
Network Working Group T. Hardjono, Ed.
Internet-Draft MIT
Intended status: Standards Track June 29, 2013
Expires: December 31, 2013

User-Managed Access (UMA) Profile of OAuth 2.0
draft-hardjono-oauth-umacore-07

Abstract

 User-Managed Access (UMA) is a profile of OAuth 2.0. UMA defines how
 resource owners can control protected-resource access by clients
 operated by arbitrary requesting parties, where the resources reside
 on any number of resource servers, and where a centralized
 authorization server governs access based on resource owner policy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 31, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hardjono Expires December 31, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft UMA Core June 2013

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 5
1.2. Terminology . 5
1.3. APIs and Protection 7

 1.3.1. Protection and Authorization APIs at the
 Authorization Server 7

1.3.2. API at the Resource Server 8
1.4. Authorization Server Configuration Data 9

2. Protecting a Resource . 12
3. Getting Authorization and Accessing a Resource 13
3.1. Client Attempts to Access Protected Resource 15
3.1.1. Client Presents No RPT 15
3.1.2. Client Presents RPT 16

 3.2. Resource Server Registers Requested Permission With
 Authorization Server 17

3.3. Resource Server Determines RPT's Status 19
3.3.1. Token Introspection 19
3.3.2. RPT Profile: Bearer 20

3.4. Client Seeks Authorization for Access 22
3.4.1. Client Obtains RPT 23
3.4.2. Client Asks for Authorization Data 23

3.5. Claims-Gathering Flows 25
 3.5.1. Claims-Gathering Flow for Clients Operated by End-
 Users . 25

3.5.1.1. OpenID Connect Claim Profile 26
4. Error Messages . 27
4.1. OAuth Error Responses 28
4.2. UMA Error Responses 28

5. Specificying Additional Profiles 29
5.1. Specifying Profiles of UMA 29
5.2. Specifying RPT Profiles 30
5.3. Specifying Claim Profiles 31

6. Security Considerations 31
7. Privacy Considerations 33
8. Conformance . 33
9. IANA Considerations . 33
10. Acknowledgments . 33
11. Issues . 34
12. References . 34
12.1. Normative References 34
12.2. Informative References 35

Appendix A. Document History 36
 Author's Address . 36

1. Introduction

Hardjono Expires December 31, 2013 [Page 2]

Internet-Draft UMA Core June 2013

 User-Managed Access (UMA) is a profile of OAuth 2.0 [OAuth2]. UMA
 defines how resource owners can control protected-resource access by
 clients operated by arbitrary requesting parties, where the resources
 reside on any number of resource servers, and where a centralized
 authorization server governs access based on resource owner policy.
 Resource owners configure authorization servers with access policies
 that serve as implicit authorization grants. Thus, the UMA profile
 of OAuth can be considered to encompass an authorization grant flow.

 UMA serves numerous use cases where a resource owner outsources
 authorization for access to their resources, potentially even without
 the run-time presence of the resource owner. A typical example is
 the following: a web user (an end-user resource owner) can authorize
 a web app (client) to gain one-time or ongoing access to a protected
 resource containing his home address stored at a "personal data
 store" service (resource server), by telling the resource server to
 respect access entitlements issued by his chosen cloud-based
 authorization service (authorization server). The requesting party
 operating the client might be the resource owner himself, using a web
 or native app run by an e-commerce company that needs to know where
 to ship a purchased item, or it might be his friend who is using an
 online address book service to collect contact information, or it
 might be a survey company that uses an autonomous web service to
 compile population demographics. A variety of scenarios and use
 cases can be found in [UMA-usecases] and [UMA-casestudies].

 Practical control of access among loosely coupled parties requires
 more than just messaging protocols. This specification defines only
 the technical "contract" between UMA-conforming entities; its
 companion Binding Obligations specification [UMA-obligations] defines
 the expected behaviors of parties operating and using these entities.
 Parties operating entities that claim to be UMA-conforming MUST
 provide documentation affirmatively stating their acceptance of the
 binding obligations contractual framework defined in the Binding
 Obligations specification.

 In enterprise settings, application access management sometimes
 involves letting back-office applications serve only as policy
 enforcement points (PEPs), depending entirely on access decisions
 coming from a central policy decision point (PDP) to govern the
 access they give to requesters. This separation eases auditing and
 allows policy administration to scale in several dimensions. UMA
 makes use of a separation similar to this, letting the resource owner
 serve as a policy administrator crafting authorization strategies for
 resources under their control.

 In order to increase interoperable communication among the
 authorization server, resource server, and client, UMA defines

Hardjono Expires December 31, 2013 [Page 3]

Internet-Draft UMA Core June 2013

 several purpose-built APIs related to the outsourcing of
 authorization, themselves protected by OAuth in embedded fashion.

 The UMA protocol has three broad phases, as shown in Figure 1.

 The Three Phases of the UMA Profile of OAuth

 +--------------+
 | resource |
 +---------manage (A)------------ | owner |
 | +--------------+
 | Phase 1: |
 | protect a control (B)
 | resource |
 v v
 +------------+ +----------+--------------+
 | | |protection| |
 | resource | | API | authorization|
 | server |<-protect (C)--| (needs | server |
 | | | PAT) | |
 +------------+ +----------+--------------+
 | protected | | authorization|
 | resource | | API |
 |(needs RPT) | | (needs AAT) |
 +------------+ +--------------+
 ^ |
 | Phases 2 and 3: authorize (D)
 | get authorization, |
 | access a resource v
 | +--------------+
 +---------access (E)-------------| client |
 +--------------+

 requesting party

 Figure 1

 The phases work as follows:

 Protect a resource (Described in Section 2.) The resource owner,
 who manages online resources at the resource server ("A"),
 introduces it to the authorization server so that the latter can
 begin controlling the resources' protection. To accomplish this
 protection, the authorization server presents a protection API
 ("C") to the resource server. This API is OAuth-protected and
 requires a protection API token (PAT) for access. The API
 consists of an OAuth resource set registration endpoint as defined
 by [OAuth-resource-reg], an endpoint for registering client-

Hardjono Expires December 31, 2013 [Page 4]

Internet-Draft UMA Core June 2013

 requested permissions, and an OAuth token introspection endpoint
 as defined by [OAuth-introspection]. Out of band, the resource
 owner configures the authorization server with policies associated
 with the registered resource sets ("B").

 Get authorization (Described in Section 3.) The client approaches
 the resource server seeking access to a protected resource. In
 order to access it successfully, the client must first use the
 authorization server's authorization API ("D") to obtain a
 requesting party token (RPT) on behalf of its requesting party,
 and the requesting party must supply to the authorization server
 any identity claims needed in order for the server to associate
 sufficient authorization data with that RPT. The API is OAuth-
 protected and requires an authorization API token (AAT) for
 access. The API consists of an RPT issuance endpoint and an
 authorization request endpoint.

 Access a resource (Described along with Phase 2 in Section 3.) The
 client successfully presents an RPT that has sufficient
 authorization data associated with it to the resource server,
 gaining access to the desired resource ("E"). In this sense, this
 phase is the "happy path" within phase 2. The nature of the
 authorization data varies according to the RPT profile in use.

 Implementers are anticipated to develop profiles (see Section 5) that
 specify and restrict various UMA protocol, RPT, and identity claim
 options, according to deployment and usage conditions.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all the protocol properties and values are
 case sensitive.

1.2. Terminology

 UMA introduces the following new terms and enhancements of OAuth term
 definitions.

 resource owner
 An OAuth resource that is the "user" in User-Managed Access.
 This is typically an end-user (a natural person) but it can
 also be a corporation or other legal person.

 requesting party

https://datatracker.ietf.org/doc/html/rfc2119

Hardjono Expires December 31, 2013 [Page 5]

Internet-Draft UMA Core June 2013

 An end-user, or a corporation or other legal person, that uses
 a client to seek access to a protected resource. The
 requesting party may or may not be the same party as the
 resource owner.

 client
 An application making protected resource requests with the
 resource owner's authorization and on the requesting party's
 behalf.

 claim
 A statement of the value or values of one or more identity
 attributes of a requesting party. A requesting party may need
 to provide claims to an authorization server in order to
 satisfy policy and gain permission for access to a protected
 resource.

 resource set A set of one or more protected resources. In
 authorization policy terminology, a resource set is the
 "object" being protected.

 scope A bounded extent of access that is possible to perform on a
 resource set. In authorization policy terminology, a scope is
 one of the potentially many "verbs" that can logically apply to
 a resource set ("object"). UMA associates scopes with labeled
 resource sets.

 authorization data Data associated with a requesting party token
 that enables some combination of the authorization server and
 resource server to determine the correct extent of access to
 allow to a client. Authorization data is a key part of the
 definition of an RPT profile.

 permission A scope of access over a particular resource set at a
 particular resource server that is being requested by, or
 granted to, a requesting party. In authorization policy
 terminology, a permission is an entitlement that includes a
 "subject" (requesting party), "verbs" (one or more scopes of
 access), and an "object" (resource set). A permission is one
 example of authorization data that an authorization server may
 issue.

 permission ticket A correlation handle that is conveyed from an
 authorization server to a resource server, from a resource
 server to a client, and ultimately from a client to an
 authorization server, to enable the authorization server to
 assess the correct resource owner policies to apply to a
 request for an authorization grant.

Hardjono Expires December 31, 2013 [Page 6]

Internet-Draft UMA Core June 2013

1.3. APIs and Protection

 UMA involves three APIs, all of which are protected.

 The authorization server has the opportunity to manage the validity
 periods of access tokens that it issues, their corresponding refresh
 tokens where applicable, the individual data components associated
 with RPTs where applicable, and even the client credentials that it
 issues. Different time-to-live strategies may be suitable for
 different resources and scopes of access, and the authorization
 server has the opportunity to give the resource owner control over
 lifetimes of tokens and authorization data issued on their behalf
 through policy. These options are all outside the scope of this
 specification.

1.3.1. Protection and Authorization APIs at the Authorization Server

 The authorization server presents a protection API to the resource
 server and an authorization API to the client. These APIs MUST be
 OAuth-protected; thus, the authorization server has an OAuth token
 endpoint and user authorization endpoint, and has the option to issue
 an OAuth refresh token along with any access tokens issued for these
 APIs.

 The protection API consists of an OAuth resource set registration
 endpoint as defined by [OAuth-resource-reg], an endpoint for
 registering client-requested permissions, and an OAuth token
 introspection endpoint as defined by [OAuth-introspection]. This
 specification profiles the endpoints defined by these other
 specifications.

 The authorization API consists of an RPT issuance endpoint and an
 authorization request endpoint.

 All endpoint URIs SHOULD require the use of a transport-layer
 security mechanism such as TLS. The authorization server MUST
 declare all of its endpoints in its configuration data (see

Section 1.4).

 An entity seeking protection API access MUST request the scope "http:
 //docs.kantarainitiative.org/uma/scopes/prot.json", and an access
 token with at least this scope is called a protection API token
 (PAT). An entity seeking authorization API access MUST request the
 scope "http://docs.kantarainitiative.org/uma/scopes/authz.json", and
 an access token with at least this scope is called an authorization
 API token (AAT). The same entity can serve in both roles, so that an
 OAuth access token might be considered both a PAT and an AAT if it
 has both scopes. If a request to an endpoint fails due to an

Hardjono Expires December 31, 2013 [Page 7]

Internet-Draft UMA Core June 2013

 invalid, missing, or expired PAT or AAT, or requires higher
 privileges at this endpoint than provided by the PAT or AAT, the
 authorization server responds with an OAuth error.

 Note: These scope keywords are URIs that resolve to JSON-encoded
 scope descriptions, as defined in [OAuth-resource-reg]. These scope
 descriptions are non-normative for the purposes of PATs and AATs.

 The authorization server is REQUIRED to support the OAuth bearer
 token profile for PAT and AAT issuance, and MAY support other OAuth
 token profiles for these purposes. It MUST declare all supported
 token profiles for PAT and AAT issuance in its configuration data.
 The authorization server MAY support the use of any OAuth grant type
 for PAT and AAT issuance, but MUST support the authorization_code
 grant type, and SHOULD support the SAML bearer token grant type
 [OAuth-SAML] (urn:ietf:params:oauth:grant-type:saml2-bearer) if it
 anticipates working with entities that are operating in environments
 where the use of SAML is prevalent. It MUST declare its supported
 grant types for PAT and AAT issuance in its configuration data.

 A PAT binds a resource owner, a resource server the owner uses for
 resource management, and an authorization server the owner uses for
 protection of resources at this resource server. It is not specific
 to any client or requesting party. The issuance of a PAT represents
 the approval of the resource owner for this resource server to trust
 this authorization server for protecting its resources belonging to
 this resource owner.

 An AAT binds a requesting party, a client being used by that party,
 and an authorization server that protects resources this client is
 seeking access to on this requesting party's behalf. It is not
 specific to any resource server or resource owner. The issuance of
 an AAT represents the approval of this requesting party for this
 client to engage with this authorization server to supply claims, ask
 for authorization, and perform any other tasks needed for obtaining
 authorization for access to resources at all resource servers that
 use this authorization server. The authorization server is able to
 manage future processes of authorization and claims-caching
 efficiently for this client/requesting party pair across all resource
 servers they try to access. These management processes are outside
 the scope of this specification, however.

1.3.2. API at the Resource Server

 The resource server presents one or more protected resource endpoints
 to the client; these endpoints are protected by the UMA profile of
 OAuth and require a requesting party token (RPT) with sufficient
 authorization data for access. This specification defines one RPT

Hardjono Expires December 31, 2013 [Page 8]

Internet-Draft UMA Core June 2013

 profile, call "bearer" (see Section 3.3.2), which is REQUIRED for the
 authorization server to support. It MAY support additional RPT
 profiles. It MUST declare all supported RPT profiles in its
 configuration data.

 An RPT represents a binding of a requesting party, the client being
 used by that party, the resource server at which protected resources
 of interest reside, and the authorization server that protects those
 resources. It is not specific to a single resource owner, though its
 internal components are likely to be bound to individual resource
 owners, depending on the RPT profile in use.

1.4. Authorization Server Configuration Data

 The authorization server MUST provide configuration data in a JSON
 [RFC4627] document that resides in an /uma-configuration directory at
 at its hostmeta [hostmeta] location. The configuration data
 documents conformance options and endpoints supported by the
 authorization server. (At the appropriate time, this section will
 instead profile whatever self-describing metadata specification OAuth
 adopts, for example, [OAuth-linktypes] or [OAuth-meta].)

 The configuration data has the following properties.

 version
 REQUIRED. The version of the UMA core protocol to which this
 authorization server conforms. The value MUST be the string
 "1.0".

 issuer
 REQUIRED. A URI indicating the party operating the
 authorization server.

 pat_profiles_supported
 REQUIRED. Access token profiles supported by this
 authorization server for PAT issuance. The property value is
 an array of string values, where each string value is either a
 reserved keyword defined in this specification or a URI
 identifying an access token profile defined elsewhere. The
 reserved keyword "bearer" as a value for this property stands
 for the OAuth bearer token profile [OAuth-bearer]. The
 authorization server is REQUIRED to support this profile, and
 to supply this string value explicitly. The authorization
 server MAY declare its support for additional access token
 profiles for PATs.

 aat_profiles_supported

https://datatracker.ietf.org/doc/html/rfc4627

Hardjono Expires December 31, 2013 [Page 9]

Internet-Draft UMA Core June 2013

 REQUIRED. Access token profiles supported by this
 authorization server for AAT issuance. The property value is
 an array of string values, where each string value is either a
 reserved keyword defined in this specification or a URI
 identifying an access token profile defined elsewhere. The
 reserved keyword "bearer" as a value for this property stands
 for the OAuth bearer token profile [OAuth-bearer]. The
 authorization server is REQUIRED to support this profile, and
 to supply this string value explicitly. The authorization
 server MAY declare its support for additional access token
 profiles for AATs.

 rpt_profiles_supported
 REQUIRED. Access token profiles supported by this
 authorization server for RPT issuance. The property value is
 an array of string values, where each string value is either a
 reserved keyword defined in this specification or a URI
 identifying an access token profile defined elsewhere. The
 reserved keyword "bearer" as a value for this property stands
 for the UMA bearer RPT profile defined in [OAuth-bearer]. The
 authorization server is REQUIRED to support this profile, and
 to supply this string value explicitly. The authorization
 server MAY declare its support for additional access token
 profiles for RPTs.

 pat_grant_types_supported
 REQUIRED. OAuth grant types supported by this authorization
 server in issuing PATs. The property value is an array of
 string values. Each string value MUST be one of the grant_type
 values defined in [OAuth2], or alternatively a URI identifying
 a grant type defined elsewhere.

 aat_grant_types_supported
 REQUIRED. OAuth grant types supported by this authorization
 server in issuing AATs. The property value is an array of
 string values. Each string value MUST be one of the grant_type
 values defined in [OAuth2], or alternatively a URI identifying
 a grant type defined elsewhere.

 claim_profiles_supported
 OPTIONAL. Claim formats and associated sub-protocols for
 gathering claims from requesting parties, as supported by this
 authorization server. The property value is an array of string
 values, which each string value is either a reserved keyword
 defined in this specification or a URI identifying a claim
 profile defined elsewhere. The reserved keyword "openid" as a
 value for this property stands for the UMA OpenID Connect claim
 profile defined in Section 3.5.1.1.

Hardjono Expires December 31, 2013 [Page 10]

Internet-Draft UMA Core June 2013

 dynamic_client_endpoint
 OPTIONAL. The endpoint to use for performing dynamic client
 registration. Usage is defined by [DynClientReg]. The
 presence of this property indicates authorization server
 support for the dynamic client registration feature and its
 absent indicates a lack of support.

 token_endpoint
 REQUIRED. The endpoint URI at which the resource server or
 client asks the authorization server for a PAT or AAT,
 respectively. A requested scope of "http://
 docs.kantarainitiative.org/uma/scopes/prot.json" results in a
 PAT. A requested scope of "http://docs.kantarainitiative.org/
 uma/scopes/authorization" results in an AAT. Usage is defined
 by [OAuth2].

 user_endpoint
 REQUIRED. The endpoint URI at which the resource server
 gathers the consent of the end-user resource owner or the
 client gathers the consent of the end-user requesting party, if
 the "authorization_code" grant type is used. Usage is defined
 by [OAuth2].

 introspection_endpoint
 REQUIRED. The endpoint URI at which the resource server
 introspects an RPT presented to it by a client. Usage is
 defined by [OAuth-introspection] and Section 3.3.1. A valid
 PAT MUST accompany requests to this protected endpoint.

 resource_set_registration_endpoint
 REQUIRED. The endpoint URI at which the resource server
 registers resource sets to put them under authorization manager
 protection. Usage is defined by [OAuth-resource-reg] and

Section 2. A valid PAT MUST accompany requests to this
 protected endpoint.

 permission_registration_endpoint
 REQUIRED. The endpoint URI at which the resource server
 registers a client-requested permission with the authorization
 server. Usage is defined by Section 3.2. A valid PAT MUST
 accompany requests to this protected endpoint.

 rpt_endpoint
 REQUIRED. The endpoint URI at which the client asks the
 authorization server for an RPT. Usage is defined by

Section 3.4.1. A valid AAT MUST accompany requests to this
 protected endpoint.

Hardjono Expires December 31, 2013 [Page 11]

Internet-Draft UMA Core June 2013

 authorization_request_endpoint
 REQUIRED. The endpoint URI at which the client asks to have
 authorization data associated with its RPT. Usage is defined
 in Section 3.4.2. A valid AAT MUST accompany requests to this
 protected endpoint.

 Example of authorization server configuration data that resides at
 https://example.com/.well-known/uma-configuration (note the use of
 https: for endpoints throughout):

 {
 "version":"1.0",
 "issuer":"https://example.com",
 "pat_profiles_supported":["bearer"],
 "aat_profiles_supported":["bearer"],
 "rpt_profiles_supported":["bearer"],
 "pat_grant_types_supported":["authorization_code"],
 "aat_grant_types_supported":["authorization_code"],
 "claim_profiles_supported":["openid"],
 "dynamic_client_endpoint":"https://as.example.com/dyn_client_reg_uri",
 "token_endpoint":"https://as.example.com/token_uri",
 "user_endpoint":"https://as.example.com/user_uri",
 "resource_set_registration_endpoint":"https://as.example.com/rs/rsrc_uri",
 "introspection_endpoint":"https://as.example.com/rs/status_uri",
 "permission_registration_endpoint":"https://as.example.com/rs/perm_uri",
 "rpt_endpoint":"https://as.example.com/client/rpt_uri",
 "authorization_request_endpoint":"https://as.example.com/client/perm_uri"
 }

 Authorization server configuration data MAY contain extension
 properties that are not defined in this specification. Extension
 names that are unprotected from collisions are outside the scope of
 this specification.

2. Protecting a Resource

 The resource owner, resource server, and authorization server perform
 the following actions to put resources under protection. This list
 assumes that the resource server has discovered the authorization
 server's configuration data and endpoints as needed.

 1. The authorization server issues client credentials to the
 resource server. It is OPTIONAL for the client credentials to be
 provided dynamically through [DynClientReg]); alternatively, they
 MAY use a static process.

Hardjono Expires December 31, 2013 [Page 12]

Internet-Draft UMA Core June 2013

 2. The resource server acquires a PAT from the authorization server
 in order to use the resource set registration endpoint (and
 later, other protection API endpoints). It is OPTIONAL for the
 resource owner to introduce the resource server to the
 authorization server dynamically (for example, through a
 "NASCAR"-style user interface where the resource owner selects a
 chosen authorization server); alternatively, they MAY use a
 static process that may or may not directly involve the resource
 owner at introduction time.

 3. In an ongoing fashion, the resource server registers any resource
 sets with the authorization server for which it intends to
 outsource protection, using the process defined by
 [OAuth-resource-reg].

 Note: The resource server is free to offer the option to protect any
 subset of the resource owner's resources using different
 authorization servers or other means entirely, or to protect some
 resources and not others. Additionally, the choice of protection
 regimes can be made explicitly by the resource owner or implicitly by
 the resource server. Any such partitioning by the resource server or
 owner is outside the scope of this specification.

 Once a resource set has been placed under authorization server
 protection through the registration of a resource set description for
 it, and until such a description's deletion by the resource server,
 the resource server MUST limit access to corresponding resources,
 respecting authorization data associated with client-presented RPTs
 by the authorization server as appropriate (see Section 3.1.2).

3. Getting Authorization and Accessing a Resource

 An authorization server orchestrates and controls clients' access (on
 their requesting parties' behalf) to a resource owner's protected
 resources at a resource server, under conditions dictated by that
 resource owner.

 The process of getting authorization and accessing a resource always
 begins with the client attempting access at a protected resource
 endpoint at the resource server. How the client came to learn about
 this endpoint is out of scope for this specification. The resource
 owner might, for example, have advertised its availability publicly
 on a blog or other website, listed it in a discovery service, or
 emailed a link to a particular intended requesting party.

 The resource server responds to the client's access request with
 whatever its application-specific interface defines as a success
 response, either immediately or having first performed one or more

Hardjono Expires December 31, 2013 [Page 13]

Internet-Draft UMA Core June 2013

 embedded interactions with the authorization server. Depending on
 the nature of the resource server's response to an failed access
 attempt, the client and its requesting party engage in embedded
 interactions with the authorization server before re-attempting
 access.

 The interactions are as follows. Each interaction MAY be the last,
 if the client chooses not to continue pursuing the access attempt or
 the resource server chooses not to continue facilitating it.

 o The client attempts to access a protected resource.

 * If the access attempt is unaccompanied by an RPT, the resource
 server responds immediately with an HTTP 401 (Unauthorized)
 response and instructions on where to go to obtain one.

 * If the access attempt was accompanied by an RPT, the resource
 server checks the RPT's status.

 + If the RPT is invalid, the resource server responds with an
 HTTP 401 (Unauthorized) response and instructions on where
 to go to obtain a token.

 + If the RPT is valid but has insufficient authorization data,
 the resource server registers a suitable requested
 permission on the client's behalf at the authorization
 server, and then responds to the client with an HTTP 403
 (Forbidden) response and instructions on where to go to ask
 for authorization.

 + If the RPT is valid, and if the authorization data
 associated with the token is sufficient for allowing access,
 the resource server responds with an HTTP 2xx (Success)
 response and a representation of the resource.

 o If the client (possessing no RPT or an invalid RPT) received a 401
 response and an authorization server's location, after looking up
 its configuration data and endpoints as necessary, it requests an
 RPT from the RPT endpoint.

 o If the client (posessing a valid RPT) received a 403 response and
 a permission ticket, it asks the authorization server for
 authorization data that matches the ticket. If the authorization
 server needs requesting party claims in order to assess this
 client's authorization, it engages in a claims-gathering flow with
 the requesting party.

Hardjono Expires December 31, 2013 [Page 14]

Internet-Draft UMA Core June 2013

 * If the client does not already have an AAT at the appropriate
 authorization server to be able to use its authorization API,
 it first obtains one.

 The interactions are described in detail in the following sections.

3.1. Client Attempts to Access Protected Resource

 This interaction assumes that the resource server has previously
 registered one or more resource sets that correspond to the resource
 to which access is being attempted.

 The client attempts to access a protected resource (for example, when
 an end-user requesting party clicks on a thumbnail representation of
 the resource to retrieve a larger version). It is expected to
 discover, or be provisioned or configured with, knowledge of the
 protected resource and its location out of band. Further, the client
 is expected to acquire its own knowledge about the application-
 specific methods made available by the resource server for operating
 on this protected resource (such as viewing it with a GET method, or
 transforming it with some complex API call) and the possible scopes
 of access.

 The access attempt either is or is not accompanied by an RPT.

3.1.1. Client Presents No RPT

 Example of a request carrying no RPT:

 GET /album/photo.jpg HTTP/1.1
 Host: photoz.example.com
 ...

 If the client does not present an RPT with the request, the resource
 server MUST return an HTTP 401 (Unauthorized) status code, along with
 providing the authorization server's URI in an "as_uri" property to
 facilitate authorization server configuration data discovery,
 including discovery of the endpoint where the client can request an
 RPT (Section 3.4.1).

Hardjono Expires December 31, 2013 [Page 15]

Internet-Draft UMA Core June 2013

 For example:

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: UMA realm="example",
 host_id="photoz.example.com",
 as_uri="https://as.example.com"
 ...

3.1.2. Client Presents RPT

 Example of a request carrying an RPT using the UMA bearer RPT
 profile:

 GET /album/photo.jpg HTTP/1.1
 Authorization: Bearer vF9dft4qmT
 Host: photoz.example.com
 ...

 If the client presents an RPT with its request, the resource server
 MUST determine the RPT's status (see Section 3.3) before responding.

 If the RPT is invalid, the resource server MUST return an HTTP 401
 (Unauthorized) status code, along with providing the authorization
 server's URI in an "as_uri" property in the header, similarly to the
 case where no RPT was presented.

 If the RPT is valid but has insufficient authorization data for the
 type of access sought, the resource server SHOULD register a
 requested permission with the authorization server that would suffice
 for that scope of access (see Section 3.2), and then respond with the
 HTTP 403 (Forbidden) status code, along with providing the
 authorization server's URI in an "as_uri" property in the header, and
 the permission ticket it just received from the AM in the body in a
 JSON-encoded "ticket" property.

 Example of the host's response after having registered a requested
 permission and received a ticket:

Hardjono Expires December 31, 2013 [Page 16]

Internet-Draft UMA Core June 2013

 HTTP/1.1 403 Forbidden
 WWW-Authenticate: UMA realm="example",
 host_id="photoz.example.com",
 as_uri="https://as.example.com"
 error="insufficient_scope"

 {
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 If the RPT's status is associated with authorization data that is
 consistent with authorized access of the scope sought by the client,
 the resource server MUST give access to the desired resource.

 Example of the resource server's response after having determineed
 that the RPT is valid and associated with sufficient authorization
 data:

 HTTP/1.1 200 OK
 Content-Type: image/jpeg
 ...

 /9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja
 3kAAQAEAAAAPAAA/+4ADkFkb2JlAGTAAAAAAf
 /bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAo
 KCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwb

 The resource server MUST NOT give access where the token's status is
 not associated with sufficient authorization data for the attempted
 scope of access.

3.2. Resource Server Registers Requested Permission With Authorization
 Server

 In response to receiving an access request accompanied by an RPT that
 has insufficient authorization data, the resource server registers a
 permission with the authorization server that would be sufficient for
 the type of access sought. The authorization server returns a
 permission ticket for the resource server to give to the client in
 its response.

 The resource server MUST provide its valid PAT in order to get access
 to this endpoint. Note that this PAT implicitly identifies the
 resource owner ("subject") to which the permission applies.

Hardjono Expires December 31, 2013 [Page 17]

Internet-Draft UMA Core June 2013

 The permission ticket is a short-lived opaque structure whose form is
 determined by the authorization server. The ticket value MUST be
 securely random (for example, not merely part of a predictable
 sequential series), to avoid denial-of-service attacks. Since the
 ticket is an opaque structure from the point of view of the client,
 the authorization server is free to include information regarding
 expiration time within the opaque ticket for its own consumption.
 When the client subsequently asks the authorization server for
 authorization data to be associated with its RPT, it will submit this
 ticket to the authorization server.

 The resource server registers the requested permission using the POST
 method at the authorization server's permission registration
 endpoint. The resource server MUST provide its valid PAT in order to
 get access to this endpoint. The body of the HTTP request message
 contains a JSON object providing the requested permission, using a
 format derived from the scope description format specified in
 [OAuth-resource-reg], as follows. The object has the following
 properties:

 resource_set_id REQUIRED. The identifier for a resource set, access
 to which this client is seeking access. The identifier MUST
 correspond to a resource set that was previously registered.

 scopes REQUIRED. An array referencing one or more identifiers of
 scopes to which access is needed for this resource set. Each
 scope identifier MUST correspond to a scope that was registered by
 this resource server for the referenced resource set.

 Example of an HTTP request that registers a requested permission at
 the authorization server's permission registration endpoint:

 POST /host/scope_reg_uri/photoz.example.com HTTP/1.1
 Content-Type: application/json
 Host: as.example.com

 {
 "resource_set_id": "112210f47de98100",
 "scopes": [
 "http://photoz.example.com/dev/actions/view",
 "http://photoz.example.com/dev/actions/all"
]
 }

Hardjono Expires December 31, 2013 [Page 18]

Internet-Draft UMA Core June 2013

 If the registration request is successful, the authorization server
 responds with an HTTP 201 (Created) status code and includes the
 Location header in its response as well as the "ticket" property in
 the JSON-formatted body.

 For example:

 HTTP/1.1 201 Created
 Content-Type: application/json
 Location: https://as.example.com/permreg/host/photoz.example.com/
5454345rdsaa4543
 ...

 {
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 If the registration request is authenticated properly but fails due
 to other reasons, the authorization server responds with an HTTP 400
 (Bad Request) status code and includes one of the following UMA error
 codes (see Section 4.2):

 invalid_resource_set_id The provided resource set identifier was not
 found at the authorization server.

 invalid_scope At least one of the scopes included in the request was
 not registered previously by this resource server.

3.3. Resource Server Determines RPT's Status

 The resource server determines a received RPT's status, including
 both its validity and, if valid, its associated authorization data,
 before giving or refusing access to the client. An RPT is associated
 with a set of authorization data that governs whether the client is
 authorized for access. The token's nature and format are dictated by
 its profile; the profile might allow it to be self-contained, such
 that the resource server is able to determine its status locally, or
 might require or allow the resource server to make a run-time
 introspection request of the authorization server that issued the
 token.

 This specification makes one type of RPT mandatory to implement: the
 UMA bearer token profile, as defined in Section 3.3.2. Implementers
 MAY define and use other RPT profiles.

3.3.1. Token Introspection

Hardjono Expires December 31, 2013 [Page 19]

Internet-Draft UMA Core June 2013

 Within any RPT profile, when a resource server needs to introspect a
 token in a non-self-contained way to determine its status, it MUST
 use the authorization server's OAuth introspection endpoint, defined
 by [OAuth-introspection]. Any UMA token profile MAY require, allow,
 or prohibit use of the token introspection endpoint, and MAY profile
 its usage. The authorization server MUST OAuth-protect this endpoint
 and require a PAT from the resource server for access to it. The
 resource server MUST use the POST method in interacting with the
 endpoint, not the GET method also defined by [OAuth-introspection].

3.3.2. RPT Profile: Bearer

 This section defines the UMA bearer token profile. Following is a
 summary:

 o Identifying URI: http://docs.kantarainitiative.org/uma/profiles/
uma-token-bearer-1.0

 o Profile author and contact information: Thomas Hardjono
 (hardjono@mit.edu)

 o Updates or obsoletes: None; this profile is new.

 o Keyword in HTTP Authorization header: "Bearer".

 o Syntax and semantics of token data: As defined below. The token
 data format mainly involves time-bounded permissions.

 o Token data association: The data associated to the on-the-wire
 token by reference and retrieved at run time by the resource
 server through profiled use of the OAuth token introspection
 endpoint [OAuth-introspection], as defined below.

 o Token data processing: As defined in this section and throughout
Section 3 of this specification.

 o Grant type restrictions: None.

 o Error states: As defined below.

 o Security and privacy considerations: As defined in this section
 and throughout Section 3 of this specification.

 o Binding obligations: Because this RPT profile is mandatory for
 authorization servers to implement, binding obligations related to
 the use of this token profile are documented in [UMA-obligations].

http://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0
http://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0

Hardjono Expires December 31, 2013 [Page 20]

Internet-Draft UMA Core June 2013

 On receiving an RPT of the "Bearer" type in an authorization header
 from a client making an access attempt, the resource server MUST
 introspect the token by using the authorization server's token
 introspection endpoint. The PAT used by the resource server to make
 the introspection request provides resource-owner context to the
 authorization server.

 The authorization server responds with a JSON object with the
 structure dictated by [OAuth-introspection]. If the valid property
 has a "true" value, then the JSON object MUST also contain an
 extension property with the name "permissions" that contains an array
 of zero or more values, each of which is an object consisting of
 these properties:

 resource_set_id REQUIRED. A string that uniquely identifies the
 resource set, access to which has been granted to this client on
 behalf of this requesting party. The identifier MUST correspond
 to a resource set that was previously registered as protected.

 scopes REQUIRED. An array referencing one or more URIs of scopes to
 which access was granted for this resource set. Each scope MUST
 correspond to a scope that was registered by this host for the
 referenced resource set.

 expires_at REQUIRED. Integer timestamp, measured in the number of
 seconds since January 1 1970 UTC, indicating when this permission
 will expire.

 issued_at OPTIONAL. Integer timestamp, measured in the number of
 seconds since January 1 1970 UTC, indicating when this permission
 was originally issued.

 Example:

Hardjono Expires December 31, 2013 [Page 21]

Internet-Draft UMA Core June 2013

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "valid": true,
 "expires_at": "1256953732",
 "issued_at": "1256912345",
 "permissions": [
 {
 "resource_set_id": "112210f47de98100",
 "scopes": [
 "http://photoz.example.com/dev/actions/view",
 "http://photoz.example.com/dev/actions/all"
],
 "expires_at" : "1256923456"
 }
]
 }

3.4. Client Seeks Authorization for Access

 In order to access a protected resource successfully, a client needs
 to present a valid RPT with sufficient authorization data for access.
 To get to this stage requires a number of previously successful
 steps:

 1. The authorization server issues client credentials to the client.
 It is OPTIONAL for the client credentials to be provided
 dynamically through [DynClientReg]); alternatively, they MAY use
 a static process.

 2. The client acquires an AAT. This enables it to use authorization
 API endpoints.

 3. The client acquires an RPT from the RPT endpoint. See
Section 3.4.1 for more detail.

 4. The client asks for authorization at the authorization request
 endpoint, providing the permission ticket it got from the
 resource server. The authorization server associates
 authorization data with the client's RPT based on the permission
 ticket, the resource owner's operative policies, and the results
 of any claims-gathering flows with the requesting party. See

Section 3.4.2 for more detail.

Hardjono Expires December 31, 2013 [Page 22]

Internet-Draft UMA Core June 2013

3.4.1. Client Obtains RPT

 The client might need an RPT if it has never before requested an RPT
 for this combination of requesting party, resource server, and
 authorization server, or if it has lost control of a previously
 issued RPT and needs a refreshed one. It obtains an RPT by
 performing a POST on the RPT endpoint. It MUST provide its own valid
 AAT in the header.

 Example of a request message containing an AAT:

 POST /rpt HTTP/1.1
 Host: as.example.com
 Authorization: Bearer jwfLG53^sad$#f
 ...

 The authorization server responds with an HTTP 201 (Created) status
 code and provides a new RPT.

 For example:

 HTTP/1.1 201 Created
 Content-Type: application/json

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv"
 }

 If the AAT provided in the header is the same as one provided for a
 previously issued still-valid RPT by this authorization server, the
 authorization server invalidates the old RPT and issues a new one.

 On first issuance, the RPT is associated with no authorization data
 and thus does not convey any authorizations for access.

3.4.2. Client Asks for Authorization Data

 Once in possession of an AAT for this authorization server, an RPT
 that applies to this requesting party for this resource server and
 this authorization server, and a permission ticket, the client asks
 the authorization server to give it suitable authorization data for
 the sought-for access. It performs a POST on the authorization
 request endpoint, supplying its own AAT in the header and its RPT and
 the permission ticket in a JSON object with properties "rpt" and
 ticket", respectively.

Hardjono Expires December 31, 2013 [Page 23]

Internet-Draft UMA Core June 2013

 Example of a request message containing an AAT, an RPT, and a
 permission ticket:

 POST /token_status HTTP/1.1
 Host: as.example.com
 Authorization: Bearer jwfLG53^sad$#f
 ...

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 The authorization server uses the ticket to look up the details of
 the previously registered requested permission, maps the requested
 permission to operative resource owner policies based on the resource
 set identifier and scopes in it, undergoes any claims-gathering flows
 required (see Section 3.5), and ultimately responds to the request.
 The resource owner's policies at the authorization server amount to
 an implicit authorization grant in governing the issuance of
 authorization data. (The authorization server is also free to enable
 the resource owner to set policies that require the owner to provide
 a run-time authorization grant in the form of a consent interaction,
 mediated by the authorization server. This setting of policies and
 gathering of consent is outside the scope of this specification.)

 The authorization server MUST base the addition of authorization data
 to RPTs on user policies. The nature of these policies is outside
 the scope of UMA, but generally speaking, they can be thought of as
 either independent of requesting-party features (for example, time of
 day) or dependent on requesting-party features (for example, whether
 they are over 18). Such requesting-party features can potentially be
 collected in a claims-gathering flow. If the authorization server
 does not add the requested authorization data, it responds using the
 appropriate HTTP status code and UMA error code (see Section 4.2):

 invalid_ticket The provided ticket was not found at the
 authorization server. The authorization server SHOULD respond
 with the HTTP 400 (Bad Request) status code.

 expired_ticket The provided ticket has expired. The authorization
 server SHOULD respond with the HTTP 400 (Bad Request) status code.

 not_authorized_permission The client is definitively not authorized
 for this authorization according to user policy. The
 authorization server SHOULD respond with the HTTP 403 (Forbidden)
 status code.

Hardjono Expires December 31, 2013 [Page 24]

Internet-Draft UMA Core June 2013

 need_claims The authorization server is unable to determine whether
 the client is authorized for this permission without gathering
 claims from the requesting party. The authorization server SHOULD
 respond with the HTTP 403 (Forbidden) status code. The client is
 therefore not authorized, but has the opportunity to engage its
 operator -- the requesting party -- in a claims-gathering flow
 with the authorization server (see Section 3.5) to continue
 seeking authorization.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 ...

 {
 "status": "error",
 "error": "expired_ticket"
 }

3.5. Claims-Gathering Flows

 The process for requesting and providing claims is extensible and may
 have a variety of dependencies on the type of requesting party (for
 example, natural person or legal person) and the type of client (for
 example, browser, native app, or autonomously running web service).
 This specification provides a framework for handling end-user-driven
 clients and an optional "openid" claim profile, based on OpenID
 Connect, for gathering standardized claims from such an end-user. It
 also allows for the definition of additional claim profiles. The
 authorization server MAY support any number of claim profiles, and
 SHOULD document the claim profiles it supports its configuration
 data. For the business-level and legal implications of different
 claim profiles, see [UMA-obligations].

3.5.1. Claims-Gathering Flow for Clients Operated by End-Users

 A client, whether web-based or native, is operated by an end-user in
 one of two typical situations:

 o The requesting party is a natural person (for example, a friend of
 the resource owner); the requesting party may even be the resource
 owner herself.

 o The requesting party is a legal person such as a corporation, and
 the end-user operating the client is acting as an agent of that

Hardjono Expires December 31, 2013 [Page 25]

Internet-Draft UMA Core June 2013

 legal person (for example, a customer support specialist
 representing a credit card company).

 For convenience, this specification refers to the end-user as a
 "requesting end-user" to cover both cases, which differ only at the
 level of business agreements (and potentially law), rather than
 technology. The authorization server has a variety of options at
 this point for satisfying the resource owner's policy; this
 specification does not dictate a single answer. For example, the
 authorization server could require the requesting end-user to
 register for and/or log in to a local authorization server account,
 or fill in a questionnaire, or complete a purchase. It could even
 require several of these operations, where the order is treated as
 significant for evaluating resource owner policies. A variety of
 claim profiling can be defined to achieve these effects.

 An end-user-driven client MUST redirect the requesting end-user to
 the authorization server in order to continue the process of seeking
 authorization, including a URI query parameter with the name "ticket"
 whose value conveys the permission ticket for which the need_claims
 error was received; for example, "ticket=016f84e8-f9b9-11e0-bd6f-
 0021cc6004de".

 Each claim profile MUST provide the following capabilities:

 redirect URI A means by which the client MUST supply the URI to
 which the authorization server MUST redirect the requesting end-
 user at the end of the claims-gathering process.

 callback URI A means by which the client OPTIONALLY supplies a
 callback URI for the authorization server to use.

 state A means by which the client SHOULD supply an opaque value used
 to maintain state between the request and the callback; this
 serves as a protection against XSRF attacks.

3.5.1.1. OpenID Connect Claim Profile

 This section defines the OpenID Connect claim profile for UMA.
 Following is a summary:

 o Identifying URI: http://docs.kantarainitiative.org/uma/profiles/
uma-claim-openid-1.0

 o Profile author and contact information: Thomas Hardjono
 (hardjono@mit.edu)

 o Updates or obsoletes: None; this profile is new.

http://docs.kantarainitiative.org/uma/profiles/uma-claim-openid-1.0
http://docs.kantarainitiative.org/uma/profiles/uma-claim-openid-1.0

Hardjono Expires December 31, 2013 [Page 26]

Internet-Draft UMA Core June 2013

 o Syntax and semantics of claim data: As defined below. The claim
 data format leverages the OpenID Connect protocol and the reserved
 claims defined in that specification.

 o Claims gathering method: As defined below.

 o Error states: None additional.

 o Security and privacy considerations: None additional.

 o Binding obligations: Binding obligations that apply to the use of
 this claim profile are documented in [UMA-obligations].

 If an authorization server supports the OpenID Connect claim profile,
 it MUST supply the "openid" value for one of its
 "claim_profiles_supported" values in its configuration data.

 To conform to this option, the authorization server MUST do the
 following:

 o Serve as a conforming OpenID Relying Party and Claims Client
 according to [OCStandard]

 o Be able to utilize at least all of the reserved claims defined in
 [OCMessages] in evaluating policy and adding authorization data to
 RPTs

 o Use the OpenID Connect "redirect_uri" and "state" request
 parameters as appropriate

 The authorization server can then use any conforming OpenID Connect
 mechanisms and typical user interfaces for engaging with the UserInfo
 endpoints of OpenID Providers and Claims Providers, potentially
 allowing for the delivery of "trusted claims" (such as a verified
 email address or a date or birth) on which authorization policy for
 access may depend.

4. Error Messages

Hardjono Expires December 31, 2013 [Page 27]

Internet-Draft UMA Core June 2013

 Ultimately the resource server is responsible for either granting the
 access the client attempted, or returning an error response to the
 client with a reason for the failure. [OAuth2] defines several error
 responses for a resource server to return. UMA makes use of these
 error responses, but requires the resource server to "outsource" the
 determination of some error conditions to the authorization server.
 This specification defines additional UMA-specific error responses
 that the authorization server may give to the resource server and
 client as they interact with it, and that the resource server may
 give to the client.

4.1. OAuth Error Responses

 When a resource server or client attempts to access one of the
 authorization server endpoints or a client attempts to access a
 protected resource at the resource server, it has to make an
 authenticated request by including an OAuth access token in the HTTP
 request as described in [OAuth2] Section 7.2.

 If the request failed authentication, the authorization server or the
 resource server responds with an OAuth error message as described
 throughout Section 2 and Section 3.

4.2. UMA Error Responses

 When a resource server or client attempts to access one of the
 authorization server endpoints or a client attempts to access a
 protected resource at the resource server, if the request is
 successfully authenticated by OAuth means, but is invalid for another
 reason, the authorization server or resource server responds with an
 UMA error response by adding the following properties to the entity
 body of the HTTP response:

 error REQUIRED. A single error code. Values for this property are
 defined throughout this specification.

 error_description OPTIONAL. Human-readable text providing
 additional information.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error.

 The following is a common error code that applies to several UMA-
 specified request messages:

Hardjono Expires December 31, 2013 [Page 28]

Internet-Draft UMA Core June 2013

 invalid_request The request is missing a required parameter,
 includes an invalid parameter value, includes a parameter more
 than once, or is otherwise malformed. The authorization server
 MUST respond with the HTTP 400 (Bad Request) status code.

 For example:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 ...

 {
 "status": "error",
 "error": "invalid_request",
 "error_description": "There is already a resource with this identifier.",
 "error_uri": "http://as.example.com/errors/resource_exists"
 }

5. Specificying Additional Profiles

 This specification defines a protocol that has optional features.
 For interoperability and to serve particular deployment scenarios,
 including sector-specific ones such as healthcare or e-government,
 third parties may want to define profiles of UMA that restrict these
 options.

 Further, this specification creates extensibility points for RPT
 profiles and claim profiles, and third parties may likewise want to
 define their own. Different RPT profile could be used, for example,
 to change the dividing line between authorization server and resource
 server responsibilities in controlling access. Different claim
 profiles could be used to customize sector-specific or population-
 specific (individual vs. employee) claim types that drive the types
 of policies resource owners could set.

 It is not practical for this specification to standardize all desired
 profiles. However, to serve overall interoperability goals, the
 following sections provide guidelines for third parties that wish to
 specify UMA-related profiles.

5.1. Specifying Profiles of UMA

 It is RECOMMENDED that profiles of UMA document the following
 information:

 1. Specify a URI that uniquely identifies the profile.

Hardjono Expires December 31, 2013 [Page 29]

Internet-Draft UMA Core June 2013

 2. Identify the responsible author and provide postal or electronic
 contact information.

 3. Supply references to previously defined profiles that the profile
 updates or obsoletes.

 4. Specify the set of interactions between endpoint entites involved
 in the profile, calling out any restrictions on ordinary UMA-
 conformant operations and any extension properties used in
 message formats.

 5. Identify the legally responsible parties involved in each
 interaction and any new obligations imposed, in the fashion of
 [UMA-obligations].

 6. Define any additional or changed error states.

 7. Supply any additional security and privacy considerations,
 including analysis of threats and description of countermeasures.

5.2. Specifying RPT Profiles

 It is RECOMMENDED that RPT profiles document the following
 information:

 1. Specify a URI that uniquely identifies the token profile.

 2. Identify the responsible author and provide postal or electronic
 contact information.

 3. Supply references to previously defined token profiles that the
 token profile updates or obsoletes.

 4. Specify the keyword to be used in HTTP Authorization headers
 with tokens conforming to this profile.

 5. Specify the syntax and semantics of the data that the
 authorization server associates with the token.

 6. Specify how the token data is associated with, contained within,
 and/or retrieved by means of, the on-the-wire token string.

 7. Specify processing rules for token data.

 8. Identify any restrictions on grant types to be used with the
 token profile.

 9. Define any additional or changed error states.

Hardjono Expires December 31, 2013 [Page 30]

Internet-Draft UMA Core June 2013

 10. Supply any additional security and privacy considerations.

 11. Specify any obligations specific to the token profile, in the
 fashion of [UMA-obligations].

 See Section 3.3.2 for an example.

5.3. Specifying Claim Profiles

 It is RECOMMENDED that claim profiles document the following
 information:

 1. Specify a URI that uniquely identifies the claim profile.

 2. Identify the responsible author and provide postal or electronic
 contact information.

 3. Supply references to previously defined claim profiles that the
 claim profile updates or obsoletes.

 4. Specify the syntax and semantics of claim data and requests for
 claim data.

 5. Specify how an authorization server gathers the claims.

 6. Define any additional or changed error states.

 7. Supply any additional security and privacy considerations.

 8. Specify any obligations specific to the claim profile, in the
 fashion of [UMA-obligations].

 See Section 3.5.1.1 for an example.

6. Security Considerations

 This specification relies mainly on OAuth security mechanisms as well
 as transport-level encryption for protecting the protection and
 authorization API endpoints. Most PATs and AATs are likely to use
 OAuth bearer tokens. See [OAuth-threat] for more information.

 This specification defines a number of JSON-based data formats. As a
 subset of the JavaScript scripting language, JSON data SHOULD be
 consumed through a process that does not dynamically execute it as
 code, to avoid malicious code execution. One way to achieve this is
 to use a JavaScript interpreter rather than the built-in JavaScript
 eval() function.

Hardjono Expires December 31, 2013 [Page 31]

Internet-Draft UMA Core June 2013

 The issue of impersonation is a crucial aspect in UMA, particularly
 when entities are wielding bearer tokens that preclude proof-of-
 possession (of a secret or a cryptographic key). As such, one way to
 mitigate this risk is for the resource owner to require stronger
 claims to accompany any access request. For example, consider the
 case where Alice sets policies at the authorization server governing
 access to her resources by Bob. When Bob first seeks access and must
 obtain an RPT (for which the default RPT profile specifies a bearer
 token), Alice could set policies demanding that Bob prove his
 identity by providing a set of strong claims issued by a trusted
 attrribute provider in order to get authorization data associated
 with that token.

 Another issue concerns the use of the [OAuth2] implicit flow. In
 this case, Bob will have exposure to the token, and may maliciously
 pass the token to an unauthorized party. To mitigate this weakness
 and others, we recommend considering the following steps:

 o Require that the Requesting Party (as defined in
 [UMA-obligations]) legitimately represent the wielder of the
 bearer token. This solution is based on a legal or contractual
 approach, and therefore does not reduce the risk from the
 technical perspective.

 o The authorization server, possibly with input from the resource
 owner, can implement tighter time-to-live (TTL) strategies around
 the authorization data in RPTs. This is a classic approach with
 bearer tokens that helps to limit a malicious party's ability to
 intercept and use the bearer token. In the same vein, the
 authorization server could require claims to have a reasonable
 degree of freshness (which would require a custom claims profile).

 o The strongest strategy is to disallow bearer-type RPTs within the
 UMA profile being deployed, by providing or requiring an RPT
 profile that requires use of a holder-of-key (HOK) approach. In
 this way, the wielder of the token must engage in a live session
 for proof-of-possession.

 For information about the additional technical, operational, and
 legal elements of trust establishment between UMA entities and
 parties, which affects security considerations, see
 [UMA-obligations].

Hardjono Expires December 31, 2013 [Page 32]

Internet-Draft UMA Core June 2013

7. Privacy Considerations

 The authorization server comes to be in possession of resource set
 information (such as names and icons) that may reveal information
 about the resource owner, which the authorization server's trust
 relationship with the resource server is assumed to accommodate.
 However, the client is a less-trusted party -- in fact, entirely
 untrustworthy until authorization data is associated with its RPT.
 This specification depends on [OAuth-resource-reg], which recommends
 obscuring resource set identifiers in order to avoid leaking
 personally identifiable information to clients through the scope
 mechanism.

 (More privacy considerations information to come.)

 For information about the technical, operational, and legal elements
 of trust establishment between UMA entities and parties, which
 affects privacy considerations, see [UMA-obligations].

8. Conformance

 This section outlines conformance requirements for various entities
 implementing UMA endpoints.

 This specification has dependencies on other specifications, as
 referenced under the normative references listed in this
 specification. Its dependencies on some specifications, such as
 OpenID Connect ([OCStandard] and [OCMessages]), are optional
 depending on whether the feature in question is used in the
 implementation.

 The authorization server's configuration data provides a machine-
 readable method for it to indicate certain of the conformance options
 it has chosen or supports. Several of the configuration data
 properties allow for indicating extension features. Where this
 specification does not already require optional features to be
 documented, it is RECOMMENDED that authorization server developers
 and deployers document any profiled or extended features explicitly
 and use configuration data to indicate their usage. See Section 1.4
 for information about providing and extending the configuration data.

9. IANA Considerations

 This document makes no request of IANA.

10. Acknowledgments

Hardjono Expires December 31, 2013 [Page 33]

Internet-Draft UMA Core June 2013

 The current editor of this specification is Thomas Hardjono of MIT.
 The following people are co-authors:

 o Paul C. Bryan, ForgeRock US, Inc. (former editor)

 o Domenico Catalano, Oracle Corp.

 o George Fletcher, AOL

 o Maciej Machulak, Newcastle University

 o Eve Maler, XMLgrrl.com

 o Lukasz Moren, Newcastle University

 o Christian Scholz, COMlounge GmbH (former editor)

 o Jacek Szpot, Newcastle University

 Additional contributors to this specification include the Kantara UMA
 Work Group participants, a list of whom can be found at
 [UMAnitarians].

11. Issues

 All issues are now captured at the project's GitHub site ([1]).

12. References

12.1. Normative References

 [DynClientReg]
 Richer, J., "OAuth Dynamic Client Registration Protocol",
 March 2013, <https://datatracker.ietf.org/doc/draft-ietf-

oauth-dyn-reg/>.

 [OAuth-SAML]
 Campbell, B., "SAML 2.0 Bearer Assertion Profiles for
 OAuth 2.0", March 2013, <http://tools.ietf.org/html/draft-

ietf-oauth-saml2-bearer>.

 [OAuth-bearer]
 , "The OAuth 2.0 Authorization Framework: Bearer Token
 Usage", October 2012,
 <http://tools.ietf.org/html/rfc6750>.

 [OAuth-introspection]

https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg/
https://datatracker.ietf.org/doc/draft-ietf-oauth-dyn-reg/
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
http://tools.ietf.org/html/draft-ietf-oauth-saml2-bearer
http://tools.ietf.org/html/rfc6750

Hardjono Expires December 31, 2013 [Page 34]

Internet-Draft UMA Core June 2013

 Richer, J., "OAuth Token Introspection", February 2013,
 <http://tools.ietf.org/html/draft-richer-oauth-

introspection>.

 [OAuth-resource-reg]
 Hardjono, T., "OAuth 2.0 Resource Set Registration",
 December 2012, <https://tools.ietf.org/html/draft-

hardjono-oauth-resource-reg>.

 [OAuth-threat]
 Lodderstedt, T., "OAuth 2.0 Threat Model and Security
 Considerations", January 2013,
 <http://tools.ietf.org/html/rfc6819>.

 [OAuth2] Hardt, D., "The OAuth 2.0 Authorization Framework",
 October 2012, <http://tools.ietf.org/html/rfc6749>.

 [OCMessages]
 Sakimura, N., "OpenID Connect Messages 1.0", March 2013,
 <http://openid.net/specs/openid-connect-messages-

1_0.html>.

 [OCStandard]
 Sakimura, N., "OpenID Connect Standard 1.0", March 2013,
 <http://openid.net/specs/openid-connect-standard-

1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [UMA-obligations]
 Maler, E., "Binding Obligations on UMA Participants",
 January 2013, <http://kantarainitiative.org/confluence/
 display/uma/UMA+Trust+Model>.

 [hostmeta]
 Hammer-Lahav, E., "Web Host Metadata", October 2011,
 <http://tools.ietf.org/html/rfc6415>.

12.2. Informative References

 [OAuth-linktypes]
 Mills, W., "Link Type Registrations for OAuth 2", February
 2013,
 <http://tools.ietf.org/html/draft-wmills-oauth-lrdd>.

http://tools.ietf.org/html/draft-richer-oauth-introspection
http://tools.ietf.org/html/draft-richer-oauth-introspection
https://tools.ietf.org/html/draft-hardjono-oauth-resource-reg
https://tools.ietf.org/html/draft-hardjono-oauth-resource-reg
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/specs/openid-connect-messages-1_0.html
http://openid.net/specs/openid-connect-standard-1_0.html
http://openid.net/specs/openid-connect-standard-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
http://kantarainitiative.org/confluence/
http://tools.ietf.org/html/rfc6415
http://tools.ietf.org/html/draft-wmills-oauth-lrdd

Hardjono Expires December 31, 2013 [Page 35]

Internet-Draft UMA Core June 2013

 [OAuth-meta]
 Sakimura, N., "JSON Metadata for OAuth Responses",
 February 2013,
 <http://tools.ietf.org/html/draft-sakimura-oauth-meta>.

 [UMA-casestudies]
 Maler, E., "UMA Case Studies", March 2013, <http://
 kantarainitiative.org/confluence/display/uma/
 Case+Studies>.

 [UMA-usecases]
 Maler, E., "UMA Scenarios and Use Cases", October 2010,
 <http://kantarainitiative.org/confluence/display/uma/
 UMA+Scenarios+and+Use+Cases>.

 [UMAnitarians]
 Maler, E., "UMA Participant Roster", April 2013, <http://
 kantarainitiative.org/confluence/display/uma/
 Participant+Roster>.

Appendix A. Document History

 NOTE: To be removed by RFC editor before publication as an RFC.

 See [2] for a list of code-breaking and other major changes made to
 this specification at various revision points.

Author's Address

 Thomas Hardjono (editor)
 MIT

 Email: hardjono@mit.edu

http://tools.ietf.org/html/draft-sakimura-oauth-meta
http://kantarainitiative.org/confluence/display/uma/

Hardjono Expires December 31, 2013 [Page 36]

