
Workgroup: Network Working Group

Internet-Draft: draft-hardt-xauth-protocol-02

Published: 8 February 2020

Intended Status: Standards Track

Expires: 11 August 2020

Authors: D. Hardt, Ed.

SignIn.Org

The XAuth Protocol

Abstract

Client software often desires resources or identity claims that are

independent of the client. This protocol allows a user and/or

resource owner to delegate resource authorization and/or release of

identity claims to a server. Client software can then request access

to resources and/or identity claims by calling the server. The

server acquires consent and authorization from the user and/or

resource owner if required, and then returns to the client software

the authorization and identity claims that were approved. This

protocol can be extended to support alternative authorizations,

claims, interactions, and client authentication mechanisms.

Note to Readers

Source for this draft and an issue tracker can be found at https://

github.com/dickhardt/hardt-xauth-protocol.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 11 August 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

https://github.com/dickhardt/hardt-xauth-protocol
https://github.com/dickhardt/hardt-xauth-protocol
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

2.1. Parties

2.2. Reused Terms

2.3. New Terms

3. Sequences

3.1. Create Grant

3.2. Reciprocal Grant

3.3. GS Initiated Grant

3.4. Create and Update

3.5. Create and Delete

3.6. Create, Discover, and Delete

3.7. Create and Wait

3.8. Read Grant

3.9. Access Token Refresh

3.10. GS API Table

4. Grant and AuthZ Life Cycle

5. GS APIs

5.1. Create Grant

5.2. Read Grant

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://trustee.ietf.org/license-info

5.3. Update Grant

5.4. Delete Grant

5.5. Request JSON

5.5.1. "client" Object

5.5.2. "interaction" Object

5.5.3. "user" Object

5.5.4. "authorization" Object

5.5.5. "authorizations" Object

5.5.6. "claims" Object

5.5.7. "reciprocal" Object

5.6. Refresh Authorization

5.7. Update Authorization

5.8. Delete Authorization

5.9. GS Options

5.10. Grant Options

5.11. AuthZ Options

5.12. Request Verification

6. GS Initiated Grant

7. GS API Responses

7.1. Grant Response

7.2. Interaction Response

7.3. Wait Response

7.4. Response JSON

7.4.1. "interaction" Object

7.4.2. "user" Object

7.4.3. "authorization" Object

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

7.4.4. "authorizations" Object

7.4.5. "claims" Object

7.4.6. "reciprocal" Object

7.4.7. Interaction Types

7.4.8. Signing and Encryption

7.5. Response Verification

8. RS Access

8.1. Bearer Token

9. Error Responses

10. JOSE Authentication

10.1. GS Access

10.1.1. Authorization Header

10.1.2. Signed Body

10.1.3. Public Key Resolution

10.2. RS Access

10.2.1. JOSE header

10.2.2. "jose" Mechanism

10.2.3. "jose+body" Mechanism

10.2.4. Public Key Resolution

10.3. Request Encryption

10.4. Response Signing

10.5. Response Encryption

11. Extensibility

12. Rational

13. Acknowledgments

14. IANA Considerations

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

15. Security Considerations

16. References

16.1. Normative References

16.2. Informative References

Appendix A. Document History

A.1. draft-hardt-xauth-protocol-00

A.2. draft-hardt-xauth-protocol-01

A.3. draft-hardt-xauth-protocol-02

Appendix B. Comparison with OAuth 2.0 and OpenID Connect

Appendix C. Open Questions

Author's Address

1. Introduction

This protocol supports the widely deployed use cases supported by

OAuth 2.0 [RFC6749] & [RFC6750], and OpenID Connect [OIDC], an

extension of OAuth 2.0, as well as other extensions, and other use

cases that are not supported, such as acquiring multiple access

tokens at the same time, and updating the request during user

interaction. This protocol also addresses many of the security

issues in OAuth 2.0 by having parameters securely sent directly

between parties, rather than via a browser redirection.

The technology landscape has changed since OAuth 2.0 was initially

drafted. More interactions happen on mobile devices than PCs. Modern

browsers now directly support asymetric cryptographic functions.

Standards have emerged for signing and encrypting tokens with rich

payloads (JOSE) that are widely deployed.

Additional use cases are now being served with extensions to OAuth

2.0: OpenID Connect added support for authentication and releasing

identity claims; [RFC8252] added support for native apps; [RFC8628]

added support for smart devices; and support for

[browser_based_apps] is being worked on. There are numerous efforts

on adding proof-of-possession to resource access.

This protocol simplifies the overall architectural model, takes

advantage of today's technology landscape, provides support for all

the widely deployed use cases, and offers numerous extension points.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

While this protocol is not backwards compatible with OAuth 2.0, it

strives to minimize the migration effort.

This protocol centers around a Grant, a representation of the

collection of user identity claims and/or resource authorizations

the Client is requesting, and the resulting identity claims and/or

resource authorizations granted by the Grant Server.

[Editor: suggestions on how to improve this are welcome!]

[Editor: suggestions for other names than XAuth are welcome!]

2. Terminology

2.1. Parties

The parties and their relationships to each other:

User - the person interacting with the Client who has delegated

access to identity claims about themselves to the Grant Server

(GS), and can authenticate at the GS.

Client - requests a Grant from the GS to access one or more

Resource Servers (RSs), and/or identity claims about the User.

The Client can create, retrieve, update, and delete a Grant. When

a Grant is created, the Client receives from the GS the granted

access token(s) for the RS(s), and identity claims about the

User. The Client uses an access token to access the RS. There are

two types of Clients: Registered Clients and Dynamic Clients. All

Clients have a key to authenticate with the Grant Server.

Registered Client - a Client that has registered with the GS and

has a Client ID to identify itself, and can prove it possesses a

key that is linked to the Client ID. The GS may have different

¶

¶

¶

¶

¶

+--------+ +------------+

| User | | Resource |

| | | Owner (RO) |

+--------+ +------------+

 | \ / |

 | \ / |

 | \ / |

 | \ / |

+--------+ +---------------+ +------------+

| Client |---->| Grant | _ _ | Resource |

| |<----| Server (GS) | | Server |

| | +---------------+ | (RS) |

| |-------------------------->| |

| |<--------------------------| |

+--------+ +------------+

¶

*

¶

*

¶

*

policies for what different Registered Clients can request. A

Registered Client MAY be interacting with a User.

Dynamic Client - a Client that has not been registered with the

GS, and each instance will generate it's own key pair so it can

prove it is the same instance of the Client on subsequent

requests, and to requests of a Resource Server. A single-page

application with no server is an example of a Dynamic Client. A

Dynamic Client MUST be interacting with a User.

Grant Server (GS) - manages Grants for access to APIs at RSs and

release of identity claims about the User. The GS may require

explicit consent from the RO or User to provide these to the

Client. An GS may support Registered Clients and/or Dynamic

Clients. The GS is a combination of the Authorization Server (AS)

in OAuth 2.0, and the OpenID Provider (OP) in OpenID Connect.

Resource Server (RS) - has API resources that require an access

token from the GS. Owned by the Resource Owner.

Resource Owner (RO) - owns the RS, and has delegated RS access

management to the GS. The RO may be the same entity as the User,

or may be a different entity that the GS interacts with

independently. GS and RO interactions are out of scope of this

document.

2.2. Reused Terms

access token - an access token as defined in [RFC6749] Section

1.4.

Claim - a Claim as defined in [OIDC] Section 5. Claims may be

issued by the GS, or by other issuers.

Client ID - a GS unique identifier for a Registered Client as

defined in [RFC6749] Section 2.2.

ID Token - an ID Token as defined in [OIDC] Section 2.

NumericDate - a NumericDate as defined in [RFC7519] Section 2.

authN - short for authentication.

authZ - short for authorization.

2.3. New Terms

GS URI - the endpoint at the GS the Client calls to create a

Grant. The unique identifier for the GS.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

* ¶

*

¶

Grant - the user identity claims and/or RS authorizations the GS

has granted to the Client.

Grant URI - the URI that represents the Grant. The Grant URI MUST

start with the GS URI.

Authorization - the access granted by the RO to the Client.

Contains an access token.

AuthZ URI - the URI that represents the Authorization the Client

was granted by the RO. The AuthZ URI MUST start with the GS URI.

The AuthZ URI is used to refresh, update, and delete an access

token.

interaction - [Editor: what do we really mean by this term?]

3. Sequences

Before any sequence, the Client needs to be manually or

programmatically configured for the GS. See GS Options Section 5.9

for details on acquiring GS metadata.

[Editor: a plethora of sequences are included to illustrate all the

different actions. Many of these could potentially be moved to a use

case document in the future.]

3.1. Create Grant

The Client requests a Grant from the GS that requires User

interaction:

*

¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

Create Grant The Client creates a Grant Request (Section 5.1)

and sends it with an HTTP POST to the GS GS URI.

Grant Request Evaluation The GS processes the request to

determine if it will send a Interaction Response, Wait

Response, or a Grant Response. The GS determines that

interaction with the User is required and sends an Interaction

Response. (For readability, this step is not described in the

following sequences)

Interaction Response The GS sends an Interaction Response

(Section 7.2) containing the Grant URI and an interaction

object.

Read Grant The Client does an HTTP GET of the Grant URI

(Section 5.2).

Interaction Transfer The Client transfers User interaction to

the GS.

User Authentication The GS authenticates the User.

User Authorization If required, the GS interacts with the User

to determine which identity claims and/or authorizations in the

Grant Request are to be granted.

Interaction Transfer The GS transfers User interaction to the

Client.

Grant Response The GS responds with a Grant Response (Section

7.1).

+--------+ +-------+

| Client | | GS |

| |--(1)--- Create Grant ----------->| |

| | | (2) |

| |<--- Interaction Response ---(3)--| eval |

| | | |

| |--(4)--- Read Grant ------------->| | +------+

| | | | | User |

| |--(5)--- Interaction Transfer --- | - - - | ------->| |

| | | |<--(6)-->| |

| | | | authN | |

| | | |<--(7)-->| |

| | | | authZ | |

| |<--- Interaction Transfer ---(8)- | - - - | --------| |

| | | | | |

| |<--------- Grant Response ---(9)--| | +------+

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6. ¶

7.

¶

8.

¶

9.

¶

3.2. Reciprocal Grant

Party A and Party B are both a Client and a GS, and each Client

would like a Grant for the other GS. Party A starts off being the

Client per Create Grant Section 3.1. Party B then includes a

Reciprocal Request in its Grant Response. Party A then gets

authorization from the User and returns a Grant URI to Party B.

Party A and B swap roles, and Party B's Client obtains the Grant

from Party A's GS.

Grant Response Party B responds with a Grant Response including

a Reciprocal Object Section 7.4.6 requesting its own Grant.

User Authorization If required, Party A interacts with the User

to determine which identity claims and/or authorizations in the

Grant Request are to be granted to Party B.

Update Grant Party A sends an Update Grant request containing

the Grant URI in the Reciprocal object Section 5.5.7.

Grant Response Party B responds with an Empty Grant Response as

there were no other requests in the Update Grant.

Swap Roles Party A now acts as a GS, Party B as a Client.

¶

 Party A Party B

 +--------+ +--------+

 | Client | | GS |

 ~ ~ ~ ~ ~ ~ Same as steps 1 - 8 of ~ ~ ~ ~ ~ ~

+------+ | | Create Grant above | |

| User | | | | |

| |<----- | - - - | -- Interaction Transfer ------- | |

| | | | | |

| | | |<------- Grant Response ---(1)---| |

| | | | Reciprocal Grant Request | |

| |<-(2)->| | | |

| | AuthZ | |---(3)--- Update Grant --------->| |

+------+ | | Reciprocal Grant Response | |

 | | | |

 | |<-- Empty Grant Response ---(4)--| |

 | | | |

 +--------+ (5) Swap Roles +--------+

 | GS | | Client |

 | |<------------ Read Grant ---(6)--| |

 | | | |

 | |--(7)--- Grant Response -------->| |

 | | | |

 +--------+ +--------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

Read Grant Party B does an HTTP GET of the Grant URI (Section

5.2).

Grant Response Party A responds with a Grant Response (Section

7.1).

3.3. GS Initiated Grant

The User is at the GS, and wants to interact with a Registered

Client. The GS can redirect the User to the Client:

User Interaction The GS interacts with the User to determine

the Client and what identity claims and authorizations to

provide. The GS creates a Grant and corresponding Grant URI.

GS Initiated Redirect The GS redirects the User to the Client's

interaction_uri, adding a query parameter with the name "Grant

URI" and the value being the URL encoded Grant URI.

Client Verification The Client verifies the Grant URI is from

an GS the Client trusts, and starts with the GS GS URI.

Read Grant The Client does an HTTP GET of the Grant URI

(Section 5.2).

Grant Response The GS responds with a Grant Response (Section

7.1).

See Section 6 for more details.

3.4. Create and Update

The Client requests an identity claim to determine who the User is.

Once the Client learns who the User is, and the Client updates the

Grant for additional identity claims which the GS prompts the User

for and returns to the Client. Once those are received, the Client

updates the Grant with the remaining identity claims required.

6.

¶

7.

¶

¶

+--------+ +-------+ +------+

| Client | | GS | | User |

| | | |<--(1)-->| |

| | | | | |

| |<----- GS Initiation Redirect --- | - - - | --(2)---| |

| (3) | | | | |

| verify |--(4)--- Read Grant ------------->| | +------+

| | | |

| |<--------- Grant Response --(5)---| |

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

¶

¶

Create Grant The Client creates a Grant Request (Section 5.1)

including an identity claim and "interaction"."keep":true, and

sends it with an HTTP POST to the GS GS URI.

Interaction Response The GS sends an Interaction Response

(Section 7.2) containing the Grant URI, an interaction object,

and "interaction"."keep":true.

Read Grant The Client does an HTTP GET of the Grant URI

(Section 5.2).

Interaction Transfer The Client transfers User interaction to

the GS.

User Authentication The GS authenticates the User.

Grant Response The GS responds with a Grant Response (Section

7.1) including the identity claim from User authentication and

"interaction"."keep":true.

+--------+ +-------+

| Client | | GS |

| |--(1)--- Create Grant ----------->| |

| | "interaction"."keep":true | |

| | | |

| |<--- Interaction Response ---(2)--| |

| | | |

| |--(3)--- Read Grant ------------->| | +------+

| | | | | User |

| |--(4)--- Interaction Transfer --- | - - - | ------->| |

| | | | | |

| | | |<--(5)-->| |

| | | | authN | |

| |<--------- Grant Response ---(6)--| | | |

| (7) | | | | |

| eval |--(8)--- Update Grant ----------->| | | |

| | "interaction"."keep":true | |<--(9)-->| |

| | | | authZ | |

| |<--------- Grant Response --(10)--| | | |

| (11) | | | | |

| eval |--(12)-- Update Grant ----------->| | | |

| | "interaction"."keep":false | |<--(13)->| |

| | | | authZ | |

| | | | | |

| |<--- Interaction Transfer --(14)- | - - - | --------| |

| | | | | |

| |<--------- Grant Response --(15)--| | +------+

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

6.

¶

Grant Evaluation The Client queries its User database and does

not find a User record matching the identity claim.

Update Grant The Client creates an Update Grant Request

(Section 5.3) including the initial identity claims required

and "interaction"."keep":true, and sends it with an HTTP PUT to

the Grant URI.

User AuthN The GS interacts with the User to determine which

identity claims in the Update Grant Request are to be granted.

Grant Response The GS responds with a Grant Response (Section

7.1) including the identity claims released by the User and

"interaction"."keep":true.

Grant Evaluation The Client evaluates the identity claims in

the Grant Response and determines the remaining User identity

claim required.

Update Grant The Client creates an Update Grant Request

(Section 5.3) including the remaining required identity claims

and "interaction"."keep":false, and sends it with an HTTP PUT

to the Grant URI.

User AuthZ The GS interacts with the User to determine which

identity claims in the Update Grant Request are to be granted.

Interaction Transfer The GS transfers User interaction to the

Client.

Grant Response The GS responds with a Grant Response (Section

7.1) including the identity claims released by the User.

3.5. Create and Delete

The Client requests an identity claim to determine who the User is.

Once the Client learns who the User is, and the Client knows it has

all the identity claims and authorizations needed, the Client

deletes the Grant which prompts the GS to transfer the interaction

back to the Client.

7.

¶

8.

¶

9.

¶

10.

¶

11.

¶

12.

¶

13.

¶

14.

¶

15.

¶

¶

Create Grant The Client creates a Grant Request (Section 5.1)

including an identity claim and "interaction"."keep":true, and

sends it with an HTTP POST to the GS GS URI.

Interaction Response The GS sends an Interaction Response

(Section 7.2) containing the Grant URI, an interaction object,

and "interaction"."keep":true.

Read Grant The Client does an HTTP GET of the Grant URI

(Section 5.2).

Interaction Transfer The Client transfers User interaction to

the GS.

User Authentication The GS authenticates the User.

Grant Response The GS responds with a Grant Response (Section

7.1) including the identity claim from User authentication and

"interaction"."keep":true.

Grant Evaluation The Client queries its User database and finds

the User record matching the identity claim, and that no

additional claims or authorizations are required.

Delete Grant The Client no longer needs the Grant and decides

to Delete Grant (Section 5.4) by sending an HTTP DELETE to the

Grant URI. If the GS responds with success the Grant no longer

exists.

+--------+ +-------+

| Client | | GS |

| |--(1)--- Create Grant ----------->| |

| | "interaction"."keep":true | |

| | | |

| |<--- Interaction Response ---(2)--| |

| | | |

| |--(3)--- Read Grant ------------->| | +------+

| | | | | User |

| |--(4)--- Interaction Transfer --- | - - - | ------->| |

| | | | | |

| | | |<--(5)-->| |

| | | | authN | |

| |<--------- Grant Response ---(6)--| | | |

| (7) | | | | |

| eval |--(8)--- Delete Grant ----------->| | | |

| |<------- Delete Response ---------| | | |

| | | | | |

| |<--- Interaction Transfer ---(9)- | - - - | --------| |

| | | | | |

+--------+ +-------+ +------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5. ¶

6.

¶

7.

¶

8.

¶

3.6. Create, Discover, and Delete

The Client wants to discover if the GS has a User with a given

identifier. If not, it will abort the request and not transfer

interaction to the GS.

Create Grant The Client creates a Grant Request (Section 5.1)

including an identity claim request, a User identifier, and

"user"."exists":true. The Client sends it with an HTTP POST to

the GS GS URI.

Interaction Response The GS sends an Interaction Response

(Section 7.2) containing the Grant URI, an interaction object,

and "user"."exists":false.

Delete Grant The Client determines the GS cannot fulfil its

Grant Request, and decides to Delete Grant (Section 5.4) by

sending an HTTP DELETE to the Grant URI. If the GS responds

with success the Grant no longer exists.

3.7. Create and Wait

The Client wants access to resources that require the GS to interact

with the RO, which may not happen immediately, so the GS instructs

the Client to wait and check back later.

¶

+--------+ +-------+

| Client | | GS |

| |--(1)--- Create Grant ----------->| |

| | "user"."exists":true | |

| | | |

| |<--- Interaction Response ---(2)--| |

| | "user"."exists":false | |

| | | |

| |--(3)--- Delete Grant ----------->| |

| |<------- Delete Response ---------| |

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3.

¶

¶

Create Grant The Client creates a Grant Request (Section 5.1)

and sends it with an HTTP POST to the GS GS URI.

Wait Response The GS sends an Interaction Response (Section

7.3) containing the Grant URI and wait time.

Client Waits The Client waits the wait time.

RO AuthZ The GS interacts with the RO to determine which

identity claims in the Grant Request are to be granted.

Read Grant The Client does an HTTP GET of the Grant URI

(Section 5.2).

Grant Response The GS responds with a Grant Response (Section

7.1).

3.8. Read Grant

The Client wants to acquire fresh identity claims and authorizations

in the Grant. No User or RO interaction is required as no new

consent or authorization is required.

Read Grant The Client does an HTTP GET of the Grant URI

(Section 5.2).

Grant Response The GS responds with a Grant Response (Section

7.1) containing updated identity claims and authorizations.

+--------+ +-------+

| Client | | GS |

| |--(1)--- Create Grant ----------->| |

| | | |

| |<---------- Wait Response ---(2)--| | +------+

| (3) | | | | RO |

| Wait | | |<--(4)-->| |

| | | | authZ | |

| |--(5)--- Read Grant ------------->| | +------+

| | | |

| |<--------- Grant Response --(6)---| |

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3. ¶

4.

¶

5.

¶

6.

¶

¶

+--------+ +-------+

| Client | | GS |

| |--(1)--- Read Grant ------------->| |

| | | |

| |<--------- Grant Response --(2)---| |

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3.9. Access Token Refresh

The Client has an access token and uses it to access resources at an

RS. The access token expires, and the Client acquires a fresh access

token from the GS.

Resource Request The Client accesses the RS with the access

token per Section 8 and receives a response from the RS.

Resource Request The Client attempts to access the RS, but

receives an error indicating the access token has expired.

Refresh AuthZ If the Client received an AuthZ URI in the

Response JSON "authorization" object (Section 7.4.3), the

Client can Refresh AuthZ (Section 5.6) with an HTTP GET to the

AuthZ URI and receive an Response JSON "authorization" object"

(Section 7.4.3) with a fresh access token.

3.10. GS API Table

request http verb uri response

Create Grant POST GS URI interaction, wait, or grant

Read Grant GET Grant URI wait, or grant

Update Grant PUT Grant URI interaction, wait, or grant

Delete Grant DELETE Grant URI success

Refresh AuthZ GET AuthZ URI authorization

Update AuthZ PUT AuthZ URI authorization

Delete AuthZ DELETE AuthZ URI success

GS Options OPTIONS GS URI metadata

Grant Options OPTIONS Grant URI metadata

AuthZ Options OPTIONS AuthZ URI metadata

Table 1

¶

+--------+ +----------+

| Client | | Resource |

| |--(1)--- Access Resource --->| Server |

| |<------- Resource Response --| (RS) |

| | | |

| |--(2)--- Access Resource --->| |

| |<------- Error Response -----| |

| | | |

| | +----------+ +-------+

| | | GS |

| |--(3)--- Refresh AuthZ ------------------->| |

| |<------- AuthZ Response -------------------| |

| | | |

+--------+ +-------+

¶

1.

¶

2.

¶

3.

¶

[Editor: is there value in an API for listing a Client's Grants?

eg:]

4. Grant and AuthZ Life Cycle

[Editor: straw man for life cycles.]

Grant life Cycle

The Client MAY create, read, update, and delete Grants. A Grant

persists until it has expired, is deleted, or another Grant is

created for the same GS, Client, and User tuple.

At any point in time, there can only be one Grant for the GS,

Client, and User tuple. When a Client creates a Grant at the same GS

for the same User, the GS MUST invalidate a previous Grant for the

Client at that GS for that User.

Authorization Life Cycle

Authorizations are OPTIONALLY included in a Grant Response

"authorization" Object (Section 7.4.3), and are represented by an

AuthZ URI. If an AuthZ URI is included, the Client MAY refresh,

update, and delete Authorizations.

An Authorization will persist independent of the Grant, and persist

until invalidated by the GS per GS policy, or deleted by the Client.

5. GS APIs

Client Authentication

All APIs except for GS Options require the Client to authenticate.

This document defines the JOSE Authentication mechanism in Section

10. Other mechanisms include [TBD].

5.1. Create Grant

The Client creates a Grant by doing an HTTP POST of a JSON [RFC8259]

document to the GS URI.

The JSON document MUST include the following from the Request JSON

Section 5.5:

iat

nonce

¶

List Grants GET GS URI JSON array of Grant URIs¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

uri set to the GS URI

client

and MAY include the following from Request JSON Section 5.5

user

interaction

authorization or authorizations

claims

reciprocal

The GS MUST respond with one of Grant Response Section 7.1,

Interaction Response Section 7.2, Wait Response Section 7.3, or one

of the following errors:

TBD

from Error Responses Section 9.

Following is a non-normative example where the Client wants to

interact with the User with a popup and is requesting identity

claims about the User and read access to the User's contacts:

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

¶

Following is a non-normative example where the Client is requesting

the GS to keep the interaction with the User after returning the ID

Token so the Client can update the Grant, and is also asking if the

user exists:

Example 1

{

 "iat" : 15790460234,

 "uri" : "https://as.example/endpoint",

 "nonce" : "f6a60810-3d07-41ac-81e7-b958c0dd21e4",

 "client": {

 "display": {

 "name" : "SPA Display Name",

 "uri" : "https://spa.example/about"

 }

 },

 "interaction": {

 "type" : "popup"

 },

 "authorization": {

 "type" : "oauth_scope",

 "scope" : "read_contacts"

 },

 "claims": {

 "oidc": {

 "id_token" : {

 "email" : { "essential" : true },

 "email_verified" : { "essential" : true }

 },

 "userinfo" : {

 "name" : { "essential" : true },

 "picture" : null

 }

 }

 }

}

¶

¶

5.2. Read Grant

The Client reads a Grant by doing an HTTP GET of the corresponding

Grant URI.

The GS MUST respond with one of Grant Response Section 7.1,

Interaction Response Section 7.2, Wait Response Section 7.3, or one

of the following errors:

TBD

from Error Responses Section 9.

5.3. Update Grant

The Client updates a Grant by doing an HTTP PUT of a JSON document

to the corresponding Grant URI.

The JSON document MUST include the following from the Request JSON

Section 5.5

iat

uri set to the Grant URI

Example 2

{

 "iat" : 15790460234,

 "uri" : "https://as.example/endpoint",

 "nonce" : "5c9360a5-9065-4f7b-a330-5713909e06c6",

 "client": {

 "id" : "di3872h34dkJW"

 },

 "interaction": {

 "keep" : true,

 "type" : "redirect",

 "uri" : "https://web.example/return"

 },

 "user": {

 "identifiers": {

 "email" : "jane.doe@example.com"

 },

 "exists" : true

 },

 "claims" : { "oidc": { "id_token" : {} } }

}

¶

¶

¶

* ¶

¶

¶

¶

* ¶

* ¶

and MAY include the following from Request JSON Section 5.5

user

interaction

authorization or authorizations

claims

reciprocal

The GS MUST respond with one of Grant Response Section 7.1,

Interaction Response Section 7.2, Wait Response Section 7.3, or one

of the following errors:

TBD

from Error Responses Section 9.

Following is a non-normative example where the Client made an

"interaction"."keep":true request, and now wants to update the

request with additional claims:

5.4. Delete Grant

The Client deletes a Grant by doing an HTTP DELETE of the

corresponding Grant URI.

The GS MUST respond with OK 200, or one of the following errors:

TBD

from Error Responses Section 9.

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

¶

Example 3

{

 "iat" : 15790460234,

 "uri" : "https://as.example/endpoint/grant/example3",

 "claims": {

 "oidc": {

 "userinfo" : {

 "email" : { "essential" : true },

 "name" : { "essential" : true },

 "picture" : null

 }

 }

 }

}

¶

¶

¶

* ¶

¶

5.5. Request JSON

[Editor: do we want to reuse the JWT claims "iat", "jti", etc.?]

iat - the time of the request as a NumericDate.

nonce - a unique identifier for this request. Note the Grant

Response MUST contain a matching nonce attribute value.

uri - the GS URI if in a Create Grant Section 5.1, or the Grant

URI if in an Update Grant Section 5.3.

5.5.1. "client" Object

The client object MUST contain either the id attribute for

Registered Clients, or the display object for Dynamic Clients.

id - the Client ID the GS has for the Registered Client.

display - the display object contains the following attributes:

name - a string that represents the Dynamic Client

uri - a URI representing the Dynamic Client

[Editor: a max length for the name?] [Editor: a max length for the

URI?]

The name and uri will be displayed by the GS when prompting for

authorization.

5.5.2. "interaction" Object

The interaction object contains the type of interaction the Client

will provide the User. Other attributes

keep - a JSON boolean. If set to the JSON value true, the GS will

not transfer the User interaction back to the Client after

processing the Grant request. The JSON value false is equivalent

to the attribute not being present, and the GS will transfer the

User interaction back to the Client after processing the request.

This attribute is OPTIONAL

type - contains one of the following values: "popup",

"redirect", or "qrcode". Details in Section 7.4.7. This

attribute is REQUIRED.

redirect_uri - this attribute is REQUIRED if the type is

"redirect". It is the URI that the Client requests the GS to

redirect the User to after the GS has completed interacting

¶

* ¶

*

¶

*

¶

¶

* ¶

* ¶

- ¶

- ¶

¶

¶

¶

*

¶

-

¶

-

with the User. If the Client manages session state in URIs,

then the redirect_uri SHOULD contain that state.

ui_locales - End-User's preferred languages and scripts for

the user interface, represented as a space-separated list of

[RFC5646] language tag values, ordered by preference. This

attribute is OPTIONAL.

[Editor: do we need max pixels or max chars for qrcode interaction?

Either passed to GS, or max specified values here?]

[Editor: other possible interaction models could be a "webview",

where the Client can display a web page, or just a "message", where

the client can only display a text message]

[Editor: we may need to include interaction types for iOS and

Android as the mobile OS APIs evolve.]

5.5.3. "user" Object

exists - MUST contain the JSON true value. Indicates the Client

requests the GS to return a "user"."exists" value in an

Interaction Response Section 7.2. This attribute is OPTIONAL, and

MAY be ignored by the GS.

identifiers - REQUIRED if the exists attribute is present. The

values MAY be used by the GS to improve the User experience.

Contains one or more of the following identifiers for the User:

phone_number - contains a phone number per Section 5 of

[RFC3966].

email - contains an email address per [RFC5322].

oidc - is an object containing both the "iss" and "sub"

attributes from an OpenID Connect ID Token per [OIDC] Section

2.

5.5.4. "authorization" Object

type - one of the following values: "oauth_scope" or

"oauth_rich". This attribute is REQUIRED.

scope - a string containing the OAuth 2.0 scope per [RFC6749]

section 3.3. MUST be included if type is "oauth_scope" or

"oauth_rich".

authorization_details - an authorization_details object per

[RAR]. MUST be included if type is "oauth_rich".

¶

-

¶

¶

¶

¶

*

¶

*

¶

-

¶

- ¶

-

¶

*

¶

*

¶

*

¶

[Editor: details may change as the [RAR] document evolves]

5.5.5. "authorizations" Object

A JSON array of "authorization" objects. Only one of "authorization"

or "authorizations" may be in the Request JSON.

[Editor: instead of an array, we could have a Client defined

dictionary of "authorization" objects]

5.5.6. "claims" Object

Includes one or more of the following:

oidc - an object that contains one or both of the following

objects:

userinfo - Claims that will be returned as a JSON object

id_token - Claims that will be included in the returned ID

Token. If the null value, an ID Token will be returned

containing no additional Claims.

The contents of the userinfo and id_token objects are Claims as

defined in [OIDC] Section 5.

oidc4ia - OpenID Connect for Identity Assurance claims request

per [OIDC4IA].

vc - [Editor: define how W3C Verifiable Credentials [W3C_VC] can

be requested.]

5.5.7. "reciprocal" Object

uri - the Grant URI for the Reciprocal Grant. This attribute is

REQUIRED.

client - the client object must contain the "id" attribute with

the Client ID the Grant was issued to. This attribute is

REQUIRED.

authorization - an authorization object per Section 7.4.3 in the

Response JSON.

authorizations - an authorizations object per Section 7.4.4 in

the Response JSON.

claims - a claims object per Section 7.4.5 in the Response JSON.

¶

¶

¶

¶

*

¶

- ¶

-

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

* ¶

[Editor: parameters for the Client to request it wants the Grant

Response signed and/or encrypted?]

5.6. Refresh Authorization

The Client updates an Authorization by doing an HTTP GET to the

corresponding AuthZ URI.

The GS MUST respond with an Response JSON "authorization" object

Section 7.4.3, or one of the following errors:

TBD

from Error Responses Section 9.

5.7. Update Authorization

The Client updates an Authorization by doing an HTTP PUT to the

corresponding AuthZ URI of the following JSON. All of the following

MUST be included.

iat - the time of the response as a NumericDate.

uri - the AuthZ URI.

authorization - the new authorization requested per the Request

JSON "authorization" object Section 5.5.4.

The GS MUST respond with an Response JSON "authorization" object

Section 7.4.3, or one of the following errors:

TBD

from Error Responses Section 9.

5.8. Delete Authorization

The Client deletes an Authorization by doing an HTTP DELETE to the

corresponding AuthZ URI.

The GS MUST respond with OK 200, or one of the following errors:

TBD

from Error Responses Section 9.

5.9. GS Options

The Client can get the metadata for the GS by doing an HTTP OPTIONS

of the corresponding GS URI. This is the only API where the GS MAY

respond to an unauthenticated request.

¶

¶

¶

* ¶

¶

¶

* ¶

* ¶

*

¶

¶

* ¶

¶

¶

¶

* ¶

¶

¶

The GS MUST respond with the the following JSON document:

[Editor: this section is a work in progress]

uri - the GS URI.

client_authentication - an array of the Client Authentication

mechanisms supported by the GS

interactions - an array of the interaction types supported by the

GS.

authorization - an object containing the authorizations the

Client may request from the GS, if any.

Details TBD

claims - an object containing the identity claims the Client may

request from the GS, if any, and what public keys the claims will

be signed with.

Details TBD

algorithms - a list of the cryptographic algorithms supported by

the GS.

features - an object containing feature support

user_exists - boolean indicating if "user"."exists" is

supported.

authorizations - boolean indicating if a request for multiple

authorizations is supported.

[Editor: keys used by Client to encrypt requests, or verify signed

responses?]

[Editor: namespace metadata for extensions?]

or one of the following errors:

TBD

from Error Responses Section 9.

5.10. Grant Options

The Client can get the metadata for the Grant by doing an HTTP

OPTIONS of the corresponding Grant URI.

¶

¶

* ¶

*

¶

*

¶

*

¶

- ¶

*

¶

- ¶

*

¶

* ¶

-

¶

-

¶

¶

¶

¶

* ¶

¶

¶

The GS MUST respond with the the following JSON document:

verbs - an array of the HTTP verbs supported at the GS URI.

or one of the following errors:

TBD

from Error Responses Section 9.

5.11. AuthZ Options

The Client can get the metadata for the AuthZ by doing an HTTP

OPTIONS of the corresponding AuthZ URI.

The GS MUST respond with the the following JSON document:

verbs - an array of the HTTP verbs supported at the GS URI.

or one of the following errors:

TBD

from Error Responses Section 9.

5.12. Request Verification

On receipt of a request, the GS MUST verify the following:

TBD

6. GS Initiated Grant

[Editor: In OAuth 2.0, all flows are initiated at the Client. If the

AS wanted to initiate a flow, it redirected to the Client, that

redirected back to the AS to initiate a flow.

Here is a proposal to support GS initiated: authentication; just-in-

time (JIT) provisioning; and authorization]

initiation_uri A URI at the Client that contains no query or

fragment. How the GS learns the Client initiation_uri is out of

scope.

The GS creates a Grant and Grant URI, and redirects the User to the

initiation_uri with the query parameter "grant" and the value of

Grant URI.

See Section 3.3 for the sequence diagram.

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

¶

* ¶

¶

¶

* ¶

¶

¶

¶

¶

¶

7. GS API Responses

7.1. Grant Response

The Grant Response MUST include the following from the Response JSON

Section 7.4

iat

nonce

uri

expires_in

and MAY include the following from the Response JSON Section 7.4

authorization or authorizations

claims

reciprocal

Example non-normative Grant Response JSON document for Example 1 in

Section 3.1:

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

{

 "iat" : 15790460234,

 "nonce" : "f6a60810-3d07-41ac-81e7-b958c0dd21e4",

 "uri" : "https://as.example/endpoint/grant/example1",

 "expires_in" : 300

 "authorization": {

 "type" : "oauth_scope",

 "scope" : "read_contacts",

 "expires_in" : 3600,

 "mechanism" : "bearer",

 "token" : "eyJJ2D6.example.access.token.mZf9p"

 },

 "claims": {

 "oidc": {

 "id_token" : "eyJhbUzI1N.example.id.token.YRw5DFdbW",

 "userinfo" : {

 "name" : "John Doe",

 "picture" : "https://photos.example/p/eyJzdkiO"

 }

 }

 }

}

¶

Example non-normative Grant Response JSON document for Example 2 in

Section 3.1:

7.2. Interaction Response

The Interaction Response MUST include the following from the

Response JSON Section 7.4

iat

nonce

uri

interaction

and MAY include the following from the Response JSON Section 7.4

user

wait

A non-normative example of an Interaction Response follows:

¶

{

 "iat" : 15790460234,

 "nonce" : "5c9360a5-9065-4f7b-a330-5713909e06c6",

 "uri" : "https://as.example/endpoint/grant/example2",

 "authorization": {

 "type" : "oauth_scope",

 "scope" : "read_calendar write_calendar",

 "expires_in" : 3600,

 "mechanism" : "jose",

 "token" : "eyJJ2D6.example.access.token.mZf9p"

 "certificate": {

 "x5u" : "https://as.example/cert/example2"

 },

 "uri" : "https://as.example/endpoint/authz/example2"

 }

}

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

¶

7.3. Wait Response

The Wait Response MUST include the following from the Response JSON

Section 7.4

iat

nonce

uri

wait

A non-normative example of an Wait Response follows:

7.4. Response JSON

Details of the JSON document:

iat - the time of the response as a NumericDate.

nonce - the nonce that was included in the Request JSON Section

5.5.

uri - the Grant URI.

wait - a numeric value representing the number of seconds the

Client should want before making a Read Grant request to the

Grant URI.

{

 "iat" : 15790460234,

 "nonce" : "0d1998d8-fbfa-4879-b942-85a88bff1f3b",

 "uri" : "https://as.example/endpoint/grant/example4",

 "interaction" : {

 "type" : "popup",

 "uri" : "https://as.example/popup/example4"

 },

 "user": {

 "exists" : true

 }

}

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

{

 "iat" : 15790460234,

 "nonce" : "0d1998d8-fbfa-4879-b942-85a88bff1f3b",

 "uri" : "https://as.example/endpoint/grant/example5",

 "wait" : 300

}

¶

¶

* ¶

*

¶

* ¶

*

¶

expires_in - a numeric value specifying how many seconds until

the Grant expires. This attribute is OPTIONAL.

7.4.1. "interaction" Object

If the GS wants the Client to start the interaction, the GS MUST

select one of the interaction mechanisms provided by the Client in

the Grant Request, and include the matching attribute in the

interaction object:

type - this MUST match the type provided by the Client in the

Grant Request client.interaction object.

uri - the URI to interact with the User per the type. This may be

a temporary short URL if the type is qrcode so that it is easy to

scan.

message - a text string to display to the User if type is qrcode.

[Editor: do we specify a maximum length for the uri and message so

that a device knows the maximum it needs to support? A smart device

may have limited screen real estate.]

7.4.2. "user" Object

exists - a boolean value indicating if the GS has a user with one

or more of the provided identifiers in the Request

"user"."identifiers" object Section 5.5.3

7.4.3. "authorization" Object

The "authorization" object is a response to the Request

"authorization" object Section 5.5.4, the Refresh Authorization

Section 5.6, or the Update Authorization Section 5.7.

type - the type of claim request: "oauth_scope" or "oauth_rich".

See the "type" object in Section 5.5.4 for details.

scope - the scopes the Client was granted authorization for. This

will be all, or a subset, of what was requested. This attribute

is OPTIONAL.

authorization_details - the authorization details granted per

[RAR]. Included if type is "oauth_rich".

mechanism - one of the access mechanisms: "bearer", "jose", or

"jose+body". See Section 8 for details.

token - the access token for accessing an RS. This attribute is

REQUIRED.

*

¶

¶

*

¶

*

¶

* ¶

¶

*

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

expires_in - a numeric value specifying how many seconds until

the access token expires. This attribute is OPTIONAL.

certificate - MUST be included if the mechanism is "jose" or

"jose+body". Contains the jwk header values for the Client to

include in the JWS header when calling the RS using the "jose" or

"jose+body" mechanisms. See Section 10.2.1.

uri - the AuthZ URI. Used to refresh, update, and delete the

authorization. This attribute is OPTIONAL.

[Editor: any value in an expiry for the Authorization?]

7.4.4. "authorizations" Object

A JSON array of authorization objects. Support for the

authorizations object is OPTIONAL.

7.4.5. "claims" Object

The claims object is a response to the Request "claims" object

Section 5.5.4.

oidc

id_token - an OpenID Connect ID Token containing the Claims

the User consented to be released.

userinfo - the Claims the User consented to be released.

Claims are defined in [OIDC] Section 5.

oidc4ia - OpenID Connect for Identity Assurance claims response

per [OIDC4IA].

vc

The verified claims the user consented to be released. [Editor:

details TBD]

7.4.6. "reciprocal" Object

The following MUST be included

nonce - a unique identifier for this request. Note the Grant

Response MUST contain a matching nonce attribute value.

client

id - the Client ID making the request

*

¶

*

¶

*

¶

¶

¶

¶

* ¶

-

¶

- ¶

¶

*

¶

* ¶

¶

¶

*

¶

* ¶

- ¶

One or more of the following objects from the Request JSON Section

5.5 are included:

authorization Section 7.4.3

authorizations Section 7.4.4

claims Section 7.4.5

7.4.7. Interaction Types

If the GS wants the Client to initiate the interaction with the

User, then the GS will return an Interaction Response. The Client

will initiate the interaction with the User in one of the following

ways:

popup The Client will create a new popup child browser window

containing the "interaction"."uri" attribute. [Editor: more

details on how to do this]

The GS will close the popup window when the interactions with the

User are complete. [Editor: confirm GS can do this still on all

browsers, or does Client need to close]

redirect The Client will redirect the User to the

"interaction"."uri" attribute. When the GS interactions with the

User are complete, the GS will redirect the User to the

"interaction"."redirect_uri" attribute the Client provided in the

Grant Request.

qrcode The Client will create a [QR_Code] of the

"interaction"."uri" attribute and display the resulting graphic

and the "interaction"."message" attribute as a character string.

An GS MUST support the "popup", "redirect", and "qrcode" interaction

types.

7.4.8. Signing and Encryption

[Editor: TBD - how response is signed and/or encrypted by the GS. Is

there a generalized description, or is it mechanism specific?]

7.5. Response Verification

On receipt of a response, the Client MUST verify the following:

TBD

¶

* ¶

* ¶

* ¶

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

* ¶

8. RS Access

This document specifies three different mechanisms for the Client to

access an RS ("bearer", "jose", and "jose+body"). The "bearer"

mechanism is defined in {BearerToken}. The "jose" and "jose+body"

mechanisms are proof-of-possession mechanisms and are defined in

Section 10.2.2 and Section 10.2.3 respectively. Additional proof-of-

possession mechanisms may be defined in other documents. The

mechanism the Client is to use with an RS is the Response JSON

"authorization"."mechanism" attribute Section 7.4.3.

8.1. Bearer Token

If the access mechanism is "bearer", then the Client accesses the RS

per Section 2.1 of [RFC6750]

A non-normative example of the HTTP request headers follows:

9. Error Responses

TBD

10. JOSE Authentication

How the Client authenticates to the GS and RS are independent of

each other. One mechanism can be used to authenticate to the GS, and

a different mechanism to authenticate to the RS.

Other documents that specify other Client authentication mechanisms

will replace this section.

In the JOSE Authentication Mechanism, the Client authenticates by

using its private key to sign a JSON document with JWS per [RFC7515]

which results in a token using JOSE compact serialization.

[Editor: are there advantages to using JSON serialization in the

body?]

Different instances of a Registered Clients MAY have different

private keys, but certificates bind them to a public key the GS has

for the Client ID. An instance of a Client will use the same private

key for all signing.

The Client and the GS MUST both use HTTP/2 ([RFC7540]) or later, and

TLS 1.3 ([RFC8446]) or later, when communicating with each other.

¶

¶

¶

GET /calendar HTTP/2

Host: calendar.example

Authorization: bearer eyJJ2D6.example.access.token.mZf9pTSpA

¶

* ¶

¶

¶

¶

¶

¶

¶

[Editor: too aggressive to mandate HTTP/2 and TLS 1.3?]

The token may be included in an HTTP header, or as the HTTP message

body.

The following sections specify how the Client uses JOSE to

authenticate to the GS and RS.

10.1. GS Access

The Client authenticates to the GS by passing either a signed header

parameter, or a signed message body. The following table shows the

verb, uri and token location for each Client request to the GS:

request http verb uri token in

Create Grant POST GS URI body

Read Grant GET Grant URI header

Update Grant PUT Grant URI body

Delete Grant DELETE Grant URI success

Refresh AuthZ GET AuthZ URI body

Update AuthZ PUT AuthZ URI body

Delete AuthZ DELETE AuthZ URI header

GS Options OPTIONS GS URI header

Grant Options OPTIONS Grant URI header

AuthZ Options OPTIONS AuthZ URI header

Table 2

10.1.1. Authorization Header

For requests with the token in the header, the JWS payload MUST

contain the following attributes:

iat - the time the token was created as a NumericDate.

jti - a unique identifier for the token per [RFC7519] section 4.1.7.

uri - the value of the URI being called (GS URI, Grant URI, or AuthZ

URI).

verb - the HTTP verb being used in the call ("GET", "DELETE",

"OPTIONS")

The HTTP authorization header is set to the "jose" parameter

followed by one or more white space characters, followed by the

resulting token.

A non-normative example of a JWS payload and the HTTP request

follows:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

[Editor: make a real example token]

GS Verification

The GS MUST verify the token by:

TBD

10.1.2. Signed Body

For requests with the token in the body, the Client uses the Request

JSON as the payload in a JWS. The resulting token is sent with the

content-type set to "application/jose".

A non-normative example (line breaks added to the body for

readability):

[Editor: make a real example token]

GS Verification

The GS MUST verify the token by:

TBD

10.1.3. Public Key Resolution

Registered Clients can use any of the JWS header values to direct

the GS to resolve the public key matching the private key used to

{

 "iat" : 15790460234,

 "jti" : "f6d72254-4f23-417f-b55e-14ad323b1dc1",

 "uri" : "https://as.example/endpoint/grant/example6",

 "verb" : "GET"

}

GET /endpoint/example.grant HTTP/2

Host: as.example

Authorization: jose eyJhbGciOiJIUzI1NiIsIn ...

¶

¶

¶

¶

* ¶

¶

¶

POST /endpoint HTTP/2

Host: as.example

Content-Type: application/jose

Content-Length: 155

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyzdWIiOiIxMjM0NTY3ODkwIiwibmF

tZSI6IkpvaG4gRG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMe

Jf36POk6yJV_adQssw5c

¶

¶

¶

¶

* ¶

*

the Client ID. The GS MAY restrict with JWS headers a Client can

use.

[Editor: would examples help here so that implementors understand

the full range of options, and how an instance can have its own

asymetric key pair]

A non-normative example of a JOSE header for a Registered Client

with a key identifier of "12":

Dynamic Clients include their public key in the "jwk" JWS header.

A non-normative example of a JOSE header for a Dynamic Client:

10.2. RS Access

In the "jose" mechanism Section 10.2.2, all Client requests to the

RS include a proof-of-possession token in the HTTP authorization

header. In the "jose+body" mechanism Section 10.2.3, the Client

signs the JSON document in the request if the POST or PUT verbs are

used, otherwise it is the same as the "jose" mechanism.

10.2.1. JOSE header

The GS provides the Client one or more JWS header parameters and

values for a a certificate, or a reference to a certificate or

certificate chain, that the RS can use to resolve the public key

matching the private key being used by the Client.

A non-normative examples JOSE header:

¶

¶

¶

{

 "alg" : "ES256",

 "typ" : "JOSE",

 "kid" : "12"

}

¶

* ¶

¶

{

 "alg" : "ES256",

 "typ" : "JOSE",

 "jwk" : {

 "kty" : "EC",

 "crv" : "P-256",

 "x" : "Kgl5DJSgLyV-G32osmLhFKxJ97FoMW0dZVEqDG-Cwo4",

 "y" : "GsL4mOM4x2e6iON8BHvRDQ6AgXAPnw0m0SfdlREV7i4"

 }

}

¶

¶

¶

¶

[Editor: this enables Dynamic Clients to make proof-of-possession

API calls the same as Registered Clients.]

10.2.2. "jose" Mechanism

The JWS payload MUST contain the following attributes:

iat - the time the token was created as a NumericDate.

jti - a unique identifier for the token per [RFC7519] section 4.1.7.

uri - the value of the RS URI being called.

verb - the HTTP verb being used in the call

token - the access token provided by the GS to the Client

The HTTP authorization header is set to the "jose" parameter

followed by one or more white space characters, followed by the

resulting token.

A non-normative example of a JWS payload and the HTTP request

follows:

[Editor: make a real example token]

RS Verification

The RS MUST verify the token by:

verify access token is bound to the public key - include key

fingerprint in access token?

{

 "alg" : "ES256",

 "typ" : "JOSE",

 "x5u" : "https://as.example/cert/example2"

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "iat" : 15790460234,

 "jti" : "f6d72254-4f23-417f-b55e-14ad323b1dc1",

 "uri" : "https://calendar.example/calendar",

 "verb" : "GET",

 "token" : "eyJJ2D6.example.access.token.mZf9pTSpA"

}

GET /calendar HTTP/2

Host: calendar.example

Authorization: jose eyJhbG.example.jose.token.adks

¶

¶

¶

¶

*

¶

TBD

10.2.3. "jose+body" Mechanism

The "jose+body" mechanism can only be used if the content being sent

to the RS is a JSON document.

Any requests not sending a message body will use the "jose"

mechanism Section 10.2.2.

Requests sending a message body MUST have the following JWS payload:

iat - the time the token was created as a NumericDate.

jti - a unique identifier for the token per [RFC7519] section 4.1.7.

uri - the value of the RS URI being called.

verb - the HTTP verb being used in the call

token - the access token provided by the GS to the Client

body - the message body being sent to the RS

A non-normative example of a JWS payload and the HTTP request

follows:

[Editor: make a real example token]

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

{

 "iat" : 15790460234,

 "jti" : "f6d72254-4f23-417f-b55e-14ad323b1dc1",

 "uri" : "https://calendar.example/calendar",

 "verb" : "POST",

 "token" : "eyJJ2D6.example.access.token.mZf9pTSpA",

 "payload" : {

 "event" : {

 "title" : "meeting with joe",

 "start_date_utc" : "2020-02-21 11:00:00",

 "end_date_utc" : "2020-02-21 11:00:00"

 }

 }

}

POST /calendar HTTP/2

Host: calendar.example

Content-Type: application/jose

Content-Length: 155

eyJhbGciOi.example.jose+body.adasdQssw5c

¶

¶

RS Verification

The RS MUST verify the token by:

TBD

10.2.4. Public Key Resolution

The RS has a public key for the GS that it uses to verify the

certificate or certificate chain the Client includes in the JWS

header.

10.3. Request Encryption

[Editor: to be fleshed out]

The Client encrypts a request when ??? using the GS public key

returned as the ??? attribute in GS Options Section 5.9.

10.4. Response Signing

[Editor: to be fleshed out]

The Client verifies a signed response ??? using the GS public key

returned as the ??? attribute in GS Options Section 5.9.

10.5. Response Encryption

[Editor: to be fleshed out]

The Client decrypts a response when ??? using the private key

matching the public key included in the request as the ??? attribute

in Section 5.5.

11. Extensibility

This standard can be extended in a number of areas:

Client Authentication Mechanisms

An extension could define other mechanisms for the Client to

authenticate to the GS and/or RS such as Mutual TLS or HTTP

Signing. Constrained environments could use CBOR [RFC7049]

instead of JSON, and COSE [RFC8152] instead of JOSE, and CoAP

[RFC8323] instead of HTTP/2.

Grant

An extension can define new objects in the Grant Request and

Grant Response JSON.

¶

¶

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

-

¶

* ¶

-

¶

Top Level

Top level objects SHOULD only be defined to represent

functionality other the existing top level objects and

attributes.

"client" Object

Additional information about the Client that the GS would

require related to an extension.

"user" Object

Additional information about the User that the GS would

require related to an extension.

"authorization" Object

Additional types of authorizations in addition to OAuth 2.0

scopes and RAR.

"claims" Object

Additional types of identity claims in addition to OpenID

Connect claims and Verified Credentials.

Interaction types

Additional types of interactions a Client can start with the

User.

Continuous Authentication

An extension could define a mechanism for the Client to

regularly provide continuous authentication signals and

receive responses.

[Editor: do we specify access token / handle introspection in this

document, or leave that to an extension?]

[Editor: do we specify access token / handle revocation in this

document, or leave that to an extension?]

12. Rational

Why is there only one mechanism for the Client to authenticate

with the GS? Why not support other mechanisms?

Having choices requires implementers to understand which choice

is preferable for them. Having one default mechanism in the

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

¶

¶

1.

¶

document for the Client to authenticate simplifies most

implementations. Deployments that have unique characteristics

can select other mechanisms that are preferable in specific

environments.

Why is the default Client authentication JOSE rather than MTLS?

MTLS cannot be used today by a Dynamic Client. MTLS requires

the application to have access below what is typically the

application layer, that is often not available on some

platforms. JOSE is done at the application layer. Many GS

deployments will be an application behind a proxy performing

TLS, and there are risks in the proxy passing on the results of

MTLS.

Why is the default Client authentication JOSE rather than HTTP

signing?

There is currently no widely deployed open standard for HTTP

signing. Additionally, HTTP signing requires passing all the

relevant parts of the HTTP request to downstream services

within an GS that may need to independently verify the Client

identity.

What are the advantages of using JOSE for the Client to

authenticate to the GS and a resource?

Both Registered Clients and Dynamic Clients can have a private

key, eliminating the public Client issues in OAuth 2.0, as a

Dynamic Client can create an ephemeral key pair. Using

asymetric cryptography also allows each instance of a

Registered Client to have its own private key if it can obtain

a certificate binding its public key to the public key the GS

has for the Client. Signed tokens can be passed to downstream

components in a GS or RS to enable independent verification of

the Client and its request. The GS Initiated Sequence Section 6

requires a URL safe parameter, and JOSE is URL safe.

Why does the GS not return parameters to the Client in the

redirect url?

Passing parameters via a browser redirection is the source of

many of the security risks in OAuth 2.0. It also presents a

challenge for smart devices. In this protocol, the redirection

from the Client to the GS is to enable the GS to interact with

the User, and the redirection back to the Client is to hand

back interaction control to the Client if the redirection was a

full browser redirect. Unlike OAuth 2.0, the identity of the

Client is independent of the URI the GS redirects to.

¶

2. ¶

¶

3.

¶

¶

4.

¶

¶

5.

¶

¶

Why is there not a UserInfo endpoint as there is with OpenID

Connect?

Since the Client can Read Grant at any time, it get the same

functionality as the UserInfo endpoint, without the Client

having to manage a separate access token and refresh token. If

the Client would like additional claims, it can Update Grant,

and the GS will let the Client know if an interaction is

required to get any of the additional claims, which the Client

can then start.

[Editor: is there some other reason to have the UserInfo

endpoint?]

Why is there still a Client ID?

The GS needs an identifier to fetch the meta data associated

with a Client such as the name and image to display to the

User, and the policies on what a Client is allowed to do. The

Client ID was used in OAuth 2.0 for the same purpose, which

simplifies migration. Dynamic Clients do not have a Client ID.

Why have both claims and authorizations?

There are use cases for each that are independent:

authenticating a user vs granting access to a resource. A

request for an authorization returns an access token or handle,

while a request for a claim returns the claim.

Why specify HTTP/2 or later and TLS 1.3 or later for Client and

GS communication in ?Section 10

Knowing the GS supports HTTP/2 enables a Client to set up a

connection faster. HTTP/2 will be more efficient when Clients

have large numbers of access tokens and are frequently

refreshing them at the GS as there will be less network

traffic. Mandating TLS 1.3 similarly improves the performance

and security of Clients and GS when setting up a TLS

connection.

Why do some of the JSON objects only have one child, such as

the identifiers object in the user object in the Grant Request?

It is difficult to forecast future use cases. Having more

resolution may mean the difference between a simple extension,

and a convoluted extension.

Why is the "iss" included in the "oidc" identifier object?

Would the "sub" not be enough for the GS to identify the User?

6.

¶

¶

¶

7. ¶

¶

8. ¶

¶

9.

¶

¶

10.

¶

¶

11.

¶

This decouples the GS from the OpenID Provider (OP). The GS

identifier is the GS URI, which is the endpoint at the GS. The

OP issuer identifier will likely not be the same as the GS URI.

The GS may also provide claims from multiple OPs.

Why complicate the sequence with "interaction"."keep"?

A common pattern is to use an GS to authenticate the User at

the Client. The Client does not know a priori if the User is a

new User, or a returning User. Asking a returning User to

consent releasing identity claims and/or authorizations they

have already provided is a poor User experience, as is sending

the User back to the GS. The Client requesting identity first

enables the Client to get a response from the GS while the GS

is still interacting with the User, so that the Client can

request any identity claims/or authorizations required or

desired. Additionally, the claims a Client may want about a

User may be dependent on some initial Claims. For example, if a

User is in a particular country, additional or different Claims

my be required by the Client

Why is there a "jose+body" RS access mechanism method for the

Client?Section 10.2.3

There are numerous use cases where the RS wants non-repudiation

and providence of the contents of an API call. For example, the

UGS Service Supplier Framework for Authentication and

Authorization [UTM].

Why use URIs to instead of handles for the Grant and

Authorization?

A URI is an identifier just like a handle that can contain GS

information that is opaque to the Client - so it has all the

features of a handle, plus it can be the URL that is resolved

to manipulate a Grant or an Authorization. As the Grant URI and

AuthZ URI are defined to start with the GS URI, the Client (and

GS) can easily determine which GS a Grant or Authorization

belong to. URIs also enable a RESTful interface to the GS

functionality.

Why have an OPTIONS verb on the GS URI? Why not use a .well-

known mechanism?

Having the GS URI endpoint respond to the metadata allows the

GS to provide Client specific results using the same Client

authentication used for other requests to the GS. It also

reduces the risk of a mismatch between what the advertised

metadata, and the actual metadata. A .well-known discovery

¶

12. ¶

¶

13.

¶

¶

14.

¶

¶

15.

¶

[RFC3966]

[RFC5322]

mechanism may be defined to resolve from a hostname to the GS

URI.

Why have an UPDATE, DELETE, and OPTIONS verbs on the AuthZ URI?

Maybe there are no use cases for them [that the editor knows

of], but the GS can not implement, and they are available if

use cases come up.

Why list explicit interactions, instead of the Client and GS

negotiating interaction capabilities?

The Client knows what interactions it is capable of, and

prefers. Telling the GS the interaction allows the GS to know

what interaction the User will have. Knowing how the Client

will transition the interaction will enable the GS to provider

a better User experience. For example, the GS may want to

provide a short URL if it knows the Client will be showing a QR

code vs a redirect, or have a different layout if it is a popup

vs a redirect.

13. Acknowledgments

This draft derives many of its concepts from Justin Richer's

Transactional Authorization draft [TxAuth].

Additional thanks to Justin Richer for his strong critique of

earlier drafts.

14. IANA Considerations

[JOSE parameter for Authorization HTTP header]

TBD

15. Security Considerations

TBD

16. References

16.1. Normative References

Schulzrinne, H., "The tel URI for Telephone Numbers", RFC

3966, DOI 10.17487/RFC3966, December 2004, <https://

www.rfc-editor.org/info/rfc3966>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

¶

16. ¶

¶

17.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322

[RFC5646]

[RFC6749]

[RFC6750]

[RFC7515]

[RFC7516]

[RFC7519]

[RFC7540]

[RFC8259]

[RFC8446]

[OIDC]

[OIDC4IA]

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web

Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May

2015, <https://www.rfc-editor.org/info/rfc7515>.

Jones, M. and J. Hildebrand, "JSON Web Encryption (JWE)",

RFC 7516, DOI 10.17487/RFC7516, May 2015, <https://

www.rfc-editor.org/info/rfc7516>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Sakimora, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0", November

2014, <https://openiD.net/specs/openiD-connect-

core-1_0.html>.

Lodderstedt, T. and D. Fett, "OpenID Connect for Identity

Assurance 1.0", October 2019, <https://openid.net/specs/

openid-connect-4-identity-assurance-1_0.html>.

https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7516
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8446
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html

[RFC7049]

[RFC8252]

[RFC8152]

[RFC8323]

[RFC8628]

[browser_based_apps]

[RAR]

[W3C_VC]

[QR_Code]

[TxAuth]

[UTM]

16.2. Informative References

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Denniss, W. and J. Bradley, "OAuth 2.0 for Native Apps",

BCP 212, RFC 8252, DOI 10.17487/RFC8252, October 2017,

<https://www.rfc-editor.org/info/rfc8252>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/info/rfc8323>.

Denniss, W., Bradley, J., Jones, M., and H. Tschofenig,

"OAuth 2.0 Device Authorization Grant", RFC 8628, DOI

10.17487/RFC8628, August 2019, <https://www.rfc-

editor.org/info/rfc8628>.

Parecki, A. and D. Waite, "OAuth 2.0 for

Browser-Based Apps", September 2019, <https://

tools.ietf.org/html/draft-ietf-oauth-browser-based-

apps-04>.

Lodderstedt, T., Richer, J., and B. Campbell, "OAuth 2.0

Rich Authorization Requests", January 2020, <https://

tools.ietf.org/html/draft-ietf-oauth-rar-00>.

Sporny, M., Noble, G., and D. Chadwick, "Verifiable

Credentials Data Model 1.0", November 2019, <https://

w3c.github.io/vc-data-model/>.

"ISO/IEC 18004:2015 - Information technology - Automatic

identification and data capture techniques - QR Code bar

code symbology specification", February 2015, <https://

www.iso.org/standard/62021.html>.

Richer, J., "Transactional AuthN", December 2019,

<https://tools.ietf.org/html/draft-richer-transactional-

authz-04>.

Rios, J., Smith, I., and P. Venkatesen, "UGS Service

Supplier Framework for Authentication and AuthN",

https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8252
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8628
https://www.rfc-editor.org/info/rfc8628
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-04
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-04
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-04
https://tools.ietf.org/html/draft-ietf-oauth-rar-00
https://tools.ietf.org/html/draft-ietf-oauth-rar-00
https://w3c.github.io/vc-data-model/
https://w3c.github.io/vc-data-model/
https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://tools.ietf.org/html/draft-richer-transactional-authz-04
https://tools.ietf.org/html/draft-richer-transactional-authz-04

September 2019, <https://utm.arc.nasa.gov/docs/2019-

UTM_Framework-NGSA-TM220364.pdf>.

Appendix A. Document History

A.1. draft-hardt-xauth-protocol-00

Initial version

A.2. draft-hardt-xauth-protocol-01

text clean up

added OIDC4IA claims

added "jws" method for accessing a resource.

renamed Initiation Request -> Grant Request

renamed Initiation Response -> Interaction Response

renamed Completion Request -> Authorization Request

renamed Completion Response -> Grant Request

renamed completion handle -> authorization handle

added Authentication Request, Authentication Response,

authentication handle

A.3. draft-hardt-xauth-protocol-02

handles are now URIs

the

the collection of claims and authorizations are a Grant

Appendix B. Comparison with OAuth 2.0 and OpenID Connect

Changed Features

The major changes between this protocol and OAuth 2.0 and OpenID

Connect are:

The Client uses a private key to authenticate in this protocol

instead of the client secret in OAuth 2.0 and OpenID Connect.

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

*¶

¶

¶

*

¶

https://utm.arc.nasa.gov/docs/2019-UTM_Framework-NGSA-TM220364.pdf
https://utm.arc.nasa.gov/docs/2019-UTM_Framework-NGSA-TM220364.pdf

The Client initiates the protocol by making a signed request

directly to the GS instead of redirecting the User to the GS.

The Client does not pass any parameters in redirecting the User

to the GS, nor receive any parameters in the redirection back

from the GS.

The refresh_token has been replaced with a AuthZ URI that both

represents the access, and is the URI to call to refresh access.

The Client can request identity claims to be returned independent

of the ID Token. There is no UserInfo endpoint to query claims as

there is in OpenID Connect.

The GS URI is the token endpoint. CHECK!!!s

Preserved Features

This protocol reuses the OAuth 2.0 scopes, Client IDs, and access

tokens of OAuth 2.0.

This protocol reuses the Client IDs, Claims and ID Token of

OpenID Connect.

No change is required by the Client or the RS for existing bearer

token protected APIs.

New Features

A Grant represents the user identity claims and RS access granted

to the Client.

The Client can update, retrieve, and delete a Grant.

The GS can initiate a flow by creating a Grant and redirecting

the User to the Client with the Grant URI.

The Client can discovery if an GS has a User with an identifier

before the GS interacts with the User.

The Client can request the GS to first authenticate the User and

return User identity claims, and then the Client can update Grant

request based on the User identity.

Support for QR Code initiated interactions.

Each Client instance can have its own private / public key pair.

More Extensibility dimensions.

*

¶

*

¶

*

¶

*

¶

* ¶

¶

*

¶

*

¶

*

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

Appendix C. Open Questions

Author's Address

Dick Hardt (editor)

SignIn.Org

United States

Email: dick.hardt@gmail.com

1. ¶

mailto:dick.hardt@gmail.com

	The XAuth Protocol
	Abstract
	Note to Readers
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	2.1. Parties
	2.2. Reused Terms
	2.3. New Terms

	3. Sequences
	3.1. Create Grant
	3.2. Reciprocal Grant
	3.3. GS Initiated Grant
	3.4. Create and Update
	3.5. Create and Delete
	3.6. Create, Discover, and Delete
	3.7. Create and Wait
	3.8. Read Grant
	3.9. Access Token Refresh
	3.10. GS API Table

	4. Grant and AuthZ Life Cycle
	5. GS APIs
	5.1. Create Grant
	5.2. Read Grant
	5.3. Update Grant
	5.4. Delete Grant
	5.5. Request JSON
	5.5.1. "client" Object
	5.5.2. "interaction" Object
	5.5.3. "user" Object
	5.5.4. "authorization" Object
	5.5.5. "authorizations" Object
	5.5.6. "claims" Object
	5.5.7. "reciprocal" Object

	5.6. Refresh Authorization
	5.7. Update Authorization
	5.8. Delete Authorization
	5.9. GS Options
	5.10. Grant Options
	5.11. AuthZ Options
	5.12. Request Verification

	6. GS Initiated Grant
	7. GS API Responses
	7.1. Grant Response
	7.2. Interaction Response
	7.3. Wait Response
	7.4. Response JSON
	7.4.1. "interaction" Object
	7.4.2. "user" Object
	7.4.3. "authorization" Object
	7.4.4. "authorizations" Object
	7.4.5. "claims" Object
	7.4.6. "reciprocal" Object
	7.4.7. Interaction Types
	7.4.8. Signing and Encryption

	7.5. Response Verification

	8. RS Access
	8.1. Bearer Token

	9. Error Responses
	10. JOSE Authentication
	10.1. GS Access
	10.1.1. Authorization Header
	10.1.2. Signed Body
	10.1.3. Public Key Resolution

	10.2. RS Access
	10.2.1. JOSE header
	10.2.2. "jose" Mechanism
	10.2.3. "jose+body" Mechanism
	10.2.4. Public Key Resolution

	10.3. Request Encryption
	10.4. Response Signing
	10.5. Response Encryption

	11. Extensibility
	12. Rational
	13. Acknowledgments
	14. IANA Considerations
	15. Security Considerations
	16. References
	16.1. Normative References
	16.2. Informative References

	Appendix A. Document History
	A.1. draft-hardt-xauth-protocol-00
	A.2. draft-hardt-xauth-protocol-01
	A.3. draft-hardt-xauth-protocol-02
	Appendix B. Comparison with OAuth 2.0 and OpenID Connect
	Appendix C. Open Questions
	Author's Address

