",
 error_description="The access token expired"

 If the AM does not add the requested permission, it responds using
 the appropriate HTTP status code (typically 400 or 403), and includes
 one of the following error codes in the response (see Section 4.2):

 invalid_requester_ticket The provided ticket was not found at the
 AM. The AM SHOULD respond with the HTTP 400 (Bad Request) status
 code.

 expired_requester_ticket The provided ticket has expired. The AM
 SHOULD respond with the HTTP 400 (Bad Request) status code.

 not_authorized_permission The requester is definitively not
 authorized for this permission according to user policy. The AM
 SHOULD respond with the HTTP 403 (Forbidden) status code.

Hardjono Expires April 4, 2013 [Page 35]

Internet-Draft UMA Core Protocol October 2012

 need_claims The AM is unable to determine whether the requester is
 authorized for this permission without gathering claims from the
 requesting party. The AM SHOULD respond with the HTTP 403
 (Forbidden) status code. The requester is therefore not
 authorized, but has the opportunity to engage the requesting party
 in a claims-gathering flow with the AM (see Section 3.5) to
 potentially become authorized.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/uma-status+json
 Cache-Control: no-store
 ...

 {
 "status": "error",
 "error": "expired_requester_ticket"
 }

3.5. Claims-Gathering Flows

 The AM MUST base its decisions to add permissions to RPTs on user
 policies. The nature of these policies is outside the scope of UMA,
 but generally speaking, they can be thought of as either independent
 of requesting-party features (for example, time of day) or dependent
 on requesting-party features (for example, whether they are over 18).
 This latter case requires the requesting party to transmit identity
 claims to the AM in some fashion.

 The process for requesting and providing claims is extensible and may
 have a variety of dependencies on the type of requesting party (for
 example, natural person or legal person) and the type of requester
 application (for example, browser, native app, or autonomously
 running web service). UMA currently provides a framework for
 handling human-driven requester apps and an optional solution for
 gathering standardized claims from that end-user, and allows for
 extensions to support other solutions for this use case and other use
 cases. The AM SHOULD document its claims-handling ability in its
 configuration data through the claim_profiles_supported property (see

Section 1.5). For the business-level and legal implications of
 different technical authorization flows, see [UMA-trustmodel].

3.5.1. Claims-Gathering Flow for Requester Apps Operated by End-Users

 A requester app, whether browser-based or native, is operated by a
 natural person (human end-user) in one of two typical situations:

Hardjono Expires April 4, 2013 [Page 36]

Internet-Draft UMA Core Protocol October 2012

 o The requesting party is a natural person (for example, a friend of
 the authorizing user); the requesting party may even be the
 authorizing user herself.

 o The requesting party is a legal person such as a corporation, and
 the human being operating the requester app is acting as an agent
 of that legal person (for example, a customer support specialist
 representing a credit card company).

 For convenience, this specification refers to the human end-user as a
 "requesting end-user" to cover both cases, which differ only at the
 level of business agreements (and potentially law), rather than
 technology. The AM has a variety of options at this point for
 satisfying the authorizing user's policy; this specification does not
 dictate a single answer. For example, the AM could require the
 requesting end-user to register for and/or log in to a local AM
 account, or to fill in a questionnaire, or to complete a purchase.
 It could even require several of these operations, where the order is
 significant.

 An end-user-driven requester app MUST redirect the end-user to the AM
 to complete the process of authorization. The redirection MUST
 include a URI query parameter with the name "ticket" whose value
 conveys the permission ticket for which the need_claims error was
 received; for example, "ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de".
 Each claim profile MUST provide the following capabilities:

 redirect URI A means by which the requester MUST supply the URI to
 which the AM MUST redirect the requesting end-user at the end of
 the claims-gathering process.

 callback URI A means by which the requester OPTIONALLY supplies a
 callback URI for the AM to use.

 state A means by which the requester SHOULD supply an opaque value
 used to maintain state between the request and the callback;
 serves as a protection against XSRF attacks.

 An AM MAY support any number of claim profiles. One potential such
 profile is defined in this specification: the "openid" claim profile,
 which leverages OpenID Connect for gathering generally useful user
 claims (see Section 3.5.1.1).

3.5.1.1. OpenID Connect Claim Profile

 If an AM supports the OpenID Connect claim profile, it MUST supply
 the "openid" value for one of its claim_profiles_supported values in
 its AM configuration data (see Section 1.5 for how to formulate this

Hardjono Expires April 4, 2013 [Page 37]

Internet-Draft UMA Core Protocol October 2012

 data).

 To conform to this option, the AM MUST do the following:

 o Serve as a conforming OpenID Relying Party and Claims Client
 according to [OCStandard]

 o Be able to utilize at least all of the reserved claims defined in
 [OCMessages] in assessing policy and granting permissions

 o Use the OpenID Connect "redirect_uri" and "state" request
 parameters as appropriate

 The AM can then use any conforming OpenID Connect mechanisms and
 typical user interfaces for engaging with the UserInfo endpoints of
 OpenID Providers and Claims Providers, potentially allowing for the
 delivery of "trusted claims" (such as a verified email address or a
 date or birth) on which authorization policy may depend.

4. Error Messages

 Ultimately the host is responsible for either granting the access the
 requester attempted, or returning an error response to the requester
 with a reason for the failure. [OAuth2] defines several error
 responses for a resource server to return. UMA makes use of these
 error responses, but requires the host to "outsource" the
 determination of some error conditions to the AM. UMA defines its
 own additional error responses that the AM may give to the host and
 requester as they interact with it, and that the host may give to the
 requester.

4.1. OAuth Error Responses

 When a client (host or requester) attempts to access one of the AM
 endpoints Section 1.5 or a client (requester) attempts to access a
 protected resource at the host, it has to make an authenticated
 request by including an OAuth access token in the HTTP request as
 described in [OAuth2] Section 7.

 If the client's request failed authentication, the AM or the host
 responds with an OAuth error message as described throughout

Section 2 and Section 3.

4.2. UMA Error Responses

 When a client (host or requester) attempts to access one of the AM
 endpoints Section 1.5 or a client (requester) attempts to access a

Hardjono Expires April 4, 2013 [Page 38]

Internet-Draft UMA Core Protocol October 2012

 protected resource at the host, if the client request is successfully
 authenticated by OAuth means, but is invalid for another reason, the
 AM or host responds with an UMA error response by adding the
 following properties to the entity body of the HTTP response using
 the "application/json" media type:

 error REQUIRED. A single error code. Value for this property is
 defined in the specific AM endpoint description.

 error_description OPTIONAL. A human-readable text providing
 additional information, used to assist in the understanding and
 resolution of the error occurred.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error, used to provide the end-user
 with additional information about the error.

 Common error codes:

 invalid_request The request is missing a required parameter or is
 otherwise malformed. The AM MUST respond with the HTTP 400 (Bad
 Request) status code.

 For example:

HTTP/1.1 400 Bad Request
Content-Type: application/uma-status+json
Cache-Control: no-store
...

{
 "status": "error",
 "error": "invalid_request",
 "error_description": "There is already a resource with this identifier.",
 "error_uri": "http://am.example.com/errors/resource_exists"
}

5. Specification of Additional Profiles

 This specification defines a selected set of profiles, but others
 will possibly be developed in the future. It is not possible for
 this specification to standardize all of these additional profiles.
 The following sections define rules for third parties that specify
 UMA profiles.

 (Get text from http://docs.oasis-open.org/security/saml/v2.0/
saml-profiles-2.0-os.pdf .)

http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-profiles-2.0-os.pdf

Hardjono Expires April 4, 2013 [Page 39]

Internet-Draft UMA Core Protocol October 2012

 (Put references to this section in the appropriate places above, and
 add a discussion of profiles somewhere in the intro.)

5.1. Specifying UMA Profiles

 This section provides a checklist of issues that MUST be addressed by
 each profile.

 1. Specify a URI that uniquely identifies the profile, postal or
 electronic contact information for the author, and provide
 reference to previously defined profiles that the new profile
 updates or obsoletes.

 2. Specify the set of interactions between parties involved in the
 profile. Any restrictions on applications used by each party and
 the protocols involved in each interaction must be explicitly
 called out.

 3. Identify the parties involved in each interaction, including how
 many parties are involved and whether intermediaries may be
 involved.

 4. Specify the method of authentication of parties involved in each
 interaction, including whether authentication is required and
 acceptable authentication types.

 5. Identify the level of support for message integrity, including
 the mechanisms used to ensure message integrity.

 6. Identify the level of support for confidentiality, including
 whether a third party may view the contents of UMA messages,
 whether the profile requires confidentiality, and the mechanisms
 recommended for achieving confidentiality.

 7. Identify the error states, including the error states at each
 participant, especially those that receive and process UMA
 messages.

 8. Identify security considerations, including analysis of threats
 and description of countermeasures.

 9. Identify relevant UMA metadata defined and/or utilized by the
 profile.

Hardjono Expires April 4, 2013 [Page 40]

Internet-Draft UMA Core Protocol October 2012

5.2. Specifying UMA Token Profiles

 This section provides a checklist of items that MUST in particular be
 addressed by attribute profiles.

 1. Specify a URI that uniquely identifies the profile, postal or
 electronic contact information for the author, and provide
 reference to previously defined profiles that the new profile
 updates or obsoletes.

 2. Identify the syntax and restrictions on the acceptable values for
 the token profile.

 3. Identify namespace restrictions that are meaningful in the
 profile deployment scenario.

 4. Identify rules in the processing of the fields within the token
 profile.

 5. Identify the scopes that are defined in the token profile (e.g.
 grant types in JWT Bearer Token Profile).

 6. Identify the error states, including the error states at each
 participant, especially those that receive and process claims or
 assertions expressed within the tokens.

6. Security Considerations

 This specification relies mainly on OAuth security mechanisms for
 protecting the host registration endpoint at the AM so that only a
 properly authorized host can access it on behalf of the intended
 user. For example, the host needs to use a valid protection API
 token (PAT) issued through a user authorization process at the
 endpoint, and the interaction SHOULD take place over TLS. It is
 expected that the host will protect its client secret (if it was
 issued one) and its PAT, particularly if used in "bearer token"
 fashion.

 In addition, this specification dictates a binding between the PAT
 and the host-specific registration area on the AM to prevent a host
 from interacting with a registration area not its own.

 This specification defines a number of JSON-based data formats. As a
 subset of the JavaScript scripting language, JSON data SHOULD be
 consumed through a process that does not dynamically execute it as
 code, to avoid malicious code execution. One way to achieve this is
 to use a JavaScript interpreter rather than the built-in JavaScript

Hardjono Expires April 4, 2013 [Page 41]

Internet-Draft UMA Core Protocol October 2012

 eval() function.

 For information about the technical, operational, and legal elements
 of trust establishment between UMA entities and parties, which
 affects security considerations, see [UMA-trustmodel].

7. Privacy Considerations

 The AM comes to be in possession of resource set information (such as
 names and icons) that may reveal information about the user, which
 the AM's trust relationship with the host is assumed to accommodate.
 However, the requester is a less-trusted party (in fact, entirely
 untrustworthy until it acquires permissions for an RPT in UMA
 protocol phase 2. This specification recommends obscuring resource
 set identifiers in order to avoid leaking personally identifiable
 information to requesters through the "scope" mechanism.

 For information about the technical, operational, and legal elements
 of trust establishment between UMA entities and parties, which
 affects privacy considerations, see [UMA-trustmodel].

8. Conformance

 This section outlines conformance requirements for various entities
 implementing UMA endpoints.

 This specification has dependencies on other specifications, as
 follows:

 o OAuth 2.0: AMs, hosts, and requesters MUST support [OAuth2]
 features named in this specification for conformance. For
 example, AMs MUST support the authorization_code and
 client_credentials grant types.

 o hostmeta: AMs, hosts, and requesters MUST support the [RFC6415]
 features named in this specification.

 o OpenID Connect: AMs MAY support [DynClientReg], and MAY choose to
 conform to the "openid" claim format option, corresponding to the
 OpenID Connect RP role defined in [OCStandard] and support for
 OpenID Connect reserved claims defined in [OCMessages].

 The AM's configuration data provides a machine-readable method for an
 AM to indicate certain of the conformance options it has chosen.
 Several of the data properties allow for extensibility. Where this
 specification does not already require optional features to be

https://datatracker.ietf.org/doc/html/rfc6415

Hardjono Expires April 4, 2013 [Page 42]

Internet-Draft UMA Core Protocol October 2012

 documented, it is RECOMMENDED that AM developers and deployers
 document any profiled or extended features explicitly and use
 configuration data to indicate their usage. See Section 1.5 for
 information about providing and extending AM configuration data.

9. IANA Considerations

 Several UMA-specific JSON-based media types are being proposed, as
 follows: (TBS)

10. Example of Registering Resource Sets

 The following example illustrates the intent and usage of resource
 set descriptions and scope descriptions as part of resource set
 registration.

 This example contains some steps that are exclusively in the realm of
 user experience rather than web protocol, to achieve realistic
 illustration. These steps are labeled "User experience only". Some
 other steps are exclusively internal to the operation of the entity
 being discussed. These are labeled "Internal only".

 An authorizing user, Alice Adams, has just uploaded a photo of her
 new puppy to a host, Photoz.example.com, and wants to ensure that
 this specific photo is not publicly accessible.

 Alice has already introduced this host to her AM,
 CopMonkey.example.com, and thus Photoz has already obtained a PAT
 from CopMonkey. However, Alice has not previously instructed Photoz
 to use CopMonkey to protect any other photos of hers.

 Alice has previously visited CopMonkey to map a default "do not share
 with anyone" policy to any resource sets registered by Photoz, until
 such time as she maps some other more permissive policies to those
 resources. (User experience only. This may have been done at the
 time Alice introduced the host to the AM, and/or it could have been a
 global or host-specific preference setting. A different constraint
 or no constraint at all might be associated with newly protected
 resources.) Other kinds of policies she may eventually map to
 particular photos or albums might be "Share only with
 husband@email.example.net" or "Share only with people in my 'family'
 group".

 Photoz itself has a publicly documented application-specific API that
 offers two dozen different methods that apply to single photos, such
 as "addTags" and "getSizes", but rolls them up into two photo-related

Hardjono Expires April 4, 2013 [Page 43]

Internet-Draft UMA Core Protocol October 2012

 scopes of access: "view" (consisting of various read-only operations)
 and "all" (consisting of various reading, editing, and printing
 operations). It defines two scope descriptions that represent these
 scopes, which it is able to reuse for all of its users (not just
 Alice), and ensures that these scope description documents are
 available through HTTP GET requests that may be made by AMs.

 The "name" property values are intended to be seen by Alice when she
 maps authorization constraints to specific resource sets and actions
 while visiting CopMonkey, such that Alice would see the strings "View
 Photo and Related Info" and "All Actions", likely accompanied by the
 referenced icons, in the CopMonkey interface. (Other users of Photoz
 might similarly see the same labels at CopMonkey or whatever other AM
 they use. Photoz could distinguish natural-language labels per user
 if it wishes, by pointing to scopes with differently translated
 names.)

 Example of the viewing-related scope description document available
 at http://photoz.example.com/dev/scopes/view with a Content-Type of
 application/uma-scope+json:

 {
 "name": "View Photo and Related Info",
 "icon_uri": "http://www.example.com/icons/reading-glasses.png"
 }

 Example of the broader scope description document available at
 http://photoz.example.com/dev/scopes/all, likewise with a Content-
 Type of application/uma-scope+json:

 {
 "name": "All Actions",
 "icon_uri": "http://www.example.com/icons/galaxy.png"
 }

 While visiting Photoz, Alice selects a link or button that instructs
 the site to "Protect" or "Share" this single photo (user experience
 only; Photoz could have made this a default or preference setting).

 As a result, Photoz defines for itself a resource set that represents
 this photo (internal only; Photoz is the only application that knows
 how to map a particular photo to a particular resource set). Photoz
 also prepares the following resource set description, which is
 specific to Alice and her photo. The "name" property value is
 intended to be seen by Alice in mapping authorization policies to
 specific resource sets and actions when she visits CopMonkey. Alice
 would see the string "Steve the puppy!", likely accompanied by the
 referenced icon, in the CopMonkey interface. The possible scopes of

Hardjono Expires April 4, 2013 [Page 44]

Internet-Draft UMA Core Protocol October 2012

 access on this resource set are indicated with URI references to the
 scope descriptions, as shown just above.

 {
 "name": "Steve the puppy!",
 "icon_uri": "http://www.example.com/icons/flower",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 Photoz uses the "create resource set description" method of
 CopMonkey's standard UMA resource set registration API, presenting
 its Alice-specific PAT there, to register and assign an identifier to
 the resource set description.

 PUT /resource_set/112210f47de98100 HTTP/1.1
 Content-Type: application/uma-resource-set+json
 ...

 {
 "name": "Steve the puppy!",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 If the registration attempt succeeds, CopMonkey responds in the
 following fashion.

 HTTP/1.1 201 Created
 Content-Type: application/uma-status+json
 ETag: "1"
 ...

 {
 "status": "created",
 "_id": "112210f47de98100",
 "_rev": "1"
 }

 At the time Alice indicates she would like this photo protected,
 Photoz can choose to redirect Alice to CopMonkey for further policy
 setting, access auditing, and other AM-related tasks (user experience
 only).

Hardjono Expires April 4, 2013 [Page 45]

Internet-Draft UMA Core Protocol October 2012

 Once it has successfully registered this description, Photoz is
 responsible for outsourcing to CopMonkey all questions of
 authorization for access attempts made to this photo.

 Over time, as Alice uploads other photos and creates and organizes
 photo albums, and as Photoz makes new action functionality available,
 Photoz can use additional methods of the resource set registration
 API to ensure that CopMonkey's understanding of Alice's protected
 resources matches its own.

 For example, if Photoz suspects that somehow its understanding of the
 resource set has gotten out of sync with CopMonkey's, it can ask to
 read the resource set description as follows.

 GET /resource_set/112210f47de98100 HTTP/1.1
 Host: am.example.com
 ...

 CopMonkey responds with the full content of the resource set
 description, including its _id and its current _rev, as follows:

 Example of an HTTP response to a "read resource set description"
 request, containing a resource set description from the AM:

 HTTP/1.1 200 OK
 Content-Type: application/uma-resource-set+json
 ETag: "1"
 ...

 {
 "_id": "112210f47de98100",
 "_rev": "1",
 "name": "Photo album",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 If for some reason Photoz and CopMonkey have gotten dramatically out
 of sync, Photoz can ask for the list of resource set identifiers
 CopMonkey currently knows about:

 GET /resource_set HTTP/1.1
 Host: am.example.com
 ...

Hardjono Expires April 4, 2013 [Page 46]

Internet-Draft UMA Core Protocol October 2012

 CopMonkey's response might look as follows:

 HTTP/1.1 200 OK
 Content-Type: application/json
 ...

 ["112210f47de98100", "34234df47eL95300"]

 If Alice later changes the photo's title (user experience only) on
 Photoz from "Steve the puppy!" to "Steve on October 14, 2011", Photoz
 would use the "update resource set description" method to ensure that
 Alice's experience of policy-setting at CopMonkey remains consistent
 with what she sees at Photoz. Following is an example of this
 request.

 PUT /resource_set/112210f47de98100 HTTP/1.1
 Content-Type: application/uma-resource-set+json
 Host: am.example.com
 If-Match: "1"
 ...

 {
 "name": "Steve on October 14, 2011",
 "icon_uri": "http://www.example.com/icons/flower.png",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/all"
]
 }

 CopMonkey would respond as follows.

 HTTP/1.1 201 Created
 Content-Type: application/uma-status+json
 ETag: "2"
 ...

 {
 "status": "updated",
 "_id": "112210f47de98100",
 "_rev": "2"
 }

 There are other reasons Photoz might want to update resource set
 descriptions, having nothing to do with Alice's actions or wishes.
 For example, it might extend its API to include new features, and
 want to add new scopes to all of Alice's and other users' resource
 set descriptions.

Hardjono Expires April 4, 2013 [Page 47]

Internet-Draft UMA Core Protocol October 2012

 if Alice later decides to entirely remove sharing protection (user
 experience only) on this photo while visiting Photoz, ensuring that
 the public can get access without any UMA-based protection, Photoz is
 responsible for deleting the relevant resource set registration, as
 follows:

 DELETE /resource_set/112210f47de98100 HTTP/1.1
 Host: am.example.com
 If-Match: "2"
 ...

11. Acknowledgments

 The current editor of this specification is Thomas Hardjono of MIT.
 The following people are co-authors:

 o Paul C. Bryan, ForgeRock US, Inc. (former editor)

 o Domenico Catalano, Oracle Corp.

 o George Fletcher, AOL

 o Maciej Machulak, Newcastle University

 o Eve Maler, XMLgrrl.com

 o Lukasz Moren, Newcastle University

 o Christian Scholz, COMlounge GmbH (former editor)

 o Jacek Szpot, Newcastle University

 Additional contributors to this specification include the Kantara UMA
 Work Group participants, a list of whom can be found at
 [UMAnitarians].

12. Issues

 All issues are now captured at the project's GitHub site
 (<https://github.com/xmlgrrl/UMA-Specifications/issues>).

13. References

https://github.com/xmlgrrl/UMA-Specifications/issues

Hardjono Expires April 4, 2013 [Page 48]

Internet-Draft UMA Core Protocol October 2012

13.1. Normative References

 [DynClientReg]
 Hardjono, T., "OAuth Dynamic Client Registration
 Protocol", May 2012, <https://datatracker.ietf.org/doc/

draft-ietf-oauth-dyn-reg/>.

 [OAuth-SAML]
 Campbell, B., "SAML 2.0 Bearer Assertion Grant Type
 Profile for OAuth 2.0", August 2011,
 <http://tools.ietf.org/html/

draft-ietf-oauth-saml2-bearer>.

 [OAuth-bearer]
 "The OAuth 2.0 Authorization Protocol: Bearer Tokens",
 March 2012,
 <http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer>.

 [OAuth2] Hammer-Lahav, E., "The OAuth 2.0 Protocol",
 September 2011,
 <http://tools.ietf.org/html/draft-ietf-oauth-v2>.

 [OCMessages]
 Sakimura, N., "OpenID Connect Messages 1.0",
 September 2011,
 <http://openid.net/specs/

openid-connect-messages-1_0.html>.

 [OCStandard]
 Sakimura, N., "OpenID Connect Standard 1.0",
 September 2011,
 <http://openid.net/specs/

openid-connect-standard-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC6415] Hammer-Lahav, E., "Web Host Metadata", October 2011,
 <http://tools.ietf.org/html/rfc6415>.

 [UMA-trustmodel]
 Maler, E., "UMA Trust Model", April 2012, <http://
 kantarainitiative.org/confluence/display/uma/
 UMA+Trust+Model>.

https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg/
https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg/
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
http://tools.ietf.org/html/draft-ietf-oauth-v2-bearer
http://tools.ietf.org/html/draft-ietf-oauth-v2
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/specs/openid-connect-standard-1_0.html
http://openid.net/specs/openid-connect-standard-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
http://tools.ietf.org/html/rfc6415

Hardjono Expires April 4, 2013 [Page 49]

Internet-Draft UMA Core Protocol October 2012

13.2. Informative References

 [UMA-usecases]
 Maler, E., "UMA Scenarios and Use Cases", October 2010, <h
 ttp://kantarainitiative.org/confluence/display/uma/
 UMA+Scenarios+and+Use+Cases>.

 [UMA-userstories]
 Maler, E., "UMA User Stories", November 2010, <http://
 kantarainitiative.org/confluence/display/uma/
 User+Stories>.

 [UMAnitarians]
 Maler, E., "UMA Participant Roster", 2012, <http://
 kantarainitiative.org/confluence/display/uma/
 Participant+Roster>.

Appendix A. Document History

 NOTE: To be removed by RFC editor before publication as an RFC.

 From I-D rev 03 to rev 04, the following major changes have been
 made:

 o The requirement to support the client_credentials flow has been
 removed.

 o The requester access token has been split into two tokens, and all
 of the tokens have been renamed. The host access token is now the
 PAT. The requester access token used at the AM's API is now the
 AAT, and consists of vanilla OAuth. The requester access token
 used at the host is now the RPT.

 o The token and user authorization endpoints for the different APIs
 at the AM have been joined together, and are now distinguished
 through the
 "http://docs.kantarainitiative.org/uma/scopes/prot.json" scope
 (for the protection API) and the
 "http://docs.kantarainitiative.org/uma/scopes/authz.json" scope
 (for the authorization API).

 o The token status description format and JSON media type, and the
 RPT/permission delivery response, have been updated to reflect the
 RPT naming.

 o The configuration data format has changed to reflect the changes
 above.

Hardjono Expires April 4, 2013 [Page 50]

Internet-Draft UMA Core Protocol October 2012

 o The Phase 2/3 flow has changed and been simplified to match the
 requirements of the new AAT and RPT.

 o Token types are now called token profiles, and this is reflected
 in the configuration parameter names. Claim types are now called
 claim profiles, and this is also reflected in the configuration
 parameter name.

 o The requester now asks for permission in a back-channel
 interaction, and the AM now produces a need_claims error that
 instructs the requester to use a claims-gathering flow (renamed
 from "authorization flow").

 o Named subsections for token and claim profiles have been added so
 that they show up in the TOC.

 From I-D rev 04 to rev 05, the following major changes have been
 made:

 o The RPT-getting flow and the permission-requesting flow have been
 separated back out, with two distinct endpoints, RPT and
 permission request.

 o The configuration data format has changed to reflect the changes
 above.

Author's Address

 Thomas Hardjono (editor)
 MIT

 Email: hardjono@mit.edu

Hardjono Expires April 4, 2013 [Page 51]

