Internet Engineering Task T0C
D. Hardt, Ed.
Force

Internet-Draft Microsoft
Intended status: Informational A. Tom
Expires: July 19, 2010 Yahoo!
B. Eaton
Google
Y. Goland
Microsoft

January 15,
2010

OAuth Web Resource Authorization Profiles
draft-hardt-oauth-01

Abstract

The OAuth Web Resource Authorization Profiles (OAuth WRAP) allow a
server hosting a Protected Resource to delegate authorization to one or
more authorities. An application (Client) accesses the Protected
Resource by presenting a short lived, opaque, bearer token (Access
Token) obtained from an authority (Authorization Server). There are
Profiles for how a Client may obtain an Access Token when acting
autonomously or on behalf of a User.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on July 19, 2010.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the BSD License.

Table of Contents

=

[

>

o

Overview

1.1. Accessing a Protected Resource

1.2. Autonomous Client Profiles

1.3. User Delegation Profiles

Requirements Language

Definitions

3.1. URLs

Accessing a Protected Resource

4.1. Access Token

4.2. Acquiring an Access Token

4.3. Client Calls Protected Resource

4.4. Client Calls Protected Resource

4.5. Client Calls Protected Resource

Acquiring an Access Token: Autonomous

5.1. Client
5.1.1.
5.1.2.

5.1.3.

Provisioning

Server

5.1.4. Unsuccessful Access Token

Server

5.1.5.
Assertion Profile
.2.1. Provisioning
2.2. Client Obtains Assertion
.2.3.
2.4

Server

Unsuccessful Access Token

Server

6.

5.2.6.

Using HTTP Header

Using URL Query Parameter
Using Post Parameter
Client Profiles

Account and Password Profile

Client Requests Access Token
Successful Access Token Response from Authorization

Response from Authorization

Client Refreshes Access Token

Client Requests Access Token
Successful Access Token Response from Authorization

Response from Authorization

Client Refreshes Access Token

Acquiring an Access Token: User Delegation Profiles

1.1,

Server

(o))
[
(&)

Server

with User

6.2.4.
6.

Server

Server

with User

6.

Server

Server

6.
6.3.8.
6.
Parameter Considerations

™

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.

[

D O[O |O

o oo o o
(IR [G [H

Username and Password Profile

1
1
1

1

2.
.1.3.
4

© |0 [N |O

.1.10.

Provisioning

Client Obtains Username and Password

Client Requests Access Token

Successful Access Token Response from Authorization

Unsuccessful Access Token Response from Authorization

Verification URL Response from Authorization Server
CAPTCHA Response from Authorization Server
Client Refreshes Access Token
Successful Access Token Refresh
Unsuccessful Access Token Refresh

Web App Profile

2

2

2

2.1,
.2,
.2.3.

1
2.

[

.2.8.
.2,
.2.10.

9.

Provisioning
Client Directs the User to the Authorization Server
Authorization Server Confirms Authorization Request

Authorization Server Directs User back to the Client
Client Requests Access Token
Successful Access Token Response from Authorization

Unsuccessful Access Token Response from Authorization
Client Refreshes Access Token

Successful Access Token Refresh
Unsuccessful Access Token Refresh

Rich App Profile

.3,

.3,

.3.3.

3

3.

3.

1.
2.
3

7.
8
9.

Provisioning
Client Directs the User to the Authorization Server
Authorization Server Confirms Authorization Request

Client Requests Access Token
Successful Access Token Response from Authorization

Unsuccessful Access Token Response from Authorization
Client Refreshes Access Token

Successful Access Token Refresh
Unsuccessful Access Token Refresh

Authorization Server Request / Response Parameter Encoding
Parameter Size

Access Token Format

Refresh Token Format

Additional Authorization Server Parameters

Parameter Names and Order

IANA Considerations
Security Considerations

10. References
10.1. Normative References
10.2. Informative References
Appendix A. Client Account and Password Profile Example
A.1. Provisioning
A.2. Client Requests Access Token
A.3. Successful Access Token Response from Authorization Server
A.4. Client Calls Protected Resource
Appendix B. Web App Profile Example
B.1. Provisioning
B.2. Client Directs the User to the Server
B.3. Authorization Server Confirms Delegation Request with User
B.4. Server Directs User back to the Client
B.5. Client Requests Access Token
B.6. Successful Access Token Response from Authorization Server
B.7. Client Calls Protected Resource
B.8. Client Refreshes Access Token
8§ Authors' Addresses

1. Overview TOC

As the internet has evolved, there is a growing trend for a variety of
applications (Clients) to access resources through an API over HTTP or
other protocols. O0ften these resources require authorization for access
and are Protected Resources. The systems that are trusted to make
authorization decisions may be independent from the Protected Resources
for scale and security reasons. The OAuth Web Resource Authorization
Profiles (OAuth WRAP) enable a Protected Resource to delegate the
authorization to access a Protected Resource to one or more trusted
authorities.

Clients that wish to access a Protected Resource first obtain
authorization from a trusted authority (Authorization Server).
Different credentials and profiles can be used to obtain this
authorization, but once authorized, the Client is provided an Access
Token, and possible a Refresh Token to obtain new Access Tokens. The
Authorization Server typically includes authorization information in
the Access Token and digitally signs the Access Token. Protected
Resource can verify that an Access Token received from a Client was
issued by a trusted Authorization Server and is valid. The Protected
Resource can then examine the contents of the Access Token to determine
the authorization that has been granted to the Client.

T0C

1.1. Accessing a Protected Resource

The Access Token is opaque to the Client, and can be any format agreed
to between the Authorization Server and the Protected Resource enabling
existing systems to reuse suitable tokens, or use a standard token
format such as a Simple Web Token or JSON Web Token. Since the Access
Token provides the Client authorization to the Protected Resource for
the 1life of the Access Token, the Authorization Server should issue
Access Tokens that expire within an appropriate time. When an Access
Token expires, the Client requests a new Access Token from the
Authorization Server, which once again computes the Client's
authorization, and issues a new Access Token. Figure 1 below shows the
flow between the Client and Authorization Server (A,B); and then
between the Client and Protected Resource (C,D):

+---+ Fom e e e oo o +
| C |--(A)------ credentials --------- >| Authorization |
| 1 |<-(B)------ Access Token --------- | Server |
| 1 | R +
| e |

| n | Access Token A +

| £t |--(C)----- in HTTP header ------- >| Protected |

| |<-(D)------ API response --------- | Resource |
+---+ Fomm e e oo +

Figure 1

In step A, the Client presents credentials to the Authorization Server
in exchange for an Access Token.

A Profile specifies the credentials to be provided in step A, and how
the Client obtains them. This specification defines a number of
Profiles; additional Profiles may be defined to support additional
scenarios. The Profiles in this specification are separated into two
groups: autonomous profiles where the Client as acting for itself, and
user delegation profiles where the Client is acting on behalf of a
User.

1.2. Autonomous Client Profiles TOC

The following two Profiles (see Section 5 (Acquiring an Access Token:
Autonomous Client Profiles)) are recommended for scenarios involving a
Client acting autonomously.

Client Account and Password Profile (Section 5.1 (Client Account and
Password Profile)): This is the simplest Profile. The Client is
provisioned with an account name and corresponding password by the
Authorization Server. The Client presents the account name and password
to the Access Token URL at the Authorization Server in exchange for an
Access Token. This Profile is not intended for a Client acting on
behalf of a User. See the User Delegation Profiles.

Assertion Profile (Section 5.2 (Assertion Profile)): This profile
enables a Client with a SAML (Cantor, S., Kemp, J., Philpott, R., and
E. Maler, “Assertions and Protocol for the OASIS Security Assertion
Markup Language (SAML) V2.0,” March 2005.) [OASIS.saml-core-2.0-0s] or
other assertion recognized by the Authorization Server. The Client
presents the assertion to the Access Token URL at the Authorization
Server in exchange for an Access Token. How the Client obtains the
assertion is out of scope of OAuth WRAP.

Access Tokens are short lived bearer tokens. When the Protected
Resource is presented with an expired Access Token by the Client, the
Protected Resource returns an error. The Client presents the assertion
once again to the Authorization Server to obtain a new Access Token.

1.3. User Delegation Profiles TOC

Common scenarios involve the User delegating to a Client to act on the
User's behalf, adding another party (the User) to the protocol. In
these Profiles (see Section 6 (Acquiring an Access Token: User
Delegation Profiles)), the Client receives a Refresh Token when it
acquires the first Access Token. When an Access Token expires, the
Client presents the Refresh Token to acquire a new Access Token.
Refresh Tokens are sensitive as they represent long-lived permissions
to access a Protected Resource and are always transmitted using HTTPS.
Username and Password Profile (Section 6.1 (Username and Password
Profile)): While the User may use a username and password to
authenticate to the Authorization Server, it is undesirable for the
Client to store the User's username and password. In this profile the
User provides their username and password to an application (Client)
they have installed on their device. The Client presents a Client
Identifier, the username and password (credentials) to the Access Token
URL at the Authorization Server in exchange for an Access Token and a
Refresh Token as depicted in Figure 2 below.

| C |--(A)------ credentials --------- >| Authorization |
| 1 |<-(B)------ Access Token --------- | Server |
| 1] Refresh Token S +
| e |

| n | Access Token R +

| £t |--(C)----- in HTTP header ------- >| Protected |

| |<-(D)------ API response --------- | Resource |

+-- -+ S U, +

Figure 2

When the Access Token expires, the Client presents the Refresh Token to
the Refresh Token URL at the Authorization Server in exchange for a new
Access Token (Figure 3, steps A and B). The Client then uses the new
Access Token to access the Protected Resource (Figure 3, steps C and
D).

+---+ S +
| C |--(A)----- Refresh Token -------- >| Authorization |
| 1 |<-(B)------ Access Token --------- | Server |
| 1] e +
| e |

| n | Access Token R +

| £t |--(C)----- in HTTP header ------- >| Protected |

| |<-(D)------ API response --------- | Resource |
+---+ o m e o - +

Figure 3

Web App Profile (Section 6.2 (Web App Profile)): It is undesirable for
a User to provide their Authorization Server username and password to
web applications. Additionally, the User may authenticate to the
Authorization Server using other mechanisms than a username and
password. In this profile, a web application (Client) has been
provisioned with a Client Identifier and Client Secret and may have
registered a Callback URL. Figure 4 below illustrates the protocol. (A)
The Client initiates the protocol by redirecting the User to the User
Authorization URL at the Authorization Server passing the Client
Identifier and the Callback URL. (B) The Authorization Server

authenticates the User, confirms the User would like to authorize the
Client to access the Protected Resource, and generates a Verification
Code. (C) The Authorization Server then redirects the User to the
Callback URL at the Client passing along the Verification Code.

. +
| Web App |
| Client |
Fommmmm - - +

\Vi A

I I

(A) (C)

I I

\ \
Y + o m e e +
[\---(C)-- Verification Code ----<		
User		Authorization
at	<---(B)-- User authenticates --->	Server
Browser		
[\---(A)-- Client Identifier ---->		
S SR + B Y +

Figure 4

Similar to step A in Figure 2, the Client then presents the Client
Identifier, Client Secret, Callback URL and Verification code
(credentials) to the Access Token URL at the Authorization Server for
an Access Token and a Refresh Token.

Rich App Profile (Section 6.3 (Rich App Profile)): This profile is
suitable when the Client is an application the User has installed on
their device and a web browser is available, but it is undesirable for
the User to provide their username and password to an application, or
the user may not be using a username and password to authenticate to
the Authorization Server.

The Client initiates the protocol by directing the User's browser to
the Authorization URL at the Authorization Server passing the Client
Identifier and potentially a Callback URL. The Authorization Server
authenticates the User, confirms the User would like to authorize the
Client to access the Protected Resource, and generates a Verification
Code. The Verification Code may be communicated back to the Client in a
number of ways:

a. the Authorization Server presents the Verification Code to the
User, who is instructed to enter the Verification Code directly
in the Client;

the Client reads the Verification Code from the title of the web
page presented by the Authorization Server;

c. the Authorization Server redirects the User to the Callback URL
that presents Client specific language for the User to enter the
Verification Code into the Client; or

d. the Client has registered a custom scheme and the Authorization
Server redirects the browser to the custom scheme that causes the
User's browser to load the Client application with the
Verification Code as a parameter.

Similar to step A in Figure 2, the Client then presents the Client
Identifier, Callback URL (if provided) and Verification code
(credentials) to the Access Token URL at the Authorization Server for
an Access Token and a Refresh Token.

2. Requirements Language TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.). Domain name examples use [RFC2606] (Eastlake, D. and A.
Panitz, “Reserved Top Level DNS Names,” June 1999.).

3. Definitions TOC

Access Token: a short lived bearer token issued by the
Authorization Server to the Client. The Access Token is presented
by the Client to the Protected Resource to access protected
resources.

Authorization Server: an authorization resource that issues Access
Tokens to Clients after successful authorization. May be the same
entity as the Protected Resource.

Client: an application that would like access to a Protected
Resource. Client Identifier:"> a value used by a Client to

identify itself to the Authorization Server. This may be a human
readable string or an opaque identifier.

Client Secret: a secret used by a web application Client to
establish ownership of the Client Identifier.

Profile: a mechanism for a Client to obtain an Access Token from an
Authorization Server.

Protected Resource: a protected API that allows access via OAuth
WRAP. May be the same entity as the Authorization Server. Refresh
Token:"> a long lived bearer token used by a Client to acquire an
Access Token from an Authorization Server.

User: an individual who has an account with the Authorization
Server.

Verification Code: a code used by a Client to verify the User has

authorized the Client to have specific access to a Protected
Resource.

.1. URLs TOC

Access Token URL: the Authorization Server URL at which an Access
Token is requested by the Client. The URL may accept a variety of
parameters depending on the Profile. A Refresh Token may also be
returned to the Client. This URL MUST be an HTTPS URL and MUST
always be called with POST.

Callback URL: the Client URL where the User will be redirected
after an authorization request to the Authorization Server.

Refresh Token URL: the Authorization Server URL at which a Refresh
Token is presented in exchange for a new Access Token is

requested. This URL MUST be an HTTPS URL and MUST always be
called with POST.

User Authorization URL: the Authorization Server URL where the
Client redirects the User to make an authorization request.

4. Accessing a Protected Resource

Clients always present an Access Token to access a Protected Resource.
Use of the Authorization header is RECOMMENDED, since HTTP
implementations are aware that Authorization headers have special
security properties and may require special treatment in caches and
logs. Protected Resources SHOULD take precautions to insure that Access
Tokens are not inadvertently logged or captured. In addition to the
methods presented here, the Protected Resource MAY allow the Client to
present the Access Token using any scheme agreed on by the Client and
Protected Resource.

4.1. Access Token TOC

The exact format of the Access Token is opaque to Clients and is out of
scope of this specification. However, Protected Resources MUST be able
to verify that the Access Token was issued by a trusted Authorization
Server and is still valid. Access Tokens SHOULD periodically expire.
The expiry time of Access Tokens is determined as an appropriate
balance between excessive resource utilization if too short and
unauthorized access if too long.

4.2. Acquiring an Access Token TOC

An Authorization Server may support one or more protocol profiles that
enable a Client to obtain an Access Token that can be used to access a
Protected Resource.

Client developers only need to implement the profile(s) that align with
how their application will be deployed and are supported by the
Authorization Server.

Authorization Server developers only need to implement the profile(s)
that are appropriate for them.

Protected Resource developers do not implement a profile as the Client
always interacts with the Protected Resource by presenting an Access
Token.

Section 7 (Parameter Considerations) has general information about
parameters passed to and from the Authorization Server.

See Section 5 (Acquiring an Access Token: Autonomous Client Profiles)
for how the Client acquires an Access Token when acting autonomously,
and Section 6 (Acquiring an Access Token: User Delegation Profiles) for
how the Client acquires an Access Token when acting acting on behalf of
a User.

4.3. Client Calls Protected Resource Using HTTP Header TOC

The Protected Resource SHOULD enable Clients to access the Protected
Resource by including the Access Token in the HTTP Authorization header
using the OAuth WRAP scheme with the following parameter:

access_token REQUIRED. The value of the Access Token

For example, if the Access Token is the string 123456789, the HTTP
header would be:

Authorization: WRAP access_token="123456789"

Note that per section 1.2 of [RFC2617] (Franks, J., Hallam-Baker, P.,
Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L. Stewart,
“HTTP Authentication: Basic and Digest Access Authentication,”

June 1999.) that the following header is also valid:

Authorization: WRAP access_token = 123456789

If the Access Token has expired or is invalid, the Protected Resource
MUST return:

HTTP 401 Unauthorized
and the HTTP header:

WwWwW-Authenticate: WRAP

4.4. Client Calls Protected Resource Using URL Query Parameter TOC
The Protected Resource MAY allow the Client to access protected
resources at the Protected Resource by including the following HTTP URL
query parameter in the URL:

access_token REQUIRED. The value of the Access Token

If the Access Token has expired or is invalid, the Protected Resource
MUST return:

HTTP 401 Unauthorized
and the HTTP header:

WwWW-Authenticate: WRAP

4.5. Client Calls Protected Resource Using Post Parameter TOC

The Protected Resource MAY allow the Client to access protected
resources at the Protected Resource by including the following
parameter in the body of a HTTP post message formatted as application/
X-www-form-urlencoded per 17.13.4 of HTML 4.01 (Hors, A., Jacobs, I.,
and D. Raggett, “HTML 4.0 Specification,” April 1998.)
[W3C.REC-htm140-19980424]:

access_token REQUIRED. The value of the Access Token

If the Access Token has expired or is invalid, the Protected Resource
MUST return:

HTTP 401 Unauthorized
and the HTTP header:

Www-Authenticate: WRAP

5. Acquiring an Access Token: Autonomous Client Profiles TOC

These are the profiles the Client uses when acting autonomously.

5.1. Client Account and Password Profile TOC

This profile is suitable when the Client is an application calling the
Protected Resource on behalf of an organization and the Authorization
Server accepts account passwords for authentication. This enables the
Authorization Server to use an existing authentication mechanism. This
profile SHOULD NOT be used when the Client is acting on behalf of a
user. Profiles 6.1 (Username and Password Profile), 6.2 (Web App
Profile) or 6.3 (Rich App Profile) are RECOMMENDED when a Client is
acting on behalf of a User.

T0C

http://www.w3.org/TR/1999/REC-W3C.REC-html40-19980424-19991224/interact/forms.html#h-17.13.4.1

5.1.1. Provisioning
Prior to initiating this protocol profile, the Client MUST have

obtained an account name and account password from the Authorization
Server.

5.1.2. Client Requests Access Token TOC

The Client makes an HTTPS request to the Authorization Server's Access
Token URL using POST. The request contains the following parameters:

wrap_name REQUIRED. The account name.
wrap_password REQUIRED. The account password.

wrap_scope OPTIONAL. The Authorization Server MAY define
authorization scope values for the Client to include.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

5.1.3. Successful Access Token Response from Authorization TOC
Server

If successful, the Authorization Server returns:
HTTP 200 OK

with the Refresh Token and an Access Token in the response body. The
response body contains the following parameters:

wrap_refresh_token REQUIRED. The Refresh Token.
wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

The Client may now use the Access Token to access the Protected
Resource per Section 4 (Accessing a Protected Resource)

5.1.4. Unsuccessful Access Token Response from Authorization TOC
Server

If the Client account name and password are invalid, the Authorization
Server MUST respond with:

HTTP 401 Unauthorized
and the HTTP header:
WwWwW-Authenticate: WRAP

The Client MUST obtain a valid account name and password before
retrying the request.

5.1.5. Client Refreshes Access Token TOC

Authorization Servers SHOULD issue Access Tokens that expire and
require Clients to refresh them. Upon receiving the HTTP 401 response
when accessing protected resources per Section 4 (Accessing a Protected

Resource), the Client should request a new Access Token by repeating
Section 5.1.2 (Client Requests Access Token)

5.2. Assertion Profile TOC

5.2.1. Provisioning TOC

Prior to initiating this protocol profile, the Client MUST have a
mechanism for obtained an assertion from an assertion issuer that can
be presented to the Authorization Server for access to the Protected
Resource.

T0C

5.2.2. Client Obtains Assertion
The Client obtains an assertion. The process for obtaining the

assertion is defined by the assertion issuer and the Authorization
Server, and is out of scope of this specification.

5.2.3. Client Requests Access Token TOC

The Client makes an HTTPS request to the Authorization Server's Access
Token URL using POST. The request contains the following parameters:

wrap_assertion_format REQUIRED. The format of the assertion as
defined by the Authorization Server.

wrap_assertion REQUIRED. The assertion.

wrap_scope OPTIONAL. The Authorization Server MAY define
authorization scope values for the Client to include

Additional parameters Any additional parameters, as defined by the
Authorization Server.

5.2.4. Successful Access Token Response from Authorization TOC
Server

If successful, the Authorization Server returns:
HTTP 200 OK

with the Access Token in the response body. The response body contains
the following parameters:

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

The Client may now use the Access Token to access the Protected
Resource per Section 4 (Accessing a Protected Resource).

5.2.5. Unsuccessful Access Token Response from Authorization TOC
Server

If the assertion is not valid, the Authorization Server MUST respond
with:

HTTP 401 Unauthorized
and the HTTP header:
Www-Authenticate: WRAP

The Client MUST obtain a valid assertion by repeating Section 5.2.2
(Client Obtains Assertion) before retrying the request.

5.2.6. Client Refreshes Access Token TOC

Authorization Servers SHOULD issue Access Tokens that expire and
require Clients to refresh them. Upon receiving the HTTP 401 response
when accessing protected resources per Section 4 (Accessing a Protected

Resource), the Client should request a new Access Token by repeating
Section 5.2.3 (Client Requests Access Token) if the assertion is still
valid, otherwise the Client MUST obtain a new, valid assertion by
repeating Section 5.2.2 (Client Obtains Assertion).

6. Acquiring an Access Token: User Delegation Profiles TOC

These are the profiles the Client uses when acting on behalf of a User.

6.1. Username and Password Profile TOC

This profile is suitable where the Client is an application the User
has installed on their computer and the User uses a username and
password to authenticate to the Authorization Server. This profile
enables a Client to act on behalf of the User without having to
permanently store the User's username and password.

T0C

6.1.1. Provisioning
Prior to initiating this protocol profile, the Authorization Server MAY

have required the Client to have obtained a Client Identifier from the
Authorization Server.

6.1.2. Client Obtains Username and Password TOC

The Client obtains the User's username and password from the user. The
Client MUST discard the username and password once an Access Token has
been obtained.

6.1.3. Client Requests Access Token TOC

The Client makes an HTTPS request to the Authorization Server's Access
Token URL using POST. The request contains the following parameters:

wrap_client_id REQUIRED. The Client Identifier.
wrap_username REQUIRED. The User's username.
wrap_password REQUIRED. The User's password.

wrap_scope OPTIONAL. The Authorization Server MAY define
authorization scope values for the Client to include.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

6.1.4. Successful Access Token Response from Authorization TOC
Server

If successful, the Authorization Server returns:
HTTP 200 OK

with the Access Token in the response body. The response body contains
the following parameters:

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in
OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

The Client MUST discard the User's username and password. The Client
securely stores the Refresh Token for later use. The Client may now use
the Access Token to access the Protected Resource per Section 4
(Accessing a Protected Resource).

6.1.5. Unsuccessful Access Token Response from Authorization TOC
Server

The Authorization Server MUST verify User's username and password. If
the verification fails, the Authorization Server MUST respond with:

HTTP 401 Unauthorized
and the HTTP header:
WwWw-Authenticate: WRAP
The Client needs to obtain a valid username and password from the User

per Section 6.1.2 (Client Obtains Username and Password) before
retrying the request.

6.1.6. Verification URL Response from Authorization Server TOC

If the Authorization Server determines that the Client may be
malicious, the Authorization Server MAY require the Client to instruct
the User to visit a Verification URL. The Authorization Server
communicates its requirement by responding to the Client's Access Token
request with the following:

HTTP 400 Bad Request

and the body of the Authorization Server response contains the
following parameter:

wrap_verification_url REQUIRED. The verification URL that the
Client MUST either load in the User's browser, or display for the
User to enter into a browser.

The Client MUST then wait for the User to indicate they have
successfully completed the verification process at the Authorization
Server and attempt to obtain an Access Token Refresh Token per
Section 6.1.3 (Client Requests Access Token) again.

6.1.7. CAPTCHA Response from Authorization Server TOC

If the Authorization Server determines that the Client may be
malicious, the Authorization Server MAY require the Client to have the
User solve a CAPTCHA Puzzle. The Authorization Server communicates its
requirement by responding to the Client's Access Token request with the
following:

HTTP 400 Bad Request

and the body of the Authorization Server response contains the
following parameter:

wrap_captcha_url REQUIRED. The URL to the CAPTCHA puzzle image.

The Client MUST present the User with the CAPTCHA puzzle and prompt for
a solution. The Client then MAY attempt to obtain an Access Token per
Section 6.1.3 (Client Requests Access Token) again, including the
following additional parameter:

wrap_captcha_url REQUIRED. The URL to the CAPTCHA puzzle received
from the Authorization Server.

wrap_captcha_solution REQUIRED. The solution string to the CAPTCHA
puzzle as defined by the Authorization Server.

6.1.8. Client Refreshes Access Token TOC

Refreshing an Access Token is the same in Section 6.1 (Username and
Password Profile), Section 6.2 (Web App Profile), and Section 6.3 (Rich
App Profile). Authorization Servers SHOULD issue Access Tokens that
expire and require Clients to refresh them. Upon receiving the HTTP 401
response when accessing protected resources per Section 4 (Accessing a
Protected Resource), the Client makes an HTTPS request to the
Authorization Server's Refresh Token URL using POST. The request
contains the following parameters:

wrap_refresh_token

REQUIRED. The Refresh Token that was received in Section 6.1.3
(Client Reguests Access Token)

Additional parameters: Any additional parameters, as defined by the
Authorization Server.

6.1.9. Successful Access Token Refresh TOC
If successful, the Authorization Server returns:
HTTP 200 OK

with the Access Token in the response body. The response body contains
the following parameters:

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

6.1.10. Unsuccessful Access Token Refresh TOC

The Authorization Server MUST verify the Refresh Token. If the
verification fails, the Authorization Server MUST respond with

HTTP 401 Unauthorized
and the HTTP header:
Www-Authenticate: WRAP
The Client MUST again request authorization from the User by prompting

for the User's username and password per Section 6.1.2 (Client Obtains
Username and Password) before retrying the request.

T0C

6.2. Web App Profile

This profile is suitable when the Client is a web application calling
the Protected Resource on behalf of a User. This profile enables a
Client to act on behalf of the User without acquiring a User's
credentials.

6.2.1. Provisioning TOC

Prior to initiating this protocol profile, the Client MUST have
obtained a Client Identifier and Client Secret from the Authorization
Server. The Authorization Server MAY have also required the Client to
register the Callback URL.

6.2.2. Client Directs the User to the Authorization Server TOC

The Client initiates an authorization request by redirecting the User's
browser to the Authorization Server's User Authorization URL, with the
following parameters:

wrap_client_id REQUIRED. The Client Identifier.

wrap_callback REQUIRED. The Callback URL. An absolute URL to which
the Authorization Server will redirect the User back after the
User has approved the authorization request. Authorization
Servers MAY require that the wrap_callback URL match the
previously registered value for the Client Identifier.

wrap_client_state OPTIONAL. An opaque value that Clients can use to
maintain state associated with this request. If this value is
present, the Authorization Server MUST return it to the Client's
Callback URL.

wrap_scope OPTIONAL. The Authorization Server MAY define
authorization scope values for the Client to include.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

TOC

6.2.3. Authorization Server Confirms Authorization Request with User

Upon receiving an authorization request from the Client by a
redirection of the User's browser, the Authorization Server
authenticates the user, presents the User with the Protected Resource
access that will be granted to the Client, and prompts the User to
confirm the request.

If the User denies the request, the Authorization Server MAY allow the
User to return to the Client Callback URL with the following parameters
added:

wrap_error_reason REQUIRED. Value is user_denied

wrap_client_state REQUIRED if the Client sent the value in the
authorization request in Section 6.2.2 (Client Directs the User
to the Authorization Server)

If the User approves the request, the Authorization Server generates a
Verification Code and associates it with the Client Identifier and
Callback URL.

6.2.4. Authorization Server Directs User back to the Client TOC

If the User approved the request, the Authorization Server MUST
redirect the User back to the Callback URL, with the following
parameters added:

wrap_verification_code REQUIRED. The Verification Code.

wrap_client_state REQUIRED if the Client sent the value in the
authorization request in Section 6.2.2 (Client Directs the User
to the Authorization Server)

Additional parameters: Any additional parameters, as defined by the
Authorization Server.

6.2.5. Client Requests Access Token TOC

The Client makes an HTTPS request to the Authorization Server's Access
Token URL, using POST. The request contains the following parameters in
the body of the request:

wrap_client_id REQUIRED. The Client Identifier

wrap_client_secret
REQUIRED. The Client Secret

wrap_verification_code REQUIRED. The Verification Code.

wrap_callback REQUIRED. The Callback URL used to obtain the
Verification Code.

Additional parameters: Any additional parameters, as defined by the
Authorization Server.

6.2.6. Successful Access Token Response from Authorization TOC
Server

After receiving the Access Token request, the Authorization Server
verifies the request as follows:

the Client Secret MUST match the Client Identifer

the Client Identifier MUST match the Client Identifier from the
authorization redirect

the Verification Code MUST match the Client Identifier from the
authorization redirect

the Callback URL MUST match the Callback URL from the authorization
redirect

if the Callback URL or Callback URL pattern was registered with the
Authorization Server, the Callback URL MUST match the Callback URL
or Callback URL pattern as defined by the Authorization Server

the Verification Code MUST not have expired
The Authorization Server MAY also require that a Verification Code is
not reused.
If verification is successful, the Authorization Server returns:

HTTP 200 OK

with the Refresh Token and the Access Token in the response body. The
response body contains the following parameters:

wrap_refresh_token REQUIRED. The Refresh Token.

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in
OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

The Client securely stores the Refresh Token for later use. The Client
may now use the Access Token to access the Protected Resource per
Section 4 (Accessing a Protected Resource).

6.2.7. Unsuccessful Access Token Response from Authorization TOC

Server

The Authorization Server MUST first verify the Client Identifier and
Client Secret. If they are invalid, the Authorization Server MUST
respond with:

HTTP 401 Unauthorized
and the HTTP header:
WwWwW-Authenticate: WRAP

The Client MUST obtain a valid Client Identifier and Client Secret
before retrying the request.

The Authorization Server MUST then verify that the Callback URL and
Verification Code are associated with the Client Identifier. If the
verification fails, the Authorization Server MUST respond with:

HTTP 400 Bad Request

and the body of the Authorization Server response contains the
following parameters:

wrap_error_reason OPTIONAL. If all the parameters are valid except
that the Verification Code has expired or been revoked, then it
is RECOMMENDED that this parameter be included and if so, then
the value MUST be:

expired_verification_code

This enables the Client to detect it needs a new Verification
Code and to direct the User to the Authorization Server per

Section 6.2.2 (Client Directs the User to the Authorization

Server)

If the Callback URL is invalid, the value MUST be:

invalid_callback

Additional parameters Any additional parameters, as defined by the
Authorization Server.

6.2.8. Client Refreshes Access Token TOC

Refreshing an Access Token is the same in Section 6.1 (Username and
Password Profile), Section 6.2 (Web App Profile), and Section 6.3 (Rich
App Profile). Authorization Servers SHOULD issue Access Tokens that
expire and require Clients to refresh them. Upon receiving the HTTP 401
response when accessing protected resources per Section 4 (Accessing a
Protected Resource), the Client makes an HTTPS request to the
Authorization Server's Refresh Token URL using POST. The request
contains the following parameters:

wrap_refresh_token REQUIRED. The Refresh Token that was received in
Section 6.2.5 (Client Requests Access Token)

Additional parameters: Any additional parameters, as defined by the
Authorization Server.

6.2.9. Successful Access Token Refresh TOC
If successful, the Authorization Server returns:
HTTP 200 OK

with the Access Token in the response body. The response body contains
the following parameters:

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters
Any additional parameters, as defined by the
Authorization Server.

6.2.10. Unsuccessful Access Token Refresh TOC

The Authorization Server MUST verify the Refresh Token. If the
verification fails, the Authorization Server MUST respond with

HTTP 401 Unauthorized
and the HTTP header:
WwWW-Authenticate: WRAP

The Client MUST again request authorization from the User per
Section 6.2.2 (Client Directs the User to the Authorization Server).

6.3. Rich App Profile TOC

This profile is suitable where the Client is an application the User
has installed on their computer and there is a browser available for
the Client to launch. This profile enables a Client to act on behalf of
the User regardless of how the User authenticates to the Server and
without access to the User's credentials.

6.3.1. Provisioning TOC

Prior to initiating this protocol profile, the Client MAY be required
to register the Client Identifier and/or the Callback URL with the
Server.

6.3.2. Client Directs the User to the Authorization Server TOC

The Client initiates an authorization request by opening the User's
browser with the Server's User Authorization URL, and including the
following parameters:

wrap_client_id
REQUIRED. The Client Identifier.

wrap_callback OPTIONAL. A Callback URL where the Authorization
Server MAY redirect the User's browser after the User responds to
the authorization request.

wrap_client_state OPTIONAL. An opaque value that Clients can use to
maintain state associated with this request. If this value is
present, the Authorization Server MUST return it to the Client's
Callback URL.

wrap_scope OPTIONAL. The Authorization Server MAY define
authorization scope values for the Client to include.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

6.3.3. Authorization Server Confirms Authorization Request TOC
with User

Upon receiving an authorization request from the Client by way of the
User's browser, the Authorization Server authenticates the user,
presents the User with the Protected Resource access that will be
granted to the Client, and prompts the User to confirm the request. If
the User approves the request, the Authorization Server generates a
Verification Code. If the User denied access, the Authorization Server
MAY set the Verification Code to the reserved value:

user_denied

It is RECOMMENDED the Verification Code be single use, and expire
within minutes of issue. There are a number of mechanisms for the
Authorization Server to transmit the Verification Code to the Client,
specified below.

Rich Application interaction with the User and the Authorization Server
is an area of active research and development. If the Rich Application
is able to retrieve the verifier directly from the callback URL
returned by the Authorization Server, an improved user experience is
possible. However, not all applications are able to interact with the
Authorization Server in this manner.

TOC

6.3.3.1. Applications with Callback URLs

Rich Applications may be able to receive callback URLs in any of
several ways. For example, the Rich Application may register a custom
protocol handler with the application platform so that the application
will be invoked when the browser is redirected to the callback URL.
Alternatively, the callback URL may point to a web site with which the
Rich Application has a trust relationship. The web site can then pass
the Callback URL down to the Rich Application for processing. Finally,
the Callback URL may point to a web site that will display the Callback
URL to the screen along with instructions for the user to enter the
Verification Code into the application.

For Rich Applications with a Callback URL, the Authorization Server
MUST redirect the User back to the Callback URL, with the following
parameters added:

wrap_verification_code REQUIRED. The Verification Code

wrap_client_state REQUIRED if the Client sent the value in the
authorization request in Section 6.3.2 (Client Directs the User
to the Authorization Server)

Additional parameters Any additional parameters, as defined by the
Authorization Server.

If the User denied access, the Server MAY redirect the User's browser
to the Callback URL with the Verification Code set to the reserved
value:

user_denied

6.3.3.2. Applications without Callback URLs TOC

Rich Applications without Callback URLs need to receive the
verification code in other ways. For Rich Applications without a
Callback URL, the Authorization Server MUST present the Verification
Code on the web page and instruct the user to enter it into the Client.
The Server MAY also append the Verification Code to the title of the
HTML page so that Clients that have access to the title of the
browser's current page can obtain the Verification Code without
requiring the User enter the Verification Code into the Client. The
Client can parse the title looking for "code=" and then the rest of the
title is the Verification Code. If adding the Verification Code to the
title of the HTML page, the Server MUST also include the
wrap_client_state parameter if sent from the Client as the "state="
parameter.

Eg. For example.com where the Verification Code = WF34F7HG and Client
State = NMMGFJJ, the Server would set the title of the page to
something like:

<title>Successful delegation, code=WF34F7HG
state=NMMGFJJ</title>

If the User denied access, the Server MAY append code=user_denied to

the title of the HTML page so that the Client can detect that the User
has denied access.

6.3.4. Client Requests Access Token TOC

The Client makes an HTTPS request to the Server's Access Token URL
using POST. The request contains the following parameters:

wrap_client_id REQUIRED. The Client Identifier
wrap_verification_code REQUIRED. The Verification Code.

Additional parameters: Any additional parameters, as defined by the
Authorization Server.

6.3.5. Successful Access Token Response from Authorization TOC
Server

The Server checks the Verification Code was previously issued to the
same Client Identifier, has not expired and has not been used. If these
conditions are met, the Server marks the Verification Code as being
used and returns:

HTTP 200 OK

with the Refresh Token and an Access Token in the response body. The
response body contains the following parameters:

wrap_refresh_token
REQUIRED. The Refresh Token.

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

The Client securely stores the Refresh Token for later use. The Client
may now use the Access Token to access the Protected Resource per
Section 4 (Accessing a Protected Resource).

6.3.6. Unsuccessful Access Token Response from Authorization TOC
Server

The Authorization Server MUST first verify the Client Identifier and
Client Secret per Section 6.3.5 (Successful Access Token Response from
Authorization Server). If they are invalid, the Authorization Server
MUST respond with:

HTTP 401 Unauthorized
and the HTTP header:
WwWW-Authenticate: WRAP

The Client needs to obtain a new Verification Code per Section 6.3.2
(Client Directs the User to the Authorization Server).

6.3.7. Client Refreshes Access Token TOC

Refreshing an Access Token is the same in Section 6.1 (Username and
Password Profile), Section 6.2 (Web App Profile), and Section 6.3 (Rich
App Profile). Authorization Servers SHOULD issue Access Tokens that
expire and require Clients to refresh them. Upon receiving the HTTP 401
response when accessing protected resources per Section 4 (Accessing a
Protected Resource), the Client makes an HTTPS request to the
Authorization Server's Refresh Token URL using POST. The request
contains the following parameters:

wrap_refresh_token REQUIRED. The Refresh Token that was received in
Section 6.3.4 (Client Requests Access Token)

Additional parameters:
Any additional parameters, as defined by the
Authorization Server.

6.3.8. Successful Access Token Refresh TOC
If successful, the Authorization Server returns:
HTTP 200 OK

with the Access Token in the response body. The response body contains
the following parameters:

wrap_access_token REQUIRED. The Access Token.

wrap_access_token_expires_in OPTIONAL. The lifetime of the Access
Token in seconds. For example, 3600 represents one hour.

Additional parameters Any additional parameters, as defined by the
Authorization Server.

6.3.9. Unsuccessful Access Token Refresh TOC

The Authorization Server MUST verify the Refresh Token. If the
verification fails, the Authorization Server MUST respond with

HTTP 401 Unauthorized
and the HTTP header:
WwWW-Authenticate: WRAP

The Client MUST again request authorization from the User per
Section 6.3.2 (Client Directs the User to the Authorization Server).

7. Parameter Considerations TOC

7.1. Authorization Server Request / Response Parameter TOC
Encoding

All requests made directly to the Authorization Server use the HTTP
POST method and the parameters MUST be in the body of the message and
formatted as application/x-www-form-urlencoded per 17.13.4 of HTML 4.01
(Hors, A., Jacobs, I., and D. Raggett, “HTML 4.0 Specification,”

April 1998.) [W3C.REC-html40-19980424].

Any parameters in the response from the Authorization Server MUST be in
the body of the message and formatted as application/x-www-form-
urlencoded per 17.13.4 of HTML 4.01 (Hors, A., Jacobs, I., and D.
Raggett, “HTML 4.0 Specification,” April 1998.)
[W3C.REC-htm140-19980424].

7.2. Parameter Size TOC

HTTP Headers Web servers often impose a maximum on the combined
size of all HTTP headers ranging from 8KB to 16KB. The size of
the Access Token should be small enough to ensure the total size
of the HTTP headers does not exceed the limits of web servers.

URLs Web servers and browsers often impose a maximum on the total
length of the URL of as low as 2083 bytes. The length of URLs
exposed by the Authorization Server and the length of parameters
passed on a URL should be minimized so that the total length does
not exceed this limit.

7.3. Access Token Format TOC

OAuth WRAP does not specify the format of the Access Token. The format
is mutually agreed to by the Authorization Server and the Protected
Resource and is opaque to the Client. The Access Token format MUST
consist of legal characters in an HTTP header per [Reference needed]
The Simple Web Token (SWT) and JSON Web Token (JWT) are possible Access
Token formats.

[TBD: entropy recommendations for Access Token so that it remains
secure during its lifetime]

TOC

http://www.w3.org/TR/1999/REC-W3C.REC-html40-19980424-19991224/interact/forms.html#h-17.13.4.1
http://www.w3.org/TR/1999/REC-W3C.REC-html40-19980424-19991224/interact/forms.html#h-17.13.4.1

7.4. Refresh Token Format

OAuth WRAP does not specify the format of the Refresh Token. The
Refresh Token is both generated and consumed by the Authorization
Server and is opaque to the Client and never exposed to the Protected
Resource. The Refresh Token is a long lived credential, and should
contain enough entropy that it cannot be guessed. The size limitations
of the Access Token are not applicable to the Refresh Token as the
Refresh Token is always in the body of an HTTP message.

7.5. Additional Authorization Server Parameters TOC
The Authorization Server may define additional parameters to be
included in are returned from calls to the Access Token URL or User

Authorization URL. Parameters that start with wrap_ are reserved and
may not be used.

7.6. Parameter Names and Order TOC

All parameter names are case sensitive. The parameters my appear in any
order. Unrecognized parameters are allowed, but MUST be ignored.

8. IANA Considerations TOC

This memo includes no request to IANA.

9. Security Considerations TOC

TBD: need to put in all the security considerations for implementors.

10. References TOC

10.1. Normative References TOC

[RFC2119]

[RFC2606]

[RFC2617]

[W3C.REC-
htm140-19980424]

Bradner, S., “Key words for use in RFCs to

Indicate Requirement Levels,” BCP 14, RFC 2119,

March 1997 (TXT, HTML, XML).

Eastlake, D. and A. Panitz, “Reserved Top Level
DNS Names,” BCP 32, RFC 2606, June 1999 (TXT).
Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and L.
Stewart, “HTTP Authentication: Basic and Digest
Access Authentication,” RFC 2617, June 1999 (TXT,
HTML, XML).

Hors, A., Jacobs, I., and D. Raggett, “HTML 4.0
Specification,” World wWide Web Consortium
Recommendation REC-html40-19980424, April 1998
(HTML) .

10.2. Informative References

[I-D.narten-iana-
considerations-
rfc2434bis]

[OASIS.saml-
core-2.0-0s]

[OAuth Core 1.0]

T0C

Narten, T. and H. Alvestrand, “Guidelines for
Writing an IANA Considerations Section in
RFCs,” draft-narten-iana-considerations-
rfc2434bis-09 (work in progress), March 2008
(IXT).

Cantor, S., Kemp, J., Philpott, R., and E.
Maler, “Assertions and Protocol for the OASIS
Security Assertion Markup Language (SAML)
V2.0,"” OASIS Standard saml-core-2.0-0s,

March 2005.

Hammer-Lahav, E., “OAuth Core 1.0 Protocol.”

Appendix A. Client Account and Password Profile Example TOC

In this example, crm.example.com is an application server that has a
Protected Resource at https://crm.example.com/data. DataDumper is an
application acting as a Client that periodically calls https://
crm.example.com/data. The Protected Resource trusts the Authorization
Server auth.example.net to determine if a Client has access.

T0C

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:dee3@us.ibm.com
mailto:buglady@fuschia.net
http://tools.ietf.org/html/rfc2606
http://tools.ietf.org/html/rfc2606
http://www.rfc-editor.org/rfc/rfc2606.txt
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com
mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://www.rfc-editor.org/rfc/rfc2617.txt
http://xml.resource.org/public/rfc/html/rfc2617.html
http://xml.resource.org/public/rfc/xml/rfc2617.xml
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.w3.org/TR/1998/REC-html40-19980424
http://www.ietf.org/internet-drafts/draft-narten-iana-considerations-rfc2434bis-09.txt
http://www.ietf.org/internet-drafts/draft-narten-iana-considerations-rfc2434bis-09.txt
http://www.ietf.org/internet-drafts/draft-narten-iana-considerations-rfc2434bis-09.txt
http://www.ietf.org/internet-drafts/draft-narten-iana-considerations-rfc2434bis-09.txt
mailto:cantor.2@osu.edu
mailto:John.Kemp@nokia.com
mailto:rphilpott@rsasecurity.com
mailto:eve.maler@sun.com
mailto:eve.maler@sun.com
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-core-2.0-os.pdf
http://tools.ietf.org/html/draft-hammer-oauth-08

A.1. Provisioning
The Authorization Server documentation defines the Access Token URL as:
https://auth.example.net/access_token

The Authorization Server has defined that the parameter Audience be
included in calls to the Access Token URL.
The Client has been provisioned with the following:

Client Account: datadumper Client Password: j2hw7GPsl0

The Protected Resource and the Authorization Server have agreed to use
a Simple Web Token (SWT) for the Access Token with the reserved
attributes Issuer, Audience, ExpiresOn and the public attribute
net.example.auth.account and have exchanged the following HMAC key
value (expressed in base 64):

31iK5ZYA0oBQuUOQSgF/YqlDw70HKRmbyXkr15f4SJ4Toc=

A.2. Client Requests Access Token _ToC _
The Client makes an HTTPS POST to:

https://auth.example.net/access_token
wWith the following message body:

wrap_name=datadumperé&wrap_password=j2hw7GPs10&Audience=crm.example.com

A.3. Successful Access Token Response from Authorization TOC
Server

The Authorization Server checks that the Client Password j2hw7GPslO is
associated with the Client Name datadumper and that the Client is
authorized to access crm.example.com. The Authorization Server notes
the time is 2010-02-03T04:05:06Z, which is 1265198706 seconds since
1970-01-01T0:0:0Z. The Authorization Server would like the Access Token
to expire in an hour, so 3600 is added to the current time. The
Authorization Server then uses the values:

net.example.auth.account:

datadumper ExpiresOn: 1265202306 (1265198706 + 3600)
Audience: crm.example.com

Issuer: auth.example.net

and the agreed HMAC key to generate the following SWT:

net.example.auth.account=datadumper&Expires0On=1265202306&Audience=crm.
example.com&Issuer=auth.example.net&HMACSHA256=N9%2F%2F0tS0s78Me36%2B1
0BHOSFKfd7eCsUR1EIheoUbCJk%3D

The Authorization Server then responds to the Clients HTTPS request
with:

HTTP 200 OK

and the Access Token and lifetime of the Access Token as application/x-
www-form-urlencoded data in the body of the message as such:

wrap_access_token=net.example.auth.account%3Ddatadumper%26Expires0n%3D
1265202306%26Audience%3Dcrm.example.com%26Issuer%3Dauth.example.net%26
HMACSHA256%3DN9%252F%252F0tS0s78Me36%252B10BHOSFKfd7eCsUR1IEIheoUbCJIk%2
53D&wrap_access_token_expires_in=3600

A.4. Client Calls Protected Resource TOC

The Client now has an Access Token valid for an hour. The Client makes
an API call to:

https://crm.example.com/data

including the following HTTP header:
Authorization: WRAP access_token="net.example.auth.account=datadumperé&
ExpiresOn=1265202306&Audience=crm.example.com&Issuer=auth.example.net&

HMACSHA256=N9%2F%2F0tS0s78Me36%2BioBHOSFKfd7eCsURLIEIheoUbCJIk%3D"

The Protected Resources verifies the SWT and performs the Client's
request per the authorization attributes in the SWT.

TOC

Appendix B. Web App Profile Example

In this example, Jane, the User, listens to music from
music.example.com and updates her status at status.example.com. When
listening to music, Jane would like her status to be updated at the
start of each song. From an OAuth WRAP perspective, the Client is
music.example.com, the Protected Resource is https://
status.example.com/update, and auth.example.com is the Authorization
Server trusted by status.example.com.

B.1. Provisioning TOC
The Authorization Server documentation defines the following URLS:

User Authorization URL: https://auth.example.com/user_authorization
Access Token URL: https://auth.example.com/access_token
Refresh Token URL: https://auth.example.com/refresh_token

The Authorization Server has defined that if the Client wants
authorization to update a User's status, that the Client include the
wrap_scope parameter with the value status_update when requesting
authorization.

The Client has been provisioned with:

Client Identifier: music.example.com
Client Secret: 7F2986DF2342914A

The Client has registered the Callback URL:
https://music.example.com/auth_callback

The Protected Resource and the Authorization Server have agreed to use
a Simple Web Token (SWT) for the Access Token with the reserved
attributes Issuer, Audience, ExpiresOn and the public attributes
com.example.auth.account, com.example.auth.client and
com.example.auth.scope. They have exchanged the following HMAC key
value (expressed in base 64):

Zt9J1L1QVPYRSCKOPQSjrxRUBWe71bEYSZCdM+sJCF4=

B.2. Client Directs the User to the Server TOC

Jane informs music.example.com that she would like her status at
status.example.com to be updated when a new song starts playing. The

music.example.com website maintains user sessions with a URL parameter
named session which has the value Vn3IG2FRALSEQX2Nxr at this time for
Jane. The Client will use wrap_client_state to maintain the session
value. The Client redirects Jane's browser to the Authorization
Server's User Authorization URL appending parameters for the Client
Identifier, Callback URL, Client state and authorization scope.

https://auth.example.com/user_authorization?wrap_client_id=music.examp
le.com&wrap_callback=http%3A%2F%2Fmusic.example.com%2Fauth_callback&wr
ap_client_state=Vn3IG2FRALSEQX2Nxr&wrap_scope=status_update

B.3. Authorization Server Confirms Delegation Request with TOC
User

The Authorization Server verifies the supplied Client Identifier
music.example.com has been registered and has the Callback URL https://
music.example.com/auth_callback. The Authorization Server authenticates
that the User it is dealing with is Jane, and then asks Jane to
authorize music.example.com to update Jane's status at
status.example.com. Jane approves the request and the Authorization
Server generates a Verification Code with the value 46YEXQjVit6T3nQ8,
stores it with the Client Identifier, Callback UR1 and the current
time.

B.4. Server Directs User back to the Client TOC

The Server redirects Jane back to the Client's Callback URL with the
Verification Code and Client State appended:

https://music.example.com/auth_callback?wrap_verification_code=46YEXQ]
Vit6T3nQ8&wrap_client_state=Vn3IG2FRALSEQX2Nxr

B.5. Client Requests Access Token TOC
The Client makes an HTTPS POST request to:
https://auth.example.com/access_token

with the following message body:

wrap_client_id=music.example.com&wrap_client_secret=7F2986DF2342914A&w
rap_verification_code=46YEXQ]jVit6T3nQ8&wrap_callback=http%3A%2F%2Fmusi
c.example.com%2Fauth_callback

B.6. Successful Access Token Response from Authorization TOC
Server

The Authorization Server verifies that the Verification Code is still
valid, has not been used, and is associated with the Client ID, Client
Secret and Callback URL Password. The Authorization Server then
generates a Refresh Token with the value:

MfdWTc+vOMXhpc+d/csrKFMPEj1RySm6CzIjmTBGN6W=

The Authorization Server notes the time is 2010-01-02T03:04:05Z, which
is 1262430245 seconds since 1970-01-01T0:0:0Z. The Authorization Server
then uses the values:

com.example.auth.scope: status_updatea
com.example.auth.account: Jane

com.example.auth.client: music.example.com

ExpiresOn: 1262433845 (1262430245 + 3600 seconds later)
Audience: status.example.com

Issuer: auth.example.com

and the agreed HMAC key to generate the following SWT:

com.example.auth.scope=status_update&com.example.auth.account=Jane&com
.example.auth.client=music.example.com&ExpiresOn=1262433845&Audience=s
tatus.example.com&Issuer=auth.example.com&HMACSHA256=3xZAYZzJRtYCQQgkAF3
1qE1lp1DhyKkPhq947j04NcDocQ%3D

The Authorization Server then responds to the Clients HTTPS request
with:

HTTP 200 OK
and the Refresh Token, Access Token and lifetime of the Access Token as

application/x-www-form-urlencoded data in the body of the message as
such:

wrap_refresh_token=MfdwWTc%2BvIMXhpc%2Bd%2FcsrKFMPfj1RySm6CzIjmTBGN6wW%3
D&wrap_access_token=com.example.auth.scope%3Dstatus_update%26com.examp
le.auth.account%3DJane%26com.example.auth.client%3Dmusic.example.com%2
B6EXpiresOn%3D1262433845%26Audience%3Dstatus.example.com%26Issuer%3Daut
h.example.com%26HMACSHA256%3D3xZAYzJRtYCQgkAF3iqElp1DhyKkPhq947j04NcDo
cQ%253D&wrap_access_token_expires_in=3600

The Client now has a Refresh Token and Access Token valid for an hour.
The Client stores the Refresh Token for later use.

B.7. Client Calls Protected Resource TOC

A few minutes later, music.example.com starts playing a new song for
Jane. The Client updates Jane's status at status.example.com by making
an API call to:

https://status.example.com/update

including the following HTTP header:
Authorization: WRAP access_token="com.example.auth.scope=status_update
&com.example.auth.account=Jane&com.example.auth.client=music.example.c
OM&EXpiresOn=1262433845&Audience=status.example.com&Issuer=auth.exampl

e.COM&HMACSHA256=3xZAYzJRtYCQgkAF31gE1lp1DhyKkPhq947j04NcDocQ%3D"

The Protected Resources verifies the SWT, confirms the authorization
contained in the SWT, and updates Jane's status.

B.8. Client Refreshes Access Token TOC

An hour passes by and music.example.com starts playing another new song
for Jane. The Client again makes an API call to status.example.com
including the same HTTP Authorization header. Unlike previous calls
where the status update was performed, the Protected Resource returns
the following error response:

HTTP 401 Unauthorized
and the HTTP header:
Www-Authenticate: WRAP

The Client determines it probably needs a new Access Token, retrieves
the Refresh Token and makes an HTTPS POST to:

https://auth.example.com/refresh_token

including the Client Identifier, Client Secret and Refresh Token in the
message body as:

wrap_client_id=music.example.com&wrap_client_secret=7F2986DF2342914A&w
rap_refresh_token=MfdwTc%2BvOMXhpc%2Bd%2FcsrKFMPTj1RySm6CzIjmTBGN6W%3D

The Authorization Server looks up the data associated with the Refresh
Token, determines music.example.com is still authorized to update
Jane's status, and determines it will generate a new Access Token for
the Client that expires in an hour. The time is now
2010-01-02T04:15:23Z, which results in an Access Token expiry time of
1262438123 seconds since 1970-01-01T0:0:0Z. The Authorization Server
generates a new Access Token and returns it in the body of the message
as:

wrap_access_token=com.example.auth.scope=status_update&com.example.aut
h.account=Jane&com.example.auth.client=music.example.com&ExpiresOn=126
2438123&Audience=status.example.com&Issuer=auth.example.com&HMACSHA256
=AT4TFChHgyylItEWAjK7MFRJuvVUS3WLVZz0%2F68gvIRQI%3D&wWrap_access_token_ex
pires_in=3600

The Client takes the new Access Token and uses it to successfully
update Jane's status at status.example.com.

Authors' Addresses
_T0C
Dick Hardt (editor)
Microsoft
Email: dick.hardt@gmail.com

Allen Tom
Yahoo!
Email: atom@yahoo-inc.com

Brian Eaton
Google
Email: beaton@google.com

Yaron Goland
Microsoft
Email: yarong@microsoft.com

mailto:dick.hardt@gmail.com
mailto:atom@yahoo-inc.com
mailto:beaton@google.com
mailto:yarong@microsoft.com

	OAuth Web Resource Authorization Profilesdraft-hardt-oauth-01
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Overview
	1.1. Accessing a Protected Resource
	1.2. Autonomous Client Profiles
	1.3. User Delegation Profiles
	2. Requirements Language
	3. Definitions
	3.1. URLs
	4. Accessing a Protected Resource
	4.1. Access Token
	4.2. Acquiring an Access Token
	4.3. Client Calls Protected Resource Using HTTP Header
	4.4. Client Calls Protected Resource Using URL Query Parameter
	4.5. Client Calls Protected Resource Using Post Parameter
	5. Acquiring an Access Token: Autonomous Client Profiles
	5.1. Client Account and Password Profile
	5.1.1. Provisioning
	5.1.2. Client Requests Access Token
	5.1.3. Successful Access Token Response from Authorization Server
	5.1.4. Unsuccessful Access Token Response from Authorization Server
	5.1.5. Client Refreshes Access Token
	5.2. Assertion Profile
	5.2.1. Provisioning
	5.2.2. Client Obtains Assertion
	5.2.3. Client Requests Access Token
	5.2.4. Successful Access Token Response from Authorization Server
	5.2.5. Unsuccessful Access Token Response from Authorization Server
	5.2.6. Client Refreshes Access Token
	6. Acquiring an Access Token: User Delegation Profiles
	6.1. Username and Password Profile
	6.1.1. Provisioning
	6.1.2. Client Obtains Username and Password
	6.1.3. Client Requests Access Token
	6.1.4. Successful Access Token Response from Authorization Server
	6.1.5. Unsuccessful Access Token Response from Authorization Server
	6.1.6. Verification URL Response from Authorization Server
	6.1.7. CAPTCHA Response from Authorization Server
	6.1.8. Client Refreshes Access Token
	6.1.9. Successful Access Token Refresh
	6.1.10. Unsuccessful Access Token Refresh
	6.2. Web App Profile
	6.2.1. Provisioning
	6.2.2. Client Directs the User to the Authorization Server
	6.2.3. Authorization Server Confirms Authorization Request with User
	6.2.4. Authorization Server Directs User back to the Client
	6.2.5. Client Requests Access Token
	6.2.6. Successful Access Token Response from Authorization Server
	6.2.7. Unsuccessful Access Token Response from Authorization Server
	6.2.8. Client Refreshes Access Token
	6.2.9. Successful Access Token Refresh
	6.2.10. Unsuccessful Access Token Refresh
	6.3. Rich App Profile
	6.3.1. Provisioning
	6.3.2. Client Directs the User to the Authorization Server
	6.3.3. Authorization Server Confirms Authorization Request with User
	6.3.3.1. Applications with Callback URLs
	6.3.3.2. Applications without Callback URLs
	6.3.4. Client Requests Access Token
	6.3.5. Successful Access Token Response from Authorization Server
	6.3.6. Unsuccessful Access Token Response from Authorization Server
	6.3.7. Client Refreshes Access Token
	6.3.8. Successful Access Token Refresh
	6.3.9. Unsuccessful Access Token Refresh
	7. Parameter Considerations
	7.1. Authorization Server Request / Response Parameter Encoding
	7.2. Parameter Size
	7.3. Access Token Format
	7.4. Refresh Token Format
	7.5. Additional Authorization Server Parameters
	7.6. Parameter Names and Order
	8. IANA Considerations
	9. Security Considerations
	10. References
	10.1. Normative References
	10.2. Informative References
	Appendix A. Client Account and Password Profile Example
	A.1. Provisioning
	A.2. Client Requests Access Token
	A.3. Successful Access Token Response from Authorization Server
	A.4. Client Calls Protected Resource
	Appendix B. Web App Profile Example
	B.1. Provisioning
	B.2. Client Directs the User to the Server
	B.3. Authorization Server Confirms Delegation Request with User
	B.4. Server Directs User back to the Client
	B.5. Client Requests Access Token
	B.6. Successful Access Token Response from Authorization Server
	B.7. Client Calls Protected Resource
	B.8. Client Refreshes Access Token
	Authors' Addresses

