
Network Working Group T. Hardjono, Ed.
Internet-Draft MIT
Intended status: Standards Track E. Maler
Expires: October 6, 2015 ForgeRock
 M. Machulak
 Cloud Identity
 D. Catalano
 Oracle
 April 4, 2015

User-Managed Access (UMA) Profile of OAuth 2.0
draft-hardjono-oauth-umacore-13

Abstract

 User-Managed Access (UMA) is a profile of OAuth 2.0. UMA defines how
 resource owners can control protected-resource access by clients
 operated by arbitrary requesting parties, where the resources reside
 on any number of resource servers, and where a centralized
 authorization server governs access based on resource owner policies.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 6, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Hardjono, et al. Expires October 6, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft UMA Core April 2015

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 6
1.2. Terminology . 6
1.3. Achieving Distributed Access Control 8
1.3.1. Protection API 8
1.3.2. Authorization API 9
1.3.3. Protected Resource Interface 10
1.3.4. Time-to-Live Considerations 11

1.4. Authorization Server Configuration Data 11
2. Protecting a Resource . 15
3. Getting Authorization and Accessing a Resource 16
3.1. Client Attempts to Access Protected Resource 17
3.1.1. Client Presents No RPT 17
3.1.2. Client Presents RPT 18

 3.2. Resource Server Registers Requested Permission With
 Authorization Server 19

3.3. Resource Server Determines RPT's Status 21
3.3.1. Token Introspection 22
3.3.2. RPT Profile: Bearer 22

3.4. Client Seeks Authorization for Access 24
3.4.1. Client Requests Authorization Data 24
3.4.1.1. Authentication Context Flows 28
3.4.1.2. Claims-Gathering Flows 28

4. Error Messages . 33
4.1. OAuth Error Responses 33
4.2. UMA Error Responses 34

5. Profiles for API Extensibility 35
5.1. Protection API Extensibility Profile 35
5.2. Authorization API Extensibility Profile 36
5.3. Resource Interface Extensibility Profile 37

6. Specifying Additional Profiles 39
6.1. Specifying Profiles of UMA 39
6.2. Specifying RPT Profiles 40
6.3. Specifying Claim Token Format Profiles 40

7. Compatibility Notes . 40
8. Security Considerations 41
8.1. Redirection and Impersonation Threats 41
8.2. Client Authentication 42
8.3. JSON Usage . 43

 8.4. Profiles, Binding Obligations, and Trust Establishment . 44

Hardjono, et al. Expires October 6, 2015 [Page 2]

Internet-Draft UMA Core April 2015

9. Privacy Considerations 44
10. IANA Considerations . 44
10.1. JSON Web Token Claims Registration 45
10.1.1. Registry Contents 45

10.2. Well-Known URI Registration 45
10.2.1. Registry Contents 45

11. Acknowledgments . 45
12. References . 46
12.1. Normative References 46
12.2. Informative References 47

 Authors' Addresses . 48

1. Introduction

 User-Managed Access (UMA) is a profile of OAuth 2.0 [OAuth2]. UMA
 defines how resource owners can control protected-resource access by
 clients operated by arbitrary requesting parties, where the resources
 reside on any number of resource servers, and where a centralized
 authorization server governs access based on resource owner policies.
 Resource owners configure authorization servers with access policies
 that serve as asynchronous authorization grants.

 UMA serves numerous use cases where a resource owner uses a dedicated
 service to manage authorization for access to their resources,
 potentially even without the run-time presence of the resource owner.
 A typical example is the following: a web user (an end-user resource
 owner) can authorize a web or native app (a client) to gain one-time
 or ongoing access to a protected resource containing his home address
 stored at a "personal data store" service (a resource server), by
 telling the resource server to respect access entitlements issued by
 his chosen cloud-based authorization service (an authorization
 server). The requesting party operating the client might be the
 resource owner, where the app is run by an e-commerce company that
 needs to know where to ship a purchased item, or the requesting party
 might be resource owner's friend who is using an online address book
 service to collect contact information, or the requesting party might
 be a survey company that uses an autonomous web service to compile
 population demographics. A variety of use cases can be found in
 [UMA-usecases] and [UMA-casestudies].

 Practical control of access among loosely coupled parties requires
 more than just messaging protocols. This specification defines only
 the "technical contract" between UMA-conforming entities; a companion
 specification, [UMA-obligations], additionally discusses expected
 behaviors of parties operating and using these entities. Parties
 operating entities that claim to be UMA-conforming should provide
 documentation of any rights and obligations between and among them,

Hardjono, et al. Expires October 6, 2015 [Page 3]

Internet-Draft UMA Core April 2015

 especially as they pertain the concepts and clauses discussed in this
 companion specification.

 In enterprise settings, application access management sometimes
 involves letting back-office applications serve only as policy
 enforcement points (PEPs), depending entirely on access decisions
 coming from a central policy decision point (PDP) to govern the
 access they give to requesters. This separation eases auditing and
 allows policy administration to scale in several dimensions. UMA
 makes use of a separation similar to this, letting the resource owner
 serve as a policy administrator crafting authorization strategies for
 resources under their control.

 In order to increase interoperable communication among the
 authorization server, resource server, and client, UMA defines two
 purpose-built APIs related to the outsourcing of authorization,
 themselves protected by OAuth (or an OAuth-based authentication
 protocol) in embedded fashion.

 The UMA protocol has three broad phases, as shown in Figure 1.

Hardjono, et al. Expires October 6, 2015 [Page 4]

Internet-Draft UMA Core April 2015

 The Three Phases of the UMA Profile of OAuth

 +--------------+
 | resource |
 +---------manage (A)------------ | owner |
 | +--------------+
 | Phase 1: |
 | protect a control (C)
 | resource |
 v v
 +------------+ +----------+--------------+
 | | |protection| |
 | resource | | API | authorization|
 | server |<-protect (B)--| (needs | server |
 | | | PAT) | |
 +------------+ +----------+--------------+
 | protected | | authorization|
 | resource | | API |
 |(needs RPT) | | (needs AAT) |
 +------------+ +--------------+
 ^ |
 | Phases 2 and 3: authorize (D)
 | get authorization, |
 | access a resource v
 | +--------------+
 +---------access (E)-------------| client |
 +--------------+

 requesting party

 Figure 1

 The phases work as follows:

 Protect a resource (Described in Section 2.) The resource owner,
 who manages online resources at the resource server ("A"),
 introduces it to the authorization server so that the latter can
 begin protecting the resources. To accomplish this, the
 authorization server presents a protection API ("B") to the
 resource server. This API is protected by OAuth (or an OAuth-
 based authentication protocol) and requires a protection API token
 (PAT) for access. Out of band, the resource owner configures the
 authorization server with policies associated with the resource
 sets ("C") that the resource registers for protection.

 Get authorization (Described in Section 3.) The client approaches
 the resource server seeking access to an UMA-protected resource.
 In order to access it successfully, the client must first use the

Hardjono, et al. Expires October 6, 2015 [Page 5]

Internet-Draft UMA Core April 2015

 authorization server's authorization API ("D") to obtain
 authorization data and a requesting party token (RPT) on behalf of
 its requesting party, and the requesting party may need to supply
 identity claims. The API is protected by OAuth (or an OAuth-based
 authentication protocol) and requires an authorization API token
 (AAT) for access.

 Access a resource (Described in Section 3.) The client successfully
 presents to the resource server an RPT that has sufficient
 authorization data associated with it, gaining access to the
 desired resource ("E"). Phase 3 is effectively the "success path"
 embedded within phase 2.

 Implementers have the opportunity to develop profiles (see Section 6)
 that specify and restrict various UMA protocol, RPT, and identity
 claim format options, according to deployment and usage conditions.

1.1. Notational Conventions

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT',
 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'MAY', and 'OPTIONAL' in this
 document are to be interpreted as described in [RFC2119].

 Unless otherwise noted, all protocol properties and values are case
 sensitive. JSON [JSON] data structures defined by this specification
 MAY contain extension properties that are not defined in this
 specification. Any entity receiving or retrieving a JSON data
 structure SHOULD ignore extension properties it is unable to
 understand. Extension names that are unprotected from collisions are
 outside the scope of this specification.

1.2. Terminology

 UMA introduces the following new terms and enhancements of OAuth term
 definitions.

 resource owner
 An OAuth resource owner that is the "user" in User-Managed
 Access. This is typically an end-user (a natural person) but
 it can also be a corporation or other legal person.

 policy The configuration parameters of an authorization server that
 effect resource access management. Authorization policies
 typically include elements similar to parts of speech; for
 example, "subjects" describe those seeking access (requesting
 parties and clients), "verbs" describe operational scopes of
 access, and "objects" describe targeted resource sets. Policy

https://datatracker.ietf.org/doc/html/rfc2119

Hardjono, et al. Expires October 6, 2015 [Page 6]

Internet-Draft UMA Core April 2015

 configuration takes place between the resource owner and the
 authorization server, and thus is out of band of UMA.

 requesting party
 An end-user, or a corporation or other legal person, that uses
 a client to seek access to a protected resource. The
 requesting party may or may not be the same party as the
 resource owner.

 client
 An application making protected resource requests with the
 resource owner's authorization and on the requesting party's
 behalf.

 claim
 A statement of the value or values of one or more identity
 attributes of a requesting party. A requesting party may need
 to provide claims to an authorization server in order to gain
 permission for access to a protected resource.

 resource set One or more protected resources that a resource server
 manages as a set, abstractly. In authorization policy
 terminology, a resource set is the "object" being protected.
 This term derives from [OAuth-resource-reg].

 scope A bounded extent of access that is possible to perform on a
 resource set. In authorization policy terminology, a scope is
 one of the potentially many "verbs" that can logically apply to
 a resource set ("object"). UMA associates scopes with labeled
 resource sets.

 authorization data Data associated with an RPT that enables some
 combination of the authorization server and resource server to
 determine the correct extent of access to allow to a client.
 Authorization data is a key part of the definition of an RPT
 profile.

 authorization server
 A server that issues authorization data and RPTs to a client
 and protects resources managed at a resource server.

 permission A scope of access over a particular resource set at a
 particular resource server that is being requested by, or
 granted to, a requesting party. In authorization policy
 terminology, a permission is an entitlement that includes a
 "subject" (requesting party), "verbs" (one or more scopes of
 access), and an "object" (resource set). A permission is one

Hardjono, et al. Expires October 6, 2015 [Page 7]

Internet-Draft UMA Core April 2015

 example of authorization data that an authorization server may
 add to a requesting party token.

 permission ticket A correlation handle that is conveyed from an
 authorization server to a resource server, from a resource
 server to a client, and ultimately from a client back to an
 authorization server, to enable the authorization server to
 assess the correct policies to apply to a request for
 authorization data.

 token A packaged collection of data meant to be transmitted to
 another entity. A token could be used for authorized access
 (an "access token" such as an UMA RPT, PAT, or AAT), or could
 be used to exchange information about a subject (a "claim
 token" such as one that is conveyed by a client to an
 authorization server while seeking authorization data).

1.3. Achieving Distributed Access Control

 The software components that fill the roles of UMA authorization
 servers, resource servers, and clients respectively are intended to
 work in an interoperable fashion when each is operated by an
 independent party (for example, different organizations). For this
 reason, UMA specifies communications channels that the authorization
 server MUST implement as HTTP-based APIs that MUST use TLS and OAuth
 (or OAuth-based authentication protocol) protection, and that the
 resource server MUST implement as an HTTP-based interface. UMA's use
 of TLS is governed by Section 1.6 of [OAuth2], which discusses
 deployment and adoption characteristics of different TLS versions.

 For those OAuth protection use cases where an identity token is
 desired in addition to an access token, it is RECOMMENDED that an
 OAuth-based authentication protocol such as OpenID Connect be used.

 It is also REQUIRED, in turn, for resource servers and clients on the
 requesting side of UMA interactions to use these channels, unless a
 profile is being used that enables API extensibility. The profiles
 that enable such alternatives are provided in Section 5.

1.3.1. Protection API

 The authorization server MUST present an HTTP-based protection API,
 protected by TLS and OAuth (or an OAuth-based authentication
 protocol), for use by resource servers. The authorization server
 thus has an OAuth token endpoint and authorization endpoint. The
 authorization server MUST declare all of its protection API endpoints
 in its configuration data (see Section 1.4).

Hardjono, et al. Expires October 6, 2015 [Page 8]

Internet-Draft UMA Core April 2015

 The protection API consists of three endpoints:

 o Resource set registration endpoint as defined by
 [OAuth-resource-reg]

 o Permission registration endpoint as defined by Section 3.2

 o Token introspection endpoint as defined by [OAuth-introspection]
 and Section 3.3.1

 An entity seeking protection API access MUST have the scope
 "uma_protection". An access token with at least this scope is called
 a protection API token (PAT) and an entity that can acquire an access
 token with this scope is by definition a resource server. A single
 entity can serve in both resource server and client roles if it has
 access tokens with the appropriate OAuth scopes. If a request to an
 endpoint fails due to an invalid, missing, or expired PAT, or
 requires higher privileges at this endpoint than provided by the PAT,
 the authorization server responds with an OAuth error.

 The authorization server MUST support the OAuth bearer token profile
 for PAT issuance, and MAY support other OAuth token profiles. It
 MUST declare all supported token profiles and grant types for PAT
 issuance in its configuration data. Any OAuth authorization grant
 type might be appropriate depending on circumstances; for example,
 the client credentials grant is useful in the case of an organization
 acting as a resource owner. [UMA-Impl] discusses grant options
 further.

 A PAT binds a resource owner, a resource server the owner uses for
 resource management, and an authorization server the owner uses for
 protection of resources at this resource server. It is not specific
 to any client or requesting party. The issuance of a PAT represents
 the approval of the resource owner for this resource server to use
 this authorization server for protecting some or all of the resources
 belonging to this resource owner.

1.3.2. Authorization API

 The authorization server MUST present an HTTP-based authorization
 API, protected by TLS and OAuth (or an OAuth-based authentication
 protocol), for use by clients. The authorization server thus has an
 OAuth token endpoint and authorization endpoint. The authorization
 server MUST declare its authorization API endpoint in its
 configuration data (see Section 1.4).

 The authorization API consists of one endpoint:

Hardjono, et al. Expires October 6, 2015 [Page 9]

Internet-Draft UMA Core April 2015

 o RPT endpoint as defined in Section 3.4.1

 An entity seeking authorization API access MUST have the scope
 "uma_authorization". An access token with at least this scope is
 called an authorization API token (AAT) and an entity that can
 acquire an access token with this scope is by definition a client. A
 single entity can serve in both resource server and client roles if
 it has access tokens with the appropriate OAuth scopes. If a request
 to an endpoint fails due to an invalid, missing, or expired AAT, or
 requires higher privileges at this endpoint than provided by the AAT,
 the authorization server responds with an OAuth error.

 The authorization server MUST support the OAuth bearer token profile
 for AAT issuance, and MAY support other OAuth token profiles. It
 MUST declare all supported token profiles and grant types for AAT
 issuance in its configuration data. Any OAuth authorization grant
 type might be appropriate depending on circumstances; for example,
 the client credentials grant is useful in the case of an organization
 acting as a requesting party. [UMA-Impl] discusses grant options
 further.

 An AAT binds a requesting party, a client being used by that party,
 and an authorization server that protects resources this client is
 seeking access to on this requesting party's behalf. It is not
 specific to any resource server or resource owner. The issuance of
 an AAT represents the approval of this requesting party for this
 client to engage with this authorization server to supply claims, ask
 for authorization, and perform any other tasks needed for obtaining
 authorization for access to resources at all resource servers that
 use this authorization server. The authorization server is able to
 manage future processes of authorization and claims-caching
 efficiently for this client/requesting party pair across all resource
 servers they try to access; however, these management processes are
 outside the scope of this specification.

1.3.3. Protected Resource Interface

 The resource server MAY present to clients whatever HTTP-based APIs
 or endpoints it wishes. To protect any of its resources available in
 this fashion using UMA, it MUST require a requesting party token
 (RPT) with sufficient authorization data for access.

 This specification defines one RPT profile, call "bearer" (see
Section 3.3.2), which the authorization server MUST support. It MAY

 support additional RPT profiles, and MUST declare all supported RPT
 profiles in its configuration data (see Section 1.4).

Hardjono, et al. Expires October 6, 2015 [Page 10]

Internet-Draft UMA Core April 2015

 An RPT binds a requesting party, the client being used by that party,
 the resource server at which protected resources of interest reside,
 and the authorization server that protects those resources. It is
 not specific to a single resource owner, though its internal
 components are likely to be bound in practice to individual resource
 owners, depending on the RPT profile in use.

1.3.4. Time-to-Live Considerations

 The authorization server has the opportunity to manage the validity
 periods of access tokens that it issues, their corresponding refresh
 tokens where applicable, the individual authorization data components
 associated with RPTs where applicable, and even the client
 credentials that it issues. Different time-to-live strategies may be
 suitable for different resource sets and scopes of access, and the
 authorization server has the opportunity to give the resource owner
 control over lifetimes of tokens and authorization data issued on
 their behalf through policy. These options are all outside the scope
 of this specification.

1.4. Authorization Server Configuration Data

 The authorization server MUST provide configuration data in a JSON
 document that resides in an /uma-configuration directory at its host-
 meta [hostmeta] location. The configuration data documents
 conformance options and endpoints supported by the authorization
 server.

 The configuration data has the following properties.

 version
 REQUIRED. The version of the UMA core protocol to which this
 authorization server conforms. The value MUST be the string
 "1.0".

 issuer
 REQUIRED. A URI with no query or fragment component that the
 authorization server asserts as its issuer identifier. This
 value MUST be identical to the web location of the
 configuration data minus the host-meta [hostmeta] and /uma-
 configuration path components

 pat_profiles_supported
 REQUIRED. OAuth access token types supported by this
 authorization server for PAT issuance. The property value is
 an array of string values, where each string value (which MAY
 be a URI) is a token type. Non-URI token type strings defined
 by OAuth token-defining specifications are privileged. For

Hardjono, et al. Expires October 6, 2015 [Page 11]

Internet-Draft UMA Core April 2015

 example, the type "bearer" stands for the OAuth bearer token
 type defined in [OAuth-bearer]. The authorization server is
 REQUIRED to support "bearer", and to supply this value
 explicitly. The authorization server MAY declare its support
 for additional PAT profiles.

 aat_profiles_supported
 REQUIRED. OAuth access token types supported by this
 authorization server for AAT issuance. The property value is
 an array of string values, where each string value (which MAY
 be a URI) is a token type. Non-URI token type strings defined
 by OAuth token-defining specifications are privileged. For
 example, the type "bearer" stands for the OAuth bearer token
 type defined in [OAuth-bearer]. The authorization server is
 REQUIRED to support "bearer", and to supply this value
 explicitly. The authorization server MAY declare its support
 for additional AAT profiles.

 rpt_profiles_supported
 REQUIRED. Profiles supported by this authorization server for
 RPT issuance. The property value is an array of string values,
 where each string value is a URI identifying an RPT profile.
 The authorization server is REQUIRED to support the "bearer"
 RPT profile defined in Section 3.3.2, and to supply its
 identifying URI explicitly. The authorization server MAY
 declare its support for additional RPT profiles.

 pat_grant_types_supported
 REQUIRED. OAuth grant types supported by this authorization
 server in issuing PATs. The property value is an array of
 string values, where each string value (which MAY be a URI) is
 a grant type. Non-URI token type strings defined by OAuth
 grant type-defining specifications are privileged. For
 example, the type "authorization_code" stands for the OAuth
 authorization code grant type defined in [OAuth2].

 aat_grant_types_supported
 REQUIRED. OAuth grant types supported by this authorization
 server in issuing AATs. The property value is an array of
 string values, where each string value (which MAY be a URI) is
 a grant type. Non-URI token type strings defined by OAuth
 grant type-defining specifications are privileged. For
 example, the type "authorization_code" stands for the OAuth
 authorization code grant type defined in [OAuth2].

 claim_token_profiles_supported

Hardjono, et al. Expires October 6, 2015 [Page 12]

Internet-Draft UMA Core April 2015

 OPTIONAL. Claim token format profiles supported by this
 authorization server. The property value is an array of string
 values, where each string value MAY be a URI.

 uma_profiles_supported
 OPTIONAL. UMA profiles supported by this authorization server.
 The property value is an array of string values, where each
 string value is a URI identifying an UMA profile. Examples of
 UMA profiles are the API extensibility profiles defined in

Section 5.

 dynamic_client_endpoint
 OPTIONAL. The endpoint to use for performing dynamic client
 registration in the case of the use of [DynClientReg], or
 alternatively the reserved string "openid" in the case of the
 use of [OIDCDynClientReg]. In the latter case, it is presumed
 that the resource server or client will discover the dynamic
 client registration endpoint from the authorization server's
 published OpenID Provider Configuration Information. The
 presence of this property indicates authorization server
 support for dynamic client registration feature; its absence
 indicates a lack of support.

 token_endpoint
 REQUIRED. The endpoint URI at which the resource server or
 client asks the authorization server for a PAT or AAT. A
 requested scope of "uma_protection" results in a PAT. A
 requested scope of "uma_authorization" results in an AAT.
 Usage of this endpoint is defined by [OAuth2].

 authorization_endpoint
 REQUIRED. The endpoint URI at which the resource server
 gathers the consent of the end-user resource owner or the
 client gathers the consent of the end-user requesting party for
 issuance of a PAT or AAT respectively, if the
 "authorization_code" grant type is used. Usage of this
 endpoint is defined by [OAuth2].

 requesting_party_claims_endpoint
 OPTIONAL. The endpoint URI at which the authorization server
 interacts with the end-user requesting party to gather claims.
 If this property is absent, the authorization server does not
 interact with the end-user requesting party for claims
 gathering.

 introspection_endpoint
 REQUIRED. The endpoint URI at which the resource server
 introspects an RPT presented to it by a client. Usage of this

Hardjono, et al. Expires October 6, 2015 [Page 13]

Internet-Draft UMA Core April 2015

 endpoint is defined by [OAuth-introspection] and Section 3.3.1.
 A valid PAT MUST accompany requests to this protected endpoint.

 resource_set_registration_endpoint
 REQUIRED. The endpoint URI at which the resource server
 registers resource sets to put them under authorization manager
 protection. Usage of this endpoint is defined by
 [OAuth-resource-reg] and Section 2. A valid PAT MUST accompany
 requests to this protected endpoint.

 permission_registration_endpoint
 REQUIRED. The endpoint URI at which the resource server
 registers a requested permission that would suffice for a
 client's access attempt. Usage of this endpoint is defined by

Section 3.2. A valid PAT MUST accompany requests to this
 protected endpoint.

 rpt_endpoint
 REQUIRED. The endpoint URI at which the client asks for
 authorization data. Usage of this endpoint is defined in

Section 3.4. A valid AAT and a permission ticket MUST, and an
 RPT MAY, accompany requests to this protected endpoint.

 Example of authorization server configuration data that resides at
 https://example.com/.well-known/uma-configuration (note the use of
 https: for endpoints throughout):

{
"version":"1.0",
"issuer":"https://example.com",
"pat_profiles_supported":["bearer"],
"aat_profiles_supported":["bearer"],
"rpt_profiles_supported":
["https://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0"],
"pat_grant_types_supported":["authorization_code"],
"aat_grant_types_supported":["authorization_code"],
"claim_token_profiles_supported":["https://example.com/claims/formats/token1"],
"dynamic_client_endpoint":"https://as.example.com/dyn_client_reg_uri",
"token_endpoint":"https://as.example.com/token_uri",
"authorization_endpoint":"https://as.example.com/authz_uri",
"requesting_party_claims_endpoint":"https://as.example.com/rqp_claims_uri",
"resource_set_registration_endpoint":"https://as.example.com/rs/rsrc_uri",
"introspection_endpoint":"https://as.example.com/rs/status_uri",
"permission_registration_endpoint":"https://as.example.com/rs/perm_uri",
"rpt_endpoint":"https://as.example.com/client/rpt_uri"
}

Hardjono, et al. Expires October 6, 2015 [Page 14]

Internet-Draft UMA Core April 2015

 Where this specification does not already require optional features
 to be documented, it is RECOMMENDED that authorization server
 deployers document any profiled or extended features explicitly and
 use configuration data to indicate their usage.

2. Protecting a Resource

 The resource owner, resource server, and authorization server perform
 the following actions to put resources under protection. This list
 assumes that the resource server has discovered the authorization
 server's configuration data and endpoints as needed.

 1. The authorization server issues client credentials to the
 resource server. It is OPTIONAL for the client credentials to be
 provided dynamically through [DynClientReg] or
 [OIDCDynClientReg]; alternatively, they MAY use a static process.

 2. The resource server acquires a PAT from the authorization server.
 It is OPTIONAL for the resource owner to introduce the resource
 server to the authorization server dynamically (for example,
 through a "NASCAR"-style user interface where the resource owner
 selects a chosen authorization server); alternatively, they MAY
 use a static process that may or may not directly involve the
 resource owner at introduction time.

 3. In an ongoing fashion, the resource server registers any resource
 sets with the authorization server for which it intends to
 outsource protection, using the resource set registration
 endpoint of the protection API (see [OAuth-resource-reg]).

 Note: The resource server is free to offer the option to protect any
 subset of the resource owner's resources using different
 authorization servers or other means entirely, or to protect some
 resources and not others. Additionally, the choice of protection
 regimes can be made explicitly by the resource owner or implicitly by
 the resource server. Any such partitioning by the resource server or
 owner is outside the scope of this specification.

 Once a resource set has been placed under authorization server
 protection through the registration of a resource set description for
 it, and until such a description's deletion by the resource server,
 the resource server MUST limit access to corresponding resources,
 requiring sufficient authorization data associated with client-
 presented RPTs by the authorization server (see Section 3.1.2).

Hardjono, et al. Expires October 6, 2015 [Page 15]

Internet-Draft UMA Core April 2015

3. Getting Authorization and Accessing a Resource

 An authorization server orchestrates and controls clients' access (on
 their requesting parties' behalf) to a resource owner's protected
 resources at a resource server, under conditions dictated by that
 resource owner.

 The process of getting authorization and accessing a resource always
 begins with the client attempting access at a protected resource
 endpoint at the resource server. How the client came to learn about
 this endpoint is out of scope for this specification. The resource
 owner might, for example, have advertised its availability publicly
 on a blog or other website, listed it in a discovery service, or
 emailed a link to a particular intended requesting party.

 The resource server responds to the client's access request with
 whatever its application-specific resource interface defines as a
 success response, either immediately if the client has sufficient
 authorization, or having first performed one or more embedded
 interactions with the authorization server and client in the case of
 a failed access attempt.

 A high-level summary of the interactions is as follows. The
 recipient of each request message SHOULD respond unless it detects a
 security concern, such as a suspected denial of service attack that
 can be mitigated by rate limiting.

 o The client attempts to access a protected resource.

 * If the access attempt is unaccompanied by an RPT, the resource
 server registers a requested permission at the authorization
 server that would suffice for the access attempt, and then
 responds with an HTTP 403 (Forbidden) response, a permission
 ticket, and instructions on where to go to obtain an RPT and
 authorization data.

 * If the access attempt is accompanied by an RPT, the resource
 server checks the RPT's status.

 + If the RPT is invalid, or if the RPT is valid but has
 insufficient authorization data, the resource server
 registers a requested permission at the authorization server
 that would suffice for the access attempt, and then responds
 with an HTTP 403 (Forbidden) response, a permission ticket,
 and instructions on where to go to obtain a valid RPT and
 authorization data for it.

Hardjono, et al. Expires October 6, 2015 [Page 16]

Internet-Draft UMA Core April 2015

 + If the RPT is valid, and if the authorization data
 associated with the token is sufficient for allowing access,
 the resource server responds with an HTTP 2xx (Success)
 response.

 o If the client received a 403 response and a permission ticket, it
 asks the authorization server for authorization data that matches
 the ticket using the RPT endpoint of the authorization API. If
 the authorization server needs requesting party claims in order to
 assess this client's authorization, it engages in a claims-
 gathering flow.

 * If the client does not already have an AAT at the appropriate
 authorization server to be able to use its authorization API,
 it first obtains one.

 The interactions are described in detail in the following sections.

3.1. Client Attempts to Access Protected Resource

 This interaction assumes that the resource server has previously
 registered one or more resource sets that correspond to the resource
 the client is attempting to access.

 The client attempts to access a protected resource (for example, when
 an end-user requesting party clicks on a thumbnail representation of
 the resource to retrieve a larger version). It is expected to
 discover, or be provisioned or configured with, knowledge of the
 protected resource and its location out of band. Further, the client
 is expected to acquire its own knowledge about the application-
 specific methods made available by the resource server for operating
 on this protected resource (such as viewing it with a GET method, or
 transforming it with some complex API call).

 The access attempt either is or is not accompanied by an RPT.

3.1.1. Client Presents No RPT

 Example of a request carrying no RPT:

 GET /album/photo.jpg HTTP/1.1
 Host: photoz.example.com
 ...

 If the client does not present an RPT with the request, the resource
 server uses the protection API to register a requested permission
 with the authorization server that would suffice for the access
 attempt (see Section 3.2), and receives a permission ticket back in

Hardjono, et al. Expires October 6, 2015 [Page 17]

Internet-Draft UMA Core April 2015

 response. It then responds to the client. It SHOULD respond with
 the HTTP 403 (Forbidden) status code, providing the authorization
 server's URI in an "as_uri" property in the header, along with the
 just-received permission ticket in the body in a JSON-encoded
 "ticket" property. Responses that use any code other than 403 are
 undefined by this specification; any common or best practices for
 returning other status codes will be documented in the [UMA-Impl].

 For example:

 HTTP/1.1 403 Forbidden
 WWW-Authenticate: UMA realm="example",
 as_uri="https://as.example.com"

 {
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }
 ...

3.1.2. Client Presents RPT

 Example of a request carrying an RPT using the UMA "bearer" RPT
 profile:

 GET /album/photo.jpg HTTP/1.1
 Authorization: Bearer vF9dft4qmT
 Host: photoz.example.com
 ...

 If the client presents an RPT with its request, the resource server
 MUST determine the RPT's status (see Section 3.3) before responding.

 If the RPT is invalid, or if the RPT is valid but has insufficient
 authorization data for the type of access sought, the resource server
 uses the protection API to register a requested permission with the
 authorization server that would suffice for the access attempt (see

Section 3.2), and receives a permission ticket back in response. It
 then responds to the client with the HTTP 403 (Forbidden) status
 code, providing the authorization server's URI in an "as_uri"
 property in the header, along with the just-received permission
 ticket in the body in a JSON-encoded "ticket" property.

Hardjono, et al. Expires October 6, 2015 [Page 18]

Internet-Draft UMA Core April 2015

 Example of the resource server's response after having registered a
 requested permission and received a ticket:

 HTTP/1.1 403 Forbidden
 WWW-Authenticate: UMA realm="example",
 as_uri="https://as.example.com"
 error="insufficient_scope"

 {
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 If the RPT's status is associated with authorization data that is
 sufficient for the access sought by the client, the resource server
 MUST give access to the desired resource.

 Example of the resource server's response after having determined
 that the RPT is valid and associated with sufficient authorization
 data:

 HTTP/1.1 200 OK
 Content-Type: image/jpeg
 ...

 /9j/4AAQSkZJRgABAgAAZABkAAD/7AARRHVja
 3kAAQAEAAAAPAAA/+4ADkFkb2JlAGTAAAAAAf
 /bAIQABgQEBAUEBgUFBgkGBQYJCwgGBggLDAo
 KCwoKDBAMDAwMDAwQDA4PEA8ODBMTFBQTExwb

 The resource server MUST NOT give access where the token's status is
 not associated with sufficient authorization data for the attempted
 scope of access.

3.2. Resource Server Registers Requested Permission With Authorization
 Server

 The resource server uses the protection API's permission registration
 endpoint to register a requested permission with the authorization
 server that would suffice for the client's access attempt. The
 authorization server returns a permission ticket for the resource
 server to give to the client in its response. The PAT provided in
 the API request implicitly identifies the resource owner ("subject")
 to which the permission applies.

 Note: The resource server is free to choose the extent of the
 requested permission that it registers, as long as it minimally
 suffices for the access attempted by the client. For example, it can
 choose to register a permission that covers several scopes or a

Hardjono, et al. Expires October 6, 2015 [Page 19]

Internet-Draft UMA Core April 2015

 resource set that is greater in extent than the specific resource
 that the client attempted to access. Likewise, the authorization
 server is ultimately free to choose to partially fulfill the elements
 of a permission request based on incomplete satisfaction of policy
 criteria, or not to fulfill the request.

 The resource server uses the POST method at the endpoint. The body
 of the HTTP request message contains a JSON object providing the
 requested permission, using a format derived from the scope
 description format specified in [OAuth-resource-reg], as follows.
 The object has the following properties:

 resource_set_id REQUIRED. The identifier for a resource set to
 which this client is seeking access. The identifier MUST
 correspond to a resource set that was previously registered.

 scopes REQUIRED. An array referencing one or more identifiers of
 scopes to which access is needed for this resource set. Each
 scope identifier MUST correspond to a scope that was registered by
 this resource server for the referenced resource set.

 Example of an HTTP request that registers a requested permission at
 the authorization server's permission registration endpoint, with a
 PAT in the header:

 POST /host/scope_reg_uri/photoz.example.com HTTP/1.1
 Content-Type: application/json
 Host: as.example.com
 Authorization: Bearer 204c69636b6c69

 {
 "resource_set_id": "112210f47de98100",
 "scopes": [
 "http://photoz.example.com/dev/actions/view",
 "http://photoz.example.com/dev/actions/all"
]
 }

 If the registration request is successful, the authorization server
 responds with an HTTP 201 (Created) status code and includes the
 "ticket" property in the JSON-formatted body.

 The permission ticket is a short-lived opaque structure whose form is
 determined by the authorization server. The ticket value MUST be
 securely random (for example, not merely part of a predictable
 sequential series), to avoid denial-of-service attacks. Since the
 ticket is an opaque structure from the point of view of the client,
 the authorization server is free to include information regarding

Hardjono, et al. Expires October 6, 2015 [Page 20]

Internet-Draft UMA Core April 2015

 expiration time or any other information within the opaque ticket for
 its own consumption. When the client subsequently uses the
 authorization API to ask the authorization server for authorization
 data to be associated with its RPT, it will submit this ticket to the
 authorization server.

 For example:

 HTTP/1.1 201 Created
 Content-Type: application/json
 ...

 {
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 If the registration request is authenticated properly but fails due
 to other reasons, the authorization server responds with an HTTP 400
 (Bad Request) status code and includes one of the following UMA error
 codes (see Section 4.2):

 invalid_resource_set_id The provided resource set identifier was not
 found at the authorization server.

 invalid_scope At least one of the scopes included in the request was
 not registered previously by this resource server.

3.3. Resource Server Determines RPT's Status

 The resource server MUST determine a received RPT's status, including
 both whether it is active and, if so, its associated authorization
 data, before giving or refusing access to the client. An RPT is
 associated with a set of authorization data that governs whether the
 client is authorized for access. The token's nature and format are
 dictated by its profile; the profile might allow it to be self-
 contained, such that the resource server is able to determine its
 status locally, or might require or allow the resource server to make
 a run-time introspection request of the authorization server that
 issued the token.

 This specification makes one type of RPT REQUIRED for the
 authorization server to support: the UMA bearer token profile, as
 defined in Section 3.3.2. Implementers MAY define and use other RPT
 profiles.

Hardjono, et al. Expires October 6, 2015 [Page 21]

Internet-Draft UMA Core April 2015

3.3.1. Token Introspection

 Within any RPT profile, when a resource server needs to introspect a
 token in a non-self-contained way to determine its status, it MAY
 require, allow, or prohibit use of the OAuth token introspection
 endpoint (defined by [OAuth-introspection]) that is part of the
 protection API, and MAY profile its usage. The resource server MUST
 use the POST method in interacting with the endpoint, not the GET
 method also defined by [OAuth-introspection].

3.3.2. RPT Profile: Bearer

 This section defines the UMA bearer token profile. Following is a
 summary:

 o Identifying URI: https://docs.kantarainitiative.org/uma/profiles/
uma-token-bearer-1.0

 o Profile author and contact information: Thomas Hardjono
 (hardjono@mit.edu)

 o Updates or obsoletes: None; this profile is new.

 o Keyword in HTTP Authorization header: "Bearer".

 o Syntax and semantics of token data: As defined below; an opaque
 string value, resolving to an extended JSON Web Token (JWT) [JWT]
 format on introspection at the authorization server.

 o Token data association: The on-the-wire token is opaque; it is
 introspected at run time by the resource server through profiled
 use of the OAuth token introspection endpoint
 [OAuth-introspection], as defined below.

 o Token data processing: As defined in this section and throughout
Section 3 of this specification.

 o Grant type restrictions: None.

 o Error states: As defined below.

 o Security and privacy considerations: As defined in this section,
 throughout Section 3, and in Section 8.

 An example of a client making a request with an RPT using the
 "Bearer" scheme appears in Section 3.1.2.

https://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0
https://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0

Hardjono, et al. Expires October 6, 2015 [Page 22]

Internet-Draft UMA Core April 2015

 On receiving an RPT with the "Bearer" scheme in an authorization
 header from a client making an access attempt, the resource server
 introspects the token by using the token introspection endpoint of
 the protection API. The PAT used by the resource server to make the
 introspection request provides resource-owner context to the
 authorization server.

 The authorization server responds with a JSON object with the
 structure dictated by [OAuth-introspection]. If the "active"
 property has a Boolean value of true, then the JSON object MUST NOT
 contain a "scope" claim, and MUST contain an extension property with
 the name "permissions" that contains an array of zero or more values,
 each of which is an object consisting of these properties:

 resource_set_id REQUIRED. A string that uniquely identifies the
 resource set, access to which has been granted to this client on
 behalf of this requesting party. The identifier MUST correspond
 to a resource set that was previously registered as protected.

 scopes REQUIRED. An array referencing one or more URIs of scopes to
 which access was granted for this resource set. Each scope MUST
 correspond to a scope that was registered by this resource server
 for the referenced resource set.

 exp OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this permission will
 expire. If the property is absent, the permission does not
 expire. If the token-level "exp" value pre-dates a permission-
 level "exp" value, the former overrides the latter.

 iat OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating when this permission was
 originally issued. If the token-level "iat" value post-dates a
 permission-level "iat" value, the former overrides the latter.

 nbf OPTIONAL. Integer timestamp, measured in the number of seconds
 since January 1 1970 UTC, indicating the time before which this
 permission is not valid. If the token-level "nbf" value post-
 dates a permission-level "nbf" value, the former overrides the
 latter.

Hardjono, et al. Expires October 6, 2015 [Page 23]

Internet-Draft UMA Core April 2015

 Example:

 HTTP/1.1 200 OK
 Content-Type: application/json
 Cache-Control: no-store

 {
 "active": true,
 "exp": 1256953732,
 "iat": 1256912345,
 "permissions": [
 {
 "resource_set_id": "112210f47de98100",
 "scopes": [
 "http://photoz.example.com/dev/actions/view",
 "http://photoz.example.com/dev/actions/all"
],
 "exp" : 1256953732
 }
]
 }

3.4. Client Seeks Authorization for Access

 In order to access a protected resource successfully, a client needs
 to present a valid RPT with sufficient authorization data for access.
 To get to this stage requires a number of previously successful
 steps:

 1. The authorization server issues client credentials to the client.
 It is OPTIONAL for the client credentials to be provided
 dynamically through [DynClientReg] or [OIDCDynClientReg];
 alternatively, they MAY use a static process.

 2. The client acquires an AAT.

 3. The client uses the authorization API to acquire an RPT and to
 ask for authorization data, providing the permission ticket it
 got from the resource server. The authorization server
 associates authorization data with the RPT based on the
 permission ticket, the resource owner's operative policies, and
 the results of any claims-gathering flows.

3.4.1. Client Requests Authorization Data

 Once in possession of a permission ticket and an AAT for this
 authorization server, the client asks the authorization server to
 give it authorization data corresponding to that permission ticket.

Hardjono, et al. Expires October 6, 2015 [Page 24]

Internet-Draft UMA Core April 2015

 It performs a POST on the RPT endpoint, supplying its own AAT in the
 header and a JSON object in the body with a "ticket" property
 containing the ticket as its value.

 If the client had included an RPT in its failed access attempt, It
 MAY also provide that RPT in an "rpt" property in its request to the
 authorization server.

 In circumstances where the client needs to provide requesting party
 claims to the authorization server, it MAY also include a
 "claim_tokens" property in its request; see Section 3.4.1.2.1 for
 more information.

 Example of a request message containing an AAT, an RPT, and a
 permission ticket:

 POST /authz_request HTTP/1.1
 Host: as.example.com
 Authorization: Bearer jwfLG53^sad$#f
 ...

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }

 The authorization server uses the ticket to look up the details of
 the previously registered requested permission, maps the requested
 permission to operative resource owner policies based on the resource
 set identifier and scopes associated with it, potentially requests
 additional information, and ultimately responds positively or
 negatively to the request for authorization data.

 The authorization server bases the issuing of authorization data on
 resource owner policies. These policies thus amount to an
 asynchronous OAuth authorization grant. The authorization server is
 also free to enable the resource owner to set policies that require
 the owner to interact with the server in near-real time to provide
 consent subsequent to an access attempt. All such processes are
 outside the scope of this specification.

 Once the authorization server adds the requested authorization data,
 it returns an HTTP 200 (OK) status code with a response body
 containing the RPT with which it associates the requested
 authorization data. If the client did not present an RPT in the
 request for authorization data, the authorization server creates and
 returns a new RPT. If the client did present an RPT in the request,
 the authorization server returns the RPT with which it associated the

Hardjono, et al. Expires October 6, 2015 [Page 25]

Internet-Draft UMA Core April 2015

 requested authorization data, which MAY be either the RPT that was in
 the request or a new one. Note: It is entirely an implementation
 issue whether the returned RPT is the same one that appeared in the
 request or a new RPT, and it is also an implementation issue whether
 the AS chooses to invalidate or retain the validity of the original
 RPT or any authorization data that was previously added to that RPT;
 to assist in client interoperability and token caching expectations,
 it is RECOMMENDED that authorization servers document their
 practices. [UMA-Impl] discusses the implications.

 Example:

 HTTP/1.1 200 OK
 Content-Type: application/json

 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv"
 }

 If the authorization server does not add the requested authorization
 data, it responds using one of the following UMA error codes and
 corresponding HTTP status codes (see Section 4.2):

 invalid_ticket The provided ticket was not found at the
 authorization server. The authorization server responds with the
 HTTP 400 (Bad Request) status code.

 expired_ticket The provided ticket has expired. The authorization
 server responds with the HTTP 400 (Bad Request) status code.

 not_authorized The client is not authorized to have this
 authorization data added. The authorization server responds with
 the HTTP 403 (Forbidden) status code.

 need_info The authorization server needs additional information in
 order to determine whether the client is authorized to have this
 authorization data. The authorization server responds with the
 HTTP 403 (Forbidden) status code. It MAY also respond with an
 "error_details" object that contains one or more sub-properties
 with hints about the nature of further required information. The
 client then has the opportunity to engage in follow-on flows to
 continue seeking authorization, in a process sometimes referred as
 "trust elevation". This specification defines two nonexclusive
 "error_details" sub-properties: "authentication_context",
 described in Section 3.4.1.1, and "requesting_party_claims",
 described in Section 3.4.1.2.

Hardjono, et al. Expires October 6, 2015 [Page 26]

Internet-Draft UMA Core April 2015

 request_submitted The authorization server requires intervention by
 the resource owner to determine whether the client is authorized
 to have this authorization data. Further immediate interaction
 between the client and authorization server is out of scope of
 this specification.

 Example when the ticket has expired:

 HTTP/1.1 400 Bad Request
 Content-Type: application/json
 Cache-Control: no-store
 ...

 {
 "error": "expired_ticket"
 }

 Example of a "need_info" response with a full set of "error_details"
 hints:

 HTTP/1.1 403 Forbidden
 Content-Type: application/json
 Cache-Control: no-store
 ...

 {
 "error": "need_info",
 "error_details": {
 "authentication_context": {
 "required_acr": ["https://example.com/acrs/LOA3.14159"]
 },
 "requesting_party_claims": {
 "required_claims": [
 {
 "name": "email23423453ou453",
 "friendly_name": "email",
 "claim_type": "urn:oid:0.9.2342.19200300.100.1.3",
 "claim_token_format":
 ["http://openid.net/specs/openid-connect-core-1_0.html#HybridIDToken"],
 "issuer": ["https://example.com/idp"]
 }
],
 "redirect_user": true,
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"
 }
 }
 }

Hardjono, et al. Expires October 6, 2015 [Page 27]

Internet-Draft UMA Core April 2015

3.4.1.1. Authentication Context Flows

 The "authentication_context" sub-property provides hints about
 additional requirements regarding the requesting party's
 authentication that underlies the issuance of the currently valid
 AAT. On receiving such hints, the client has the opportunity to
 redirect the requesting party to the authorization server to
 reauthenticate in a manner anticipated to be more successful for
 gaining access. Such an action is sometimes referred to as "step-up"
 authentication. The "authentication_context" sub-property contains
 the following parameter:

 required_acr REQUIRED. An array of strings specifying a set of
 acceptable authentication context class reference values. Any one
 of the referenced authentication context classes (sets of
 authentication methods or procedures considered to be equivalent
 in a particular context) would satisfy the requesting party
 authentication requirements. Each string MAY be a URI, including
 one that has been registered through [RFC6711].

3.4.1.2. Claims-Gathering Flows

 The "requesting_party_claims" sub-property provides hints about
 additional requirements regarding information the authorization
 server needs about the requesting party. On receiving such hints,
 the client has the opportunity to engage in claims-gathering flows of
 various types. The "requesting_party_claims" sub-property MAY
 contain the following parameters, where at least one of
 "required_claims" or "redirect_user" MUST be supplied:

 required_claims An array containing objects that describe
 characteristics of the required claims, with the following
 properties:

 name OPTIONAL. A string (which MAY be a URI) representing the
 name of the claim; the "key" in a key-value pair.

 friendly_name OPTIONAL. A string that provides a more human-
 readable form of the attribute's name, which may be useful as a
 "display name" for use in user interfaces in cases where the
 actual name is complex or opaque, such as an OID or a UUID.

 claim_type OPTIONAL. A string, indicating the expected
 interpretation of the provided claim value. The string MAY be
 a URI.

 claim_token_format OPTIONAL. An array of strings specifying a
 set of acceptable formats for a token pushed by the client

https://datatracker.ietf.org/doc/html/rfc6711

Hardjono, et al. Expires October 6, 2015 [Page 28]

Internet-Draft UMA Core April 2015

 containing this claim (see Section 3.4.1.2.1). Any one of the
 referenced formats would satisfy the authorization server's
 requirements. Each string MAY be a URI.

 issuer OPTIONAL. An array of strings specifying a set of
 acceptable issuing authorities for the claim. Any one of the
 referenced authorities would satisfy the authorization server's
 requirements. Each string MAY be a URI.

 redirect_user A Boolean value indicating whether the requesting
 party's presence at the authorization server is required for the
 process of claims gathering. For example, the authorization
 server may require the requesting party to fill out a CAPTCHA to
 help prove humanness. The default is false if this parameter is
 not present. See Section 1.4 for how the authorization server
 declares the requesting party claims endpoint to which the client
 has the opportunity to redirect the requesting party. Note that
 the word "user" implies a human requesting party; if the
 requesting party is not an end-user, then no client action would
 be possible on receiving the hint.

 ticket The permission ticket that was in the client's request for
 authorization data. If the authorization server provides the
 "redirect_user" property, it MUST also provide the "ticket"
 property. This helps the client avoid maintaining this state
 information after the redirect.

 An example of the use of these properties appears in Section 3.4.1.

 The authorization server has many options for gathering requesting
 party claims. For example, it could interact with an end-user
 requesting party directly, or accept claims delivered by a client, or
 perform a lookup in some external system. The process is extensible
 and can have dependencies on the type of requesting party (for
 example, natural person or legal person) or client (for example,
 browser, native app, or autonomously running web service).

 The client and authorization server have two nonexclusive claims-
 gathering interaction patterns: push and redirect.

3.4.1.2.1. Client Pushes Claim Tokens to Authorization Server

 If the client is ?claims-aware? and the authorization server can
 accept pushed claims (for example, as it might have indicated by
 providing "requesting_party_claims" hints described in

Section 3.4.1), the client has the option to _push_ claim tokens to
 the RPT endpoint. The claim token can reflect the client's role as a

Hardjono, et al. Expires October 6, 2015 [Page 29]

Internet-Draft UMA Core April 2015

 federated identity provider, a federated relying party, or an
 application integrated with a native identity repository.

 If the client is aware of the authorization server's requirements for
 claims through an out-of-band relationship, the client MAY push claim
 tokens in an initial interaction with the RPT endpoint.

 The client supplies claim tokens in the body of the authorization
 data request message by providing, in addition to the "rpt" and
 "ticket" properties, the following property:

 claim_tokens REQUIRED. An array of objects with the following
 properties:

 format REQUIRED. A string specifying the format of the
 accompanying claim tokens. The string MAY be a URI.

 token REQUIRED. A string containing the claim information in the
 indicated format, base64url encoded. If claim token format
 features are included that require special interpretation, the
 client and authorization server are assumed to have a prior
 relationship that establishes how to interpret these features.
 For example, if the referenced format equates to SAML 2.0
 assertions and the claim token contains audience restrictions,
 it is the joint responsibility of the client and authorization
 server to determine the proper audience values that enable
 successful token consumption.

 Example:

 POST /rpt_authorization HTTP/1.1
 Host: www.example.com
 Authorization: Bearer jwfLG53^sad$#f
 ...
 {
 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",
 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de",
 "claim_tokens": [
 {
 "format":
 "http://openid.net/specs/openid-connect-core-1_0.html#HybridIDToken",
 "token": "..."
 }
]
 }

 This specification provides a framework for extensibility through
 claim token format profiling. The authorization server MAY support

Hardjono, et al. Expires October 6, 2015 [Page 30]

Internet-Draft UMA Core April 2015

 any number of claim token profiles, and SHOULD document the claim
 token profiles it supports in its configuration data.

3.4.1.2.2. Client Redirects Requesting Party to Authorization Server

 If the client is ?claims-unaware? and the authorization server has
 declared a requesting party claims endpoint in its configuration
 data, or if the authorization server requires direct interaction with
 the requesting party as part of its claims-gathering process (for
 example, as it might have indicated through the "redirect_user" hint
 described in Section 3.4.1), the client has the option to _redirect_
 an end-user requesting party to the requesting party claims endpoint.
 In this case, the authorization server might be a relying party in a
 federated identity interaction, or it might connect to a directory or
 other user repository, or even interact with the user in other ways,
 such as presenting a questionnaire in a web form. After this process
 completes, the authorization server redirects the end-user requesting
 party back to the client.

 The client constructs the request URI by adding the following
 parameters to the query component of the requesting party claims
 endpoint URI using the "application/x-www-form-urlencoded" format:

 client_id REQUIRED. The client's identifier issued by the
 authorization server.

 redirect_uri OPTIONAL. The URI to which the client wishes the
 authorization server to direct the requesting party's user agent
 after completing its interaction. The URI MUST be absolute, MAY
 contain an "application/x-www-form-urlencoded" formatted query
 parameter component that MUST be retained when adding addition
 parameters, and MUST NOT contain a fragment component. The
 authorization server SHOULD require all clients to register their
 redirection endpoint prior to utilizing the authorization
 endpoint. If the URI is pre-registered, this URI MUST exactly
 match one of the pre-registered redirection URIs, with the
 matching performed as described in Section 6.2.1 of [RFC3986]
 (Simple String Comparison).

 ticket REQUIRED. The permission ticket associated with the client's
 current request for authorization data for this requesting party.
 The authorization server MUST return this parameter back to when
 the authorization_state is need_info.

 state OPTIONAL. An opaque value used by the client to maintain
 state between the request and callback. The authorization server
 includes this value when redirecting the user agent back to the

https://datatracker.ietf.org/doc/html/rfc3986#section-6.2.1

Hardjono, et al. Expires October 6, 2015 [Page 31]

Internet-Draft UMA Core April 2015

 client. The use of this parameter is STRONGLY RECOMMENDED for
 preventing cross-site request forgery.

 Example of a request issued by a client application (line breaks are
 shown only for display convenience):

 GET /rqp_claims?client_id=some_client_id&state=abc
 &redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fredirect HTTP/1.1
 Host: as.example.com

 At the conclusion of its interaction with the requesting party, the
 authorization server returns the user agent to the client adding the
 following parameters to the query component of the redirection URI
 using the "application/x-www-form-urlencoded" format:

 authorization_state REQUIRED. Indicates that the authorization
 server completed its claims-gathering interaction with the
 requesting party with the indicated state:

 claims_submitted The client is free to return to the RPT endpoint
 to seek authorization data once again.

 not_authorized The client is not authorized to have the desired
 authorization data added.

 need_info The authorization server needs additional information
 in order to determine whether the client is authorized to have
 this authorization data. This response directs the client to
 return to the RPT endpoint, where it might be provided with
 error_details hints about additional information needed.

 request_submitted The authorization server requires intervention
 by the resource owner to determine whether authorization data
 can be added. Further immediate interaction between the
 client, requesting party, and authorization server is out of
 scope of this specification.

 ticket OPTIONAL. The same permission ticket value that the client
 provided in the request. It MUST be present if and only if the
 authorization_state is need_info.

 state OPTIONAL. The same state value that the client provided in
 the request. It MUST be present if and only if the client
 provided it.

 The client MUST ignore unrecognized response parameters. If the
 request fails due to a missing, invalid, or mismatching redirection
 URI, or if the client identifier is missing or invalid, the

Hardjono, et al. Expires October 6, 2015 [Page 32]

Internet-Draft UMA Core April 2015

 authorization server SHOULD inform the resource owner of the error
 and MUST NOT automatically redirect the user agent to the invalid
 redirection URI. If the request fails for reasons other than a
 missing or invalid redirection URI, the authorization server informs
 the client by adding an "error" parameter to the query component of
 the redirection URI using the "application/x-www-form-urlencoded"
 format, containing one of the following ASCII error codes:

 invalid_request The request is missing a required parameter,
 includes an invalid parameter value (such as an invalid or expired
 ticket), includes a parameter more than once, or is otherwise
 malformed.

 server_error The authorization server encountered an unexpected
 condition that prevented it from fulfilling the request. (This
 error code is needed because an HTTP 500 (Internal Server Error)
 status code cannot be returned to the client via an HTTP
 redirect.)

 temporarily_unavailable The authorization server is currently unable
 to handle the request due to a temporary overloading or
 maintenance of the server. (This error code is needed because an
 HTTP 503 (Service Unavailable) status code cannot be returned to
 the client via an HTTP redirect.)

4. Error Messages

 Ultimately the resource server is responsible for either granting the
 access the client attempted, or returning an error response to the
 client with a reason for the failure. [OAuth2] defines several error
 responses for a resource server to return. UMA makes use of these
 error responses, but requires the resource server to "outsource" the
 determination of some error conditions to the authorization server.
 This specification defines additional UMA-specific error responses
 that the authorization server may give to the resource server and
 client as they interact with it, and that the resource server may
 give to the client.

4.1. OAuth Error Responses

 When a resource server or client attempts to access one of the
 authorization server endpoints or a client attempts to access a
 protected resource at the resource server, it has to make an
 authenticated request by including an OAuth access token in the HTTP
 request as described in [OAuth2] Section 7.2.

Hardjono, et al. Expires October 6, 2015 [Page 33]

Internet-Draft UMA Core April 2015

 If the request failed authentication, the authorization server or the
 resource server responds with an OAuth error message as described in
 this specification in Section 3.

4.2. UMA Error Responses

 When a resource server or client attempts to access one of the
 authorization server endpoints or a client attempts to access a
 protected resource at the resource server, if the request is
 successfully authenticated by OAuth means, but is invalid for another
 reason, the authorization server or resource server responds with an
 UMA error response by adding the following properties to the entity
 body of the HTTP response:

 error REQUIRED. A single error code. Values for this property are
 defined throughout this specification.

 error_description OPTIONAL. Human-readable text providing
 additional information.

 error_uri OPTIONAL. A URI identifying a human-readable web page
 with information about the error.

 The following is a common error code that applies to several UMA-
 specified request messages:

 invalid_request The request is missing a required parameter,
 includes an invalid parameter value, includes a parameter more
 than once, or is otherwise malformed. The authorization server
 MUST respond with the HTTP 400 (Bad Request) status code.

 For example:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Cache-Control: no-store
...

{
 "error": "invalid_request",
 "error_description": "There is already a resource with this identifier.",
 "error_uri": "https://as.example.com/errors/resource_exists"
}

Hardjono, et al. Expires October 6, 2015 [Page 34]

Internet-Draft UMA Core April 2015

5. Profiles for API Extensibility

 In some circumstances, it may be desirable to couple UMA roles
 tightly. For example, an authorization server application might also
 need to act as a client application in order to retrieve protected
 resources so that it can present to resource owners a dashboard-like
 user interface that accurately guides the setting of policy; it might
 need to access itself-as-authorization server for that purpose. For
 another example, the same organization might operate both an
 authorization server and a resource server that communicate only with
 each other behind a firewall, and it might seek more efficient
 communication methods between them.

 In other circumstances, it may be desirable to bind UMA flows to
 transport mechanisms other than HTTP even if entities remain loosely
 coupled. For example, in Internet of Things scenarios, Constrained
 Application Protocol (CoAP) may be preferred over HTTP.

 This section defines profiles that allow inter-role communications
 channels and methods to vary in these circumstances. This
 specification still REQUIRES authorization servers to issue PATs,
 AATs, and RPTs and associate authorization data with RPTs, and
 REQUIRES resource servers to give clients access only when RPTs are
 associated with sufficient authorization data. This is because,
 although tokens might not always appear on the wire in the normal
 fashion, the tokens may represent binding obligations that involve
 additional parties unable to take part in these optimization
 opportunities (see [UMA-obligations]).

 Where alternate communications channels are being used between
 independently implemented system entities, it is RECOMMENDED, for
 reasons of implementation interoperability, to define concrete
 extension profiles that build on these extensibility profiles (see

Section 6.1).

5.1. Protection API Extensibility Profile

 This section defines a profile for UMA where the authorization server
 and resource server roles either reside in the same system entity or
 otherwise have a privileged or specialized communications channel
 between them. Following is a summary:

 o Identifying URI: https://docs.kantarainitiative.org/uma/profiles/
prot-ext-1.0

 o Profile author and contact information: Mark Dobrinic
 (mdobrinic@cozmanova.com)

https://docs.kantarainitiative.org/uma/profiles/prot-ext-1.0
https://docs.kantarainitiative.org/uma/profiles/prot-ext-1.0

Hardjono, et al. Expires October 6, 2015 [Page 35]

Internet-Draft UMA Core April 2015

 o Updates or obsoletes: None; this profile is new.

 o Security considerations: See below.

 o Privacy considerations: See below.

 o Error states: None additional.

 Using this profile, the resource server MAY use means other than the
 HTTP-based protection API that is protected by TLS and OAuth (or an
 OAuth-based authentication protocol) to communicate with the
 authorization server in all respects, including using software
 interfaces and methods rather than network interfaces and APIs. The
 authorization server MUST still issue PATs, AATs, and RPTs and
 associate authorization data with RPTs, and the resource server MUST
 still give clients access only when RPTs are associated with
 sufficient authorization data. Interactions with entities other than
 the authorization server or resource server MUST be preserved exactly
 as they would have if either of them were using standardized UMA
 APIs, unless other extensibility profiles are also in use.

 An authorization server using any of the opportunities afforded by
 this profile MUST declare use of this profile by supplying its
 identifying URI for one of its "uma_profiles_supported" values in its
 configuration data (see Section 1.4).

 Same-entity communication or a tight integration of entities has the
 opportunity to make deployments more secure by reducing possible
 attack vectors. However, if the entities do not use TLS but
 communicate across a transport layer, it is RECOMMENDED to use an
 alternate means of transport-layer security, for example, using DTLS
 in the case of a CoAP-based UMA profile.

 Same-entity communication or a tight integration of entities has the
 potential to compromise privacy by promoting the freer exchange of
 personal information within a deployment ecosystem. It is
 RECOMMENDED to account for privacy impacts in each deployment
 scenario.

5.2. Authorization API Extensibility Profile

 This section defines a profile for UMA where the authorization server
 and client roles either reside in the same system entity or otherwise
 have a privileged or specialized communications channel between them.
 Following is a summary:

 o Identifying URI: https://docs.kantarainitiative.org/uma/profiles/
authz-ext-1.0

https://docs.kantarainitiative.org/uma/profiles/authz-ext-1.0
https://docs.kantarainitiative.org/uma/profiles/authz-ext-1.0

Hardjono, et al. Expires October 6, 2015 [Page 36]

Internet-Draft UMA Core April 2015

 o Profile author and contact information: Mark Dobrinic
 (mdobrinic@cozmanova.com)

 o Updates or obsoletes: None; this profile is new.

 o Security considerations: See below.

 o Privacy considerations: See below.

 o Error states: None additional.

 Using this profile, the client MAY use means other than the HTTP-
 based authorization API that is protected by TLS and OAuth (or an
 OAuth-based authentication protocol) to communicate with the
 authorization server in all respects, including using software
 interfaces and methods rather than network interfaces and APIs. The
 authorization server MUST still issue PATs, AATs, and RPTs and
 associate authorization data with RPTs, and the resource server MUST
 still give clients access only when RPTs are associated with
 sufficient authorization data. Interactions with entities other than
 the authorization server or client MUST be preserved exactly as they
 would have if either of them were using standardized UMA APIs, unless
 other extensibility profiles are also in use.

 An authorization server using any of the opportunities afforded by
 this profile MUST declare use of this profile by supplying its
 identifying URI for one of its "uma_profiles_supported" values in its
 configuration data (see Section 1.4).

 Same-entity communication or a tight integration of entities has the
 opportunity to make deployments more secure by reducing possible
 attack vectors. However, if the entities do not use TLS but
 communicate across a transport layer, it is RECOMMENDED to use an
 alternate means of transport-layer security, for example, using DTLS
 in the case of a CoAP-based UMA profile.

 Same-entity communication or a tight integration of entities has the
 potential to compromise privacy by promoting the freer exchange of
 personal information within a deployment ecosystem. It is
 RECOMMENDED to account for privacy impacts in each deployment
 scenario.

5.3. Resource Interface Extensibility Profile

 This section defines a profile for UMA where the resource server and
 client roles either reside in the same system entity or otherwise
 have a privileged or specialized communications channel between them.
 Following is a summary:

Hardjono, et al. Expires October 6, 2015 [Page 37]

Internet-Draft UMA Core April 2015

 o Identifying URI: https://docs.kantarainitiative.org/uma/profiles/
rsrc-ext-1.0

 o Profile author and contact information: Mark Dobrinic
 (mdobrinic@cozmanova.com)

 o Updates or obsoletes: None; this profile is new.

 o Security considerations: See below.

 o Privacy considerations: See below.

 o Error states: None additional.

 Using this profile, the resource server MAY use means other than an
 HTTP-based resource interface to communicate with the authorization
 server in all respects, including using software interfaces and
 methods rather than network interfaces and APIs. The resource server
 MUST still give clients access only when RPTs are associated with
 sufficient authorization data. Interactions with entities other than
 the resource server or client MUST be preserved exactly as they would
 have if either of them were using standardized UMA APIs, unless other
 extensibility profiles are also in use.

 An authorization server involved in deployments where resource
 servers and clients are known to be using opportunities afforded by
 the resource interface extensibility profile MAY declare use of this
 profile by supplying its identifying URI for one of its
 "uma_profiles_supported" values in its configuration data (see

Section 1.4).

 Same-entity communication or a tight integration of entities has the
 opportunity to make deployments more secure by reducing possible
 attack vectors. However, if the entities do not use TLS but
 communicate across a transport layer, it is RECOMMENDED to use an
 alternate means of transport-layer security, for example, using DTLS
 in the case of a CoAP-based UMA profile.

 Same-entity communication or a tight integration of entities has the
 potential to compromise privacy by promoting the freer exchange of
 personal information within a deployment ecosystem. It is
 RECOMMENDED to account for privacy impacts in each deployment
 scenario.

https://docs.kantarainitiative.org/uma/profiles/rsrc-ext-1.0
https://docs.kantarainitiative.org/uma/profiles/rsrc-ext-1.0

Hardjono, et al. Expires October 6, 2015 [Page 38]

Internet-Draft UMA Core April 2015

6. Specifying Additional Profiles

 This specification defines a protocol that has optional features.
 For implementation interoperability and to serve particular
 deployment scenarios, including sector-specific ones such as
 healthcare or e-government, third parties may want to define profiles
 of UMA that restrict these options.

 Further, this specification creates extensibility points for RPT
 profiles and claim token profiles, and third parties may likewise
 want to define their own. Different RPT profiles could be used, for
 example, to change the dividing line between authorization server and
 resource server responsibilities in controlling access. Different
 claim token profiles could be used to customize sector-specific or
 population-specific (such as individual vs. employee) claim types
 that drive the types of policies resource owners could set.

 It is not practical for this specification to standardize all desired
 profiles. However, to serve overall interoperability goals, this
 section provides guidelines for third parties that wish to specify
 UMA-related profiles. In all cases, it is RECOMMENDED that profiles
 document the following information:

 o Specify a URI that uniquely identifies the profile.

 o Identify the responsible author and provide postal or electronic
 contact information.

 o Supply references to any previously defined profiles that the
 profile updates or obsoletes.

 o Define any additional or changed error states.

 o Specify any conformance and interoperability considerations.

 o Supply any additional security and privacy considerations.

6.1. Specifying Profiles of UMA

 It is RECOMMENDED that profiles of UMA additionally document the
 following information:

 o Specify the set of interactions between endpoint entities involved
 in the profile, calling out any restrictions on ordinary UMA-
 conformant operations and any extension properties used in message
 formats.

 See Section 5 for examples.

Hardjono, et al. Expires October 6, 2015 [Page 39]

Internet-Draft UMA Core April 2015

6.2. Specifying RPT Profiles

 It is RECOMMENDED that RPT profiles additionally document the
 following information:

 o Specify the keyword to be used in HTTP Authorization headers with
 tokens conforming to this profile.

 o Specify the syntax and semantics of the data that the
 authorization server associates with the token.

 o Specify how the token data is associated with, contained within,
 and/or retrieved by means of, the on-the-wire token string.

 o Specify processing rules for token data.

 o Identify any restrictions on grant types to be used with the token
 profile.

 See Section 3.3.2 for an example.

6.3. Specifying Claim Token Format Profiles

 It is RECOMMENDED that claim token format profiles additionally
 document the following information:

 o Specify any related or additional error_details hints.

 o Specify any constraints on the claim token format vs. a standard
 definition for it in a specification.

 o Specify any mutual interpretation details of claim token formats
 by authorization servers and clients.

7. Compatibility Notes

 Implementers should heed the following compatibility notes.

 o This specification uses a specific draft of a specification that
 is not yet final: [OAuth-introspection] (draft 04); the reference
 will be updated until this "UMA V1.0 candidate" specification is
 finalized. While every effort will be made to prevent breaking
 changes to this specification, should they occur, UMA
 implementations should continue to use the specifically referenced
 draft version in preference to the final versions, unless using a
 possible future UMA profile or specification that updates the
 relevant references.

Hardjono, et al. Expires October 6, 2015 [Page 40]

Internet-Draft UMA Core April 2015

 o In cases where this specification is not prescriptive regarding
 conformance or interoperability, any common or best practices for
 implementation will be documented in the [UMA-Impl] over time.

8. Security Considerations

 As a profile of OAuth, this specification relies mainly on OAuth
 security mechanisms as well as transport-level encryption. Thus,
 implementers are strongly advised to read the security considerations
 in [OAuth2] (Section 10) and [OAuth-bearer] (Section 5) along with
 the security considerations of any other OAuth token-defining
 specifications in use, along with the entire [OAuth-threat]
 specification, and apply the countermeasures described therein. As
 well, since this specification builds on [OAuth-resource-reg],
 implementers should also take into account the security
 considerations in that specification.

 The following sections describe additional security considerations.

8.1. Redirection and Impersonation Threats

 This section discusses threats related to UMA's nature as an protocol
 enabling autonomous (non-resource-owner) requesting parties to gain
 authorized access to sensitive resources, including through the
 process of claims-gathering redirection.

 Like ordinary OAuth redirection, UMA redirection for the purpose of
 gathering claims from an end-user requesting party (described in

Section 3.4.1.2.2) creates the potential for cross-site request
 forgery (CSRF) through an open redirect if the authorization server
 does not force the client to pre-register its redirection endpoint,
 and server-side artifact tampering if the client does not avail
 itself of the state parameter. The client SHOULD check that the
 ticket value returned by an authorization server after a redirect is
 completed has not been maliciously changed, for example by a man in
 the browser (MITB), by using the state parameter. (See the
 [UMA-Impl] for advice on ways to accomplish this.) Sections 4.4.1.8,
 4.4.2.5, and 5.3.5 of [OAuth-threat] are apropos for the UMA claims-
 gathering redirection flow as well.

 When a client redirects an end-user requesting party to the
 requesting party claims endpoint, the client provides no a priori
 context to the authorization server about which user is appearing at
 the endpoint, other than implicitly through the permission ticket.
 Since the authorization server is free to gather any claims it
 wishes, the effect is to "late-bind" them to the permission ticket
 and the state string provided by the client, with the effect of
 enabling the authorization server not to trust client-asserted

Hardjono, et al. Expires October 6, 2015 [Page 41]

Internet-Draft UMA Core April 2015

 claims. This is a desirable result and reflects one reason why the
 authorization server might choose to demand use of the redirect flow
 over the push flow. However, the client has the opportunity to
 switch end-users -- say, enabling malicious end-user Carlos to
 impersonate the original end-user Bob who approved the minting of of
 the AAT -- after the redirect completes and before it returns to the
 RPT endpoint to seek authorization data.

 Another issue concerns the exposure of the RPT to an autonomous
 requesting party, which could maliciously pass the token to an
 unauthorized party.

 To mitigate requesting-party switching and RPT exposure threats,
 consider the following strategies.

 o Require that the Requesting Party (as defined in
 [UMA-obligations], meaning this party is able to take on legal
 obligations) legitimately represent the wielder of the bearer
 token. This solution is based on a legal or contractual approach,
 and therefore does not reduce the risk from the technical
 perspective.

 o The authorization server, possibly with input from the resource
 owner, can implement tighter time-to-live strategies around the
 authorization data in RPTs. This is a classic approach with
 bearer tokens that helps to limit a malicious party's ability to
 intercept and use the bearer token. In the same vein, the
 authorization server could require claims to have a reasonable
 degree of freshness (which would require a custom claims profile).

 o The strongest strategy is to disallow bearer-type RPTs within the
 UMA profile being deployed, by providing or requiring an RPT
 profile that requires use of a holder-of-key approach. In this
 way, the wielder of the token must engage in a live session for
 proof-of-possession. A less complex version of this strategy is
 to "elevate trust" in the requesting party by requiring a stronger
 authentication context, forcing step-up authentication by the
 requesting party at run time.

8.2. Client Authentication

 Along with TLS, UMA requires OAuth, or any OAuth-based authentication
 protocol, as the security mechanism for its standardized APIs. The
 UMA resource server acts in the role of an OAuth client at the
 authorization server's protection API, and the UMA client acts in the
 role of an OAuth client at the authorization server's authorization
 API. While it is possible to use any profile of OAuth for this
 protection, it is RECOMMENDED for the authorization server to use

Hardjono, et al. Expires October 6, 2015 [Page 42]

Internet-Draft UMA Core April 2015

 OpenID Connect, and to use its mechanisms for stronger client
 authentication at the token endpoint, in order to strengthen the
 authentication of OAuth clients. Section 16 of [OIDCCore] provides
 more information on OpenID Connect security considerations.

 Clients using the OAuth implicit grant type carry particular
 vulnerabilities in OAuth, and OpenID Connect doesn't help because of
 the nature of the implicit grant flow. UMA scenarios are vulnerable
 as well. For example, an "implicit client" might require the
 retrieval of AATs more frequently, for each browser on each platform.
 An attacker can initiate a spear phishing attack on the requesting
 party with a link to a malicious website, relying on the requesting
 party to authenticate to the authorization server through an email-
 based identity provider in order to receive the AAT. The site can
 impersonate the requesting party using the browser client's client ID
 in an OpenID Connect implicit request to the UMA authorization
 server. If the requesting party had previously given consent for an
 AAT to be issued, this attempt will likely succeed. The subsequently
 issued AAT and permission ticket for an attempted resource access
 could potentially be used for RPT retrieval and authorization data
 issuance.

 A number of mitigation strategies are possible.

 o The authorization server could penalize or disallow use of the
 implicit grant flow. This could be done at a variety of levels:

 * Enabling resource owners to define policies controlling the use
 of such clients

 * Setting system-default policies controlling their use

 * Participating in mutual agreements with other parties that
 admit only suitably secure client applications to interact with
 service operators

 o The authorization server could support dynamic client registration
 at the client instance level, such that each instance receives a
 unique client_id and secret. The client can then use the
 authorization code flow and have at least some form of client
 authentication. However, this is easier for a mobile app than for
 a browser-based HTML app.

8.3. JSON Usage

 This specification defines a number of data formats based on [JSON].
 As a subset of the JavaScript scripting language, JSON data SHOULD be
 consumed through a process that does not dynamically execute it as

Hardjono, et al. Expires October 6, 2015 [Page 43]

Internet-Draft UMA Core April 2015

 code, to avoid malicious code execution. One way to achieve this is
 to use a JavaScript interpreter rather than the built-in JavaScript
 eval() function.

8.4. Profiles, Binding Obligations, and Trust Establishment

 Parties operating and using UMA software entities have opportunities
 to establish agreements about mutual rights, responsibilities, and
 common interpretations of UMA constructs for consistent and expected
 software behavior. These agreements can be used to improve the
 parties' respective security postures, and written profiles are a key
 mechanism for conveying and enforcing these agreements. Section 6
 discusses profiling. Section 5 discusses profiling for
 extensibility. [UMA-obligations] discusses the development of
 binding obligations.

9. Privacy Considerations

 The authorization server comes to be in possession of resource set
 information that may reveal information about the resource owner,
 which the authorization server's trust relationship with the resource
 server is assumed to accommodate. However, the client is a less-
 trusted party -- in fact, entirely untrustworthy until authorization
 data is associated with its RPT. The more information about a
 resource set that is registered, the more risk of privacy compromise
 there is through a less-trusted authorization server.

 The primary privacy duty of UMA's design is to the resource owner.
 However, privacy considerations affect the requesting party as well.
 This can be seen in the issuance of an AAT, which represents the
 approval of a requesting party for a client to engage with an
 authorization server to perform tasks needed for obtaining
 authorization, possibly including pushing claim tokens.

 Parties operating and using UMA software entities have opportunities
 to establish agreements about mutual rights, responsibilities, and
 common interpretations of UMA constructs for consistent and expected
 software behavior. These agreements can be used to improve the
 parties' respective privacy postures. For information about the
 additional technical, operational, and legal elements of trust
 establishment, see [UMA-obligations]. Additional considerations
 related to Privacy by Design concepts are discussed in [UMA-PbD].

10. IANA Considerations

 This document makes the following requests of IANA.

Hardjono, et al. Expires October 6, 2015 [Page 44]

Internet-Draft UMA Core April 2015

10.1. JSON Web Token Claims Registration

 This specification registers the claim defined in Section 3.3.2.

10.1.1. Registry Contents

 o Claim name: permissions

 o Claim description: Array of objects, each describing a set of
 scoped, time-limitable entitlements to a resource set

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - wg-uma@kantarainitiative.org

 o Specification document: Section 3.3.2 in this document

10.2. Well-Known URI Registration

 This specification registers the well-known URI defined in
Section 1.4.

10.2.1. Registry Contents

 o URI suffix: uma-configuration

 o Change controller: Kantara Initiative User-Managed Access Work
 Group - wg-uma@kantarainitiative.org

 o Specification document: Section 1.4 in this document

11. Acknowledgments

 The following people made significant text contributions to the
 specification:

 o Paul C. Bryan, ForgeRock US, Inc. (former editor)

 o Mark Dobrinic, Cozmanova

 o George Fletcher, AOL

 o Lukasz Moren, Cloud Identity Ltd

 o Christian Scholz, COMlounge GmbH (former editor)

 o Mike Schwartz, Gluu

 o Jacek Szpot, Newcastle University

Hardjono, et al. Expires October 6, 2015 [Page 45]

Internet-Draft UMA Core April 2015

 Additional contributors to this specification include the Kantara UMA
 Work Group participants, a list of whom can be found at
 [UMAnitarians].

12. References

12.1. Normative References

 [DynClientReg]
 Richer, J., "OAuth 2.0 Core Dynamic Client Registration",
 December 2014,
 <http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg>.

 [JSON] Bray, T., "The JavaScript Object Notation (JSON) Data
 Interchange Format", March 2014,
 <https://tools.ietf.org/html/rfc7159>.

 [JWT] Jones, M., "JSON Web Token (JWT)", December 2014,
 <http://datatracker.ietf.org/doc/

draft-ietf-oauth-json-web-token/>.

 [OAuth-bearer]
 "The OAuth 2.0 Authorization Framework: Bearer Token
 Usage", October 2012,
 <http://tools.ietf.org/html/rfc6750>.

 [OAuth-introspection]
 Richer, J., "OAuth Token Introspection", December 2014,
 <http://tools.ietf.org/html/

draft-ietf-oauth-introspection-04>.

 [OAuth-resource-reg]
 Hardjono, T., "OAuth 2.0 Resource Set Registration",
 February 2015, <https://tools.ietf.org/html/draft-

hardjono-oauth-resource-reg>.

 [OAuth-threat]
 Lodderstedt, T., "OAuth 2.0 Threat Model and Security
 Considerations", January 2013,
 <http://tools.ietf.org/html/rfc6819>.

 [OAuth2] Hardt, D., "The OAuth 2.0 Authorization Framework",
 October 2012, <http://tools.ietf.org/html/rfc6749>.

 [OIDCCore]
 Sakimura, N., "OpenID Connect Core 1.0 incorporating
 errata set 1", November 2014,
 <http://openid.net/specs/openid-connect-core-1_0.html>.

http://tools.ietf.org/html/draft-ietf-oauth-dyn-reg
https://tools.ietf.org/html/rfc7159
http://datatracker.ietf.org/doc/draft-ietf-oauth-json-web-token/
http://datatracker.ietf.org/doc/draft-ietf-oauth-json-web-token/
http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/draft-ietf-oauth-introspection-04
http://tools.ietf.org/html/draft-ietf-oauth-introspection-04
https://tools.ietf.org/html/draft-hardjono-oauth-resource-reg
https://tools.ietf.org/html/draft-hardjono-oauth-resource-reg
http://tools.ietf.org/html/rfc6819
http://tools.ietf.org/html/rfc6749
http://openid.net/specs/openid-connect-core-1_0.html

Hardjono, et al. Expires October 6, 2015 [Page 46]

Internet-Draft UMA Core April 2015

 [OIDCDynClientReg]
 Sakimura, N., "OpenID Connect Dynamic Client Registration
 1.0 incorporating errata set 1", November 2014,
 <http://openid.net/specs/

openid-connect-registration-1_0.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., "Uniform Resource Identifier (URI):
 Generic Syntax", January 2005,
 <http://www.ietf.org/rfc/rfc3986.txt>.

 [RFC6711] Johansson, L., "An IANA Registry for Level of Assurance
 (LoA) Profiles", August 2012,
 <https://tools.ietf.org/html/rfc6711>.

 [hostmeta]
 Hammer-Lahav, E., "Web Host Metadata", October 2011,
 <http://tools.ietf.org/html/rfc6415>.

12.2. Informative References

 [UMA-Impl]
 Maler, E., "UMA Implementer's Guide", December 2014,
 <http://kantarainitiative.org/confluence/display/uma/
 UMA+Implementer%27s+Guide>.

 [UMA-PbD] Maler, E., "Privacy by Design Implications of UMA",
 December 2013,
 <http://kantarainitiative.org/confluence/display/uma/
 Privacy+by+Design+Implications+of+UMA>.

 [UMA-casestudies]
 Maler, E., "UMA Case Studies", April 2014,
 <http://kantarainitiative.org/confluence/display/uma/
 Case+Studies>.

 [UMA-obligations]
 Maler, E., "Binding Obligations on UMA Participants",
 January 2013, <http://docs.kantarainitiative.org/uma/

draft-uma-trust.html>.

 [UMA-usecases]
 Maler, E., "UMA Scenarios and Use Cases", October 2010,
 <http://kantarainitiative.org/confluence/display/uma/
 UMA+Scenarios+and+Use+Cases>.

http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.ietf.org/rfc/rfc3986.txt
https://tools.ietf.org/html/rfc6711
http://tools.ietf.org/html/rfc6415
http://kantarainitiative.org/confluence/display/uma/
http://kantarainitiative.org/confluence/display/uma/
http://kantarainitiative.org/confluence/display/uma/
http://docs.kantarainitiative.org/uma/draft-uma-trust.html
http://docs.kantarainitiative.org/uma/draft-uma-trust.html
http://kantarainitiative.org/confluence/display/uma/

Hardjono, et al. Expires October 6, 2015 [Page 47]

Internet-Draft UMA Core April 2015

 [UMAnitarians]
 Maler, E., "UMA Participant Roster", December 2014,
 <http://kantarainitiative.org/confluence/display/uma/
 Participant+Roster>.

Authors' Addresses

 Thomas Hardjono (editor)
 MIT

 Email: hardjono@mit.edu

 Eve Maler
 ForgeRock

 Email: eve.maler@forgerock.com

 Maciej Machulak
 Cloud Identity

 Email: maciej.machulak@cloudidentity.co.uk

 Domenico Catalano
 Oracle

 Email: domenico.catalano@oracle.com

http://kantarainitiative.org/confluence/display/uma/

Hardjono, et al. Expires October 6, 2015 [Page 48]

