
Workgroup: Network Working Group

Internet-Draft: draft-hardt-xauth-protocol-14

Published: 15 August 2020

Intended Status: Standards Track

Expires: 16 February 2021

Authors: D. Hardt, Ed.

SignIn.Org

The Grant Negotiation and Authorization Protocol

Abstract

Client software often desires resources or identity claims that are

independent of the client. This protocol allows a user and/or

resource owner to delegate resource authorization and/or release of

identity claims to a server. Client software can then request access

to resources and/or identity claims by calling the server. The

server acquires consent and authorization from the user and/or

resource owner if required, and then returns to the client software

the authorization and identity claims that were approved. This

protocol may be extended on many dimensions.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 February 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. The Grant

1.2. Protocol Roles

1.3. Human Interactions

1.4. Trust Model

1.5. Terminology

1.6. Notational Conventions

2. Exemplar Sequences

2.1. "redirect" Interaction

2.2. "user_code" Interaction

2.3. Independent RO Authorization

2.4. Resource Server Access

3. GS APIs

3.1. GS API Table

3.2. Create Grant

3.3. Verify Grant

3.4. Read Grant

3.5. Request JSON

3.5.1. "client" Object

3.5.2. "interaction" Object

3.5.3. "user" Object

3.5.4. "access" Object

3.5.5. "claims" Object

3.6. Read Access

3.7. GS Options

4. GS Responses

4.1. Grant Response

4.2. Interaction Response

4.3. Wait Response

4.4. Response JSON

4.4.1. "client" Object

4.4.2. "interaction" Object

4.4.3. "access" Object

4.4.4. Access Response Object

4.4.5. "claims" Object

4.4.6. "warnings" JSON Array

4.5. Access JSON

4.6. Response Verification

5. Interaction Modes

5.1. "redirect"

5.1.1. "redirect" verification

5.2. "indirect"

5.3. "user_code"

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

6. RS Access

7. Error Responses

8. Warnings

9. Extensibility

10. Rational

11. Privacy Considerations

12. Security Considerations

13. Acknowledgments

14. IANA Considerations

15. References

15.1. Normative References

15.2. Informative References

Appendix A. Document History

A.1. draft-hardt-xauth-protocol-00

A.2. draft-hardt-xauth-protocol-01

A.3. draft-hardt-xauth-protocol-02

A.4. draft-hardt-xauth-protocol-03

A.5. draft-hardt-xauth-protocol-04

A.6. draft-hardt-xauth-protocol-05

A.7. draft-hardt-xauth-protocol-06

A.8. draft-hardt-xauth-protocol-07

A.9. draft-hardt-xauth-protocol-08

A.10. draft-hardt-xauth-protocol-09

A.11. draft-hardt-xauth-protocol-10

A.12. draft-hardt-xauth-protocol-11

A.13. draft-hardt-xauth-protocol-12

A.14. draft-hardt-xauth-protocol-13

A.15. draft-hardt-xauth-protocol-14

Appendix B. Comparison with OAuth 2.0 and OpenID Connect

Author's Address

1. Introduction

EDITOR NOTE

This document captures a number of concepts that may be adopted by

the proposed GNAP working group. Please refer to this document as:

XAuth

The use of GNAP in this document is not intended to be a declaration

of it being endorsed by the GNAP working group.

This document describes the core Grant Negotiation and Authorization

Protocol (GNAP). The protocol supports the widely deployed use cases

supported by OAuth 2.0 [RFC6749] & [RFC6750], OpenID Connect [OIDC]

- an extension of OAuth 2.0, as well as other extensions. Related

documents include: GNAP - Advanced Features [GNAP_Advanced] and JOSE

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Authentication [JOSE_Authentication] that describes the JOSE

mechanisms for client authentication.

The technology landscape has changed since OAuth 2.0 was initially

drafted. More interactions happen on mobile devices than PCs. Modern

browsers now directly support asymetric cryptographic functions.

Standards have emerged for signing and encrypting tokens with rich

payloads (JOSE) that are widely deployed.

GNAP simplifies the overall architectural model, takes advantage of

today's technology landscape, provides support for all the widely

deployed use cases, offers numerous extension points, and addresses

many of the security issues in OAuth 2.0 by passing parameters

securely between parties rather than via a browser redirection.

While GNAP is not backwards compatible with OAuth 2.0, it strives to

minimize the migration effort.

The suggested pronunciation of GNAP is "guh-nap".

1.1. The Grant

The Grant is at the center of the protocol between a client and a

server. A Grant Client requests a Grant from a Grant Server. The

Grant Client and Grant Server negotiate the Grant. The Grant Server

acquires authorization to grant the Grant to the Grant Client. The

Grant Server then returns the Grant to the Grant Client.

The Grant Request may contain information about the User, the Grant

Client, the interaction modes supported by the Grant Client, the

requested identity claims, and the requested resource access.

Extensions may define additional information to be included in the

Grant Request.

1.2. Protocol Roles

There are three roles in GNAP: the Grant Client (GC), the Grant

Server (GS), and the Resource Server (RS). Below is how the roles

interact:

¶

¶

¶

¶

¶

¶

¶

¶

(1) The GC may query the RS to determine what the RS requires from a

GS for resource access. This step is not in scope for this document.

(2) The GC makes a Grant request to the GS (Create Grant Section

3.2). How the GC authenticates to the GS is not in scope for this

document. One mechanism is [JOSE_Authentication].

(3) The GC and GS may negotiate the Grant.

(4) The GS returns a Grant to the GC (Grant Response Section 4.1).

(5) The GC accesses resources at the RS (RS Access Section 6).

(6) The RS evaluates access granted by the GS to determine access

granted to the GC. This step is not in scope for this document.

1.3. Human Interactions

The Grant Client may be interacting with a human end-user (User),

and the Grant Client may need to get authorization to release the

Grant from the User, or from the owner of the resources at the

Resource Server, the Resource Owner (RO)

Below is when the human interactions may occur in the protocol:

 +--------+ +------------+

 | Grant | - - - - - - -(1)- - - - - - ->| Resource |

 | Client | | Server |

 | (GC) | +---------------+ | (RS) |

 | |--(2)->| Grant | | |

 | |<-(3)->| Server |- (6) -| |

 | |<-(4)--| (GS) | | |

 | | +---------------+ | |

 | | | |

 | |--------------(5)------------->| |

 +--------+ +------------+

¶

¶

¶

¶

¶

¶

¶

¶

¶

Steps (1) - (6) are the same as Section 1.2. The addition of the

human interactions (A) - (C) are bolded below.

(A) The User is interacting with a GC, and the GC needs resource

access and/or identity claims (a Grant)

(1) The GC may query the RS to determine what the RS requires from a

GS for resource access

(2) The GC makes a Grant request to the GS

(3) The GC and GS may negotiate the Grant

(B) The GS may interact with the User for grant authorization

(C) The GS may interact with the RO for grant authorization

(4) The GS returns a Grant to the GC

(5) The GC accesses resources at the RS

(6) The RS evaluates access granted by the GS to determine access

granted to the GC

 +--------+ +------------+

 | User | | Resource |

 | | | Owner (RO) |

 +--------+ +------------+

 + + +

 + + +

 (A) (B) (C)

 + + +

 + + +

 +--------+ + + +------------+

 | Grant | - - -+- - - -(1)- - - -+- - ->| Resource |

 | Client | + + | Server |

 | (GC) | +---------------+ | (RS) |

 | |--(2)->| Grant | | |

 | |<-(3)->| Server |- (6) -| |

 | |<-(4)--| (GS) | | |

 | | +---------------+ | |

 | | | |

 | |--------------(5)------------->| |

 +--------+ +------------+

Legend

+ + + indicates an interaction with a human

----- indicates an interaction between protocol roles

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

Alternatively, the Resource Owner could be a legal entity that has a

software component that the Grant Server interacts with for Grant

authorization. This interaction is not in scope of this document.

1.4. Trust Model

In addition to the User and the Resource Owner, there are three

other entities that are part of the trust model:

Client Owner (CO) - the legal entity that owns the Grant Client.

Grant Server Owner (GSO) - the legal entity that owns the Grant

Server.

Claims Issuer (Issuer) - a legal entity that issues identity

claims about the User. The Grant Server Owner may be an Issuer,

and the Resource Owner may be an Issuer.

These three entities do not interact in the protocol, but are

trusted by the User and the Resource Owner:

(A) User trusts the GSO to acquire authorization before making a

grant to the CO

(B) User trusts the CO to act in the User's best interest with the

Grant the GSO grants to the CO

(C) CO trusts claims issued by the GSO

(D) CO trusts claims issued by the RO

(E) RO trusts the GSO to manage access to the RO resources

¶

¶

* ¶

*

¶

*

¶

¶

 +------------+ +--------------+----------+

 | User | >> (A) >> | Grant Server | |

 | | | Owner (GSO) | |

 +------------+ > +--------------+ |

 V / ^ | Claims |

 (B) (C) (E) | Issuer |

 V / ^ | (Issuer) |

 +------------+ > +--------------+ |

 | Client | | Resource | |

 | Owner (CO) | >> (D) >> | Owner (RO) | |

 +------------+ +--------------+----------+

¶

¶

¶

¶

¶

¶

1.5. Terminology

Roles

Grant Client (GC)

may want access to resources at a Resource Server

may be interacting with a User and want identity claims about

the User

requests the Grant Service to grant resource access and

identity claims

Grant Server (GS)

accepts Grant requests from the GC for resource access and

identity claims

negotiates the interaction mode with the GC if interaction is

required with the User

acquires authorization from the User before granting identity

claims to the GC

acquires authorization from the RO before granting resource

access to the GC

grants resource access and identity claims to the GC

Resource Server (RS)

has resources that the GC may want to access

expresses what the GC must obtain from the GS for access

through documentation or an API. This is not in scope for this

document

verifies the GS granted access to the GC, when the GS makes

resource access requests

Humans

User

the person interacting with the Grant Client.

has delegated access to identity claims about themselves to

the Grant Server.

may authenticate at the GS.

¶

* ¶

- ¶

-

¶

-

¶

* ¶

-

¶

-

¶

-

¶

-

¶

- ¶

* ¶

- ¶

-

¶

-

¶

¶

* ¶

- ¶

-

¶

- ¶

Resource Owner (RO)

the legal entity that owns resources at the Resource Server

(RS).

has delegated resource access management to the GS.

may be the User, or may be a different entity that the GS

interacts with independently.

Reused Terms

access token - an access token as defined in [RFC6749] Section

1.4. An GC uses an access token for resource access at a RS.

Claim - a Claim as defined in [OIDC] Section 5. Claims are issued

by a Claims Issuer.

Client ID - a GS unique identifier for a Registered Client as

defined in [RFC6749] Section 2.2.

ID Token - an ID Token as defined in [OIDC] Section 2. ID Tokens

are issued by the GS. The GC uses an ID Token to authenticate the

User.

NumericDate - a NumericDate as defined in [RFC7519] Section 2.

authN - short for authentication.

authZ - short for authorization.

New Terms

GS URI - the endpoint at the GS the GC calls to create a Grant,

and is the unique identifier for the GS.

Registered Client - a GC that has registered with the GS and has

a Client ID to identify itself, and can prove it possesses a key

that is linked to the Client ID. The GS may have different

policies for what different Registered Clients can request. A

Registered Client MAY be interacting with a User.

Dynamic Client - a GC that has not been previously registered

with the GS, and each instance will generate it's own asymetric

key pair so it can prove it is the same instance of the GC on

subsequent requests. The GS MAY return a Dynamic Client a Client

Handle for the Dynamic Client to identify itself in subsequent

requests. A single-page application with no active server

component is an example of a Dynamic Client.

* ¶

-

¶

- ¶

-

¶

¶

*

¶

*

¶

*

¶

*

¶

* ¶

* ¶

* ¶

¶

*

¶

*

¶

*

¶

Client Handle - a unique identifier at the GS for a Dynamic

Client for the Dynamic Client to refer to itself in subsequent

requests.

Interaction - how the GC directs the User to interact with the

GS. This document defines the interaction modes: "redirect",

"indirect", and "user_code" in Section 5.

Grant - the user identity claims and/or resource access the GS

has granted to the Client. The GS MAY invalidate a Grant at any

time.

Grant URI - the URI that represents the Grant. The Grant URI MUST

start with the GS URI.

Access - the access granted by the RO to the GC and contains an

access token. The GS may invalidate an Access at any time.

Access URI - the URI that represents the Access the GC was

granted by the RO. The Access URI MUST start with the GS URI. The

Access URI is used to refresh an access token.

1.6. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

specification are to be interpreted as described in [RFC2119].

Certain security-related terms are to be understood in the sense

defined in [RFC4949]. These terms include, but are not limited to,

"attack", "authentication", "authorization", "certificate",

"confidentiality", "credential", "encryption", "identity", "sign",

"signature", "trust", "validate", and "verify".

[Editor: review that the terms listed and used are the same]

Unless otherwise noted, all the protocol parameter names and values

are case sensitive.

Some protocol parameters are parts of a JSON document, and are

referred to in JavaScript notation. For example, foo.bar refers to

the "bar" boolean attribute in the "foo" object in the following

example JSON document:

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

{

 "foo" : {

 "bar": true

 }

}

¶

2. Exemplar Sequences

The following sequences are demonstrative of how GNAP can be used,

but are just a few of the possible sequences possible with GNAP.

Before any sequence, the GC needs to be manually or programmatically

configured for the GS. See GS Options Section 3.7 for details on

programmatically acquiring GS metadata.

In the sequence diagrams:

2.1. "redirect" Interaction

The GC is a web application and wants a Grant from the User

containing resource access and identity claims. The User is the RO

for the resource:

Create Grant The GC creates a Request JSON document Section 3.5

containing an interaction.redirect object, and the requested

identity claims and resource access. The GC then makes a Create

Grant request (Section 3.2) by sending the JSON with an HTTP

POST to the GS URI.

Interaction Response The GS determines that interaction with

the User is required and sends an Interaction Response (Section

¶

¶

¶

+ + + indicates an interaction with a person

----- indicates an interaction between protocol roles

¶

¶

+--------+ +--------+

| Grant | | Grant |

| Client |--(1)--- Create Grant ----------->| Server |

| (GC) | | (GS) |

| |<--- Interaction Response ---(2)--| | +------+

| | | | | User |

| |+ +(3)+ + Interaction Transfer + +| + + + +|+ + + + >| |

| | | | | |

| | | |<+ (4) +>| |

| | | | authN | |

| | | | | |

| | | |<+ (5) +>| |

| | | | authZ | |

| |<+ + Interaction Transfer + +(6)+ | + + + +|+ + + + +| |

| | | | | |

| |--(7)--- Verify Grant ----------->| | +------+

| | | |

| |<--------- Grant Response ---(8)--| |

| | | |

+--------+ +--------+

¶

1.

¶

2.

4.2) containing the Grant URI and an interaction.redirect

object containing the redirect_uri.

Interaction Transfer The GC redirects the User to the

redirect_uri at the GS.

User Authentication The GS authenticates the User.

User Authorization If required, the GS interacts with the User

(who may also be the RO) to determine the identity claims and

resource access in the Grant Request are to be granted.

Interaction Transfer The GS redirects the User to the

completion_uri at the GC.

Verify Grant The GC makes an HTTP PATCH request to the Grant

URI passing the verification code (Section 3.3).

Grant Response The GS responds with a Grant Response (Section

4.1).

The GC can now access the resources at the RS per Section 2.4.

2.2. "user_code" Interaction

A GC is on a device that wants a Grant from the User. The User will

interact with the GS using a separate device:

¶

3.

¶

4. ¶

5.

¶

6.

¶

7.

¶

8.

¶

¶

¶

Create Grant The GC creates a Request JSON document Section 3.5

containing an interaction.user_code object and makes a Create

Grant request (Section 3.2) by sending the JSON with an HTTP

POST to the GS URI.

Interaction Response The GS determines that interaction with

the User is required and sends an Interaction Response (Section

4.2) containing the Grant URI and an interaction.user_code

object.

Read Grant The GC makes an HTTP GET request to the Grant URI.

User Authentication The User loads display_uri in their

browser, and the GS authenticates the User.

User Code The User enters the code at the GS.

User Authorization If required, the GS interacts with the User

(who may also be the RO) to determine the identity claims and

resource access in the Grant Request are to be granted.

Grant Response The GS responds with a Grant Response (Section

4.1).

+--------+ +--------+

| Grant | | Grant |

| Client |--(1)--- Create Grant ----------->| Server |

| (GC) | | (GS) |

| |<--- Interaction Response ---(2)--| | +------+

| | | | | User |

| |--(3)--- Read Grant ------------->| | | |

| | | |<+ (4) +>| |

| | | | authN | |

| | | | | |

| | | |<+ (5) +>| |

| | | | code | |

| | | | | |

| | | |<+ (6) +>| |

| | | | authZ | |

| | | | | |

| |<--------- Grant Response ---(7)--| | | |

| | | | | |

+--------+ | | | |

 | | | |

+--------+ | | | |

| Client |< + + Information URI Redirect + +| + + + +|+ (8) + +| |

| Server | | | | |

+--------+ +--------+ +------+

¶

1.

¶

2.

¶

3. ¶

4.

¶

5. ¶

6.

¶

7.

¶

Information URI Redirect The GS redirects the User to the

information_uri provided by the GC.

The GC can now access the resources at the RS per Section 2.4.

2.3. Independent RO Authorization

The GC wants access to resources that require the GS to interact

with the RO, who is not interacting with the GC. The authorization

from the RO may take some time, so the GS instructs the GC to wait

and check back later.

Create Grant The GC creates a Grant Request (Section 3.2) and

sends it with an HTTP POST to the GS GS URI.

Wait Response The GS sends an Wait Response (Section 4.3)

containing the Grant URI and the "wait" attribute.

GC Waits The GC waits for the time specified in the "wait"

attribute.

RO AuthZ The GS interacts with the RO to determine which

identity claims and/or resource access in the Grant Request are

to be granted.

Read Grant The GC does an HTTP GET of the Grant URI (Section

3.4).

Grant Response The GS responds with a Grant Response (Section

4.1).

The GC can now access the resources at the RS per Section 2.4.

8.

¶

¶

¶

+--------+ +--------+

| Grant | | Grant |

| Client |--(1)--- Create Grant ----------->| Server |

| (GC) | | (GS) |

| |<---------- Wait Response ---(2)--| | +------+

| (3) | | | | RO |

| Wait | | |<+ (4) +>| |

| | | | authZ | |

| |--(5)--- Read Grant ------------->| | +------+

| | | |

| |<--------- Grant Response --(6)---| |

| | | |

+--------+ +--------+

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6.

¶

¶

2.4. Resource Server Access

The GC received an Access URI from the GS. The GC acquires an access

token, calls the RS, and later the access token expires. The GC then

gets a fresh access token.

Resource Request The GC accesses the RS with the access token

per Section 6 and receives a response from the RS.

Resource Request The GC attempts to access the RS, but receives

an error indicating the access token needs to be refreshed.

Read Access The GC makes a Read Access (Section 3.6) with an

HTTP GET to the Access URI and receives as Response JSON

"access" object (Section 4.4.4) with a fresh access token.

3. GS APIs

GC Authentication

All GS APIs except for GS Options require the GC to authenticate.

Authentication mechanisms include:

JOSE Authentication [JOSE_Authentication]

[Others TBD]*

3.1. GS API Table

request http method uri response

Create Grant POST GS URI Interaction, wait, or Grant

Verify Grant PATCH Grant URI Grant

Read Grant GET Grant URI wait, or Grant

Read Access GET Access URI Access

¶

+--------+ +----------+ +--------+

| Grant | | Resource | | Grant |

| Client |--(1)--- Access Resource --->| Server | | Server |

| (GC) |<------- Resource Response --| (RS) | | (GS) |

| | | | | |

| |--(2)--- Access Resource --->| | | |

| |<------- Error Response -----| | | |

| | | | | |

| | +----------+ | |

| | | |

| |--(3)--- Read Access --------------------->| |

| |<------- Access Response ------------------| |

| | | |

+--------+ +--------+

¶

1.

¶

2.

¶

3.

¶

¶

¶

* ¶

* ¶

request http method uri response

GS Options OPTIONS GS URI metadata

Table 1

3.2. Create Grant

The GC creates a Grant by doing an HTTP POST of a JSON [RFC8259]

document to the GS URI. This is a Grant Request.

The JSON document MUST include the following from the Request JSON

Section 3.5:

iat

nonce

uri - MUST be set to the GS URI

method - MUST be "POST"

client

and MAY include the following from Request JSON Section 3.5

user

interaction

access

claims

The GS MUST respond with one of Grant Response Section 4.1,

Interaction Response Section 4.2, Wait Response Section 4.3, or one

of the following errors:

TBD

from Error Responses Section 7.

Following is a non-normative example of a web application GC

requesting identity claims about the User and read access to the

User's contacts:

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

¶

¶

Following is a non-normative example of a device GC requesting two

different access tokens, one request with "oauth_scope", the other

with "oauth_rich":

Example 1

{

 "iat" : 15790460234,

 "uri" : "https://as.example/endpoint",

 "method" : "POST,

 "nonce" : "f6a60810-3d07-41ac-81e7-b958c0dd21e4",

 "client": {

 "display": {

 "name" : "SPA Display Name",

 "uri" : "https://spa.example/about"

 }

 },

 "interaction": {

 "redirect": {

 "completion_uri" : "https://web.example/return"

 },

 "global" : {

 "ui_locals" : "de"

 }

 },

 "access": ["read_contacts"],

 "claims": {

 "oidc": {

 "id_token" : {

 "email" : { "essential" : true },

 "email_verified" : { "essential" : true }

 },

 "userinfo" : {

 "name" : { "essential" : true },

 "picture" : null

 }

 }

 }

}

¶

¶

3.3. Verify Grant

The GC verifies a Grant by doing an HTTP PATCH of a JSON document to

the Grant URI. The GC MUST only verify a Grant once.

The JSON document MUST include the following from the Request JSON

Section 3.5:

iat

nonce

uri - MUST be set to the Grant URI

method - MUST be PATCH

interaction.redirection.verification - MUST be the verification

code received per Section 5.1.1.

Following is a non-normative example:

Example 2

{

 "iat" : 15790460234,

 "uri" : "https://as.example/endpoint",

 "method" : "POST,

 "nonce" : "5c9360a5-9065-4f7b-a330-5713909e06c6",

 "client": {

 "id" : "di3872h34dkJW"

 },

 "interaction": {

 "indirect": {

 "information_uri": "https://device.example/c/indirect"

 },

 "user_code": {

 "information_uri": "https://device.example/c/user_code"

 }

 },

 "access": {

 "play_music": ["play_music"],

 "read_user_info: [{

 "type" : "customer_information",

 "locations" : ["https://example.com/customers"],

 "actions" : ["read"],

 "datatypes" : ["contacts", "photos"]

 }]

 }

}

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

*

¶

¶

The GS MUST respond with one of Grant Response Section 4.1 or one of

the following errors:

TBD

3.4. Read Grant

The GC reads a Grant by doing an HTTP GET of the corresponding Grant

URI. The GC MAY read a Grant until it expires or has been

invalidated.

The GS MUST respond with one of Grant Response Section 4.1, Wait

Response Section 4.3, or one of the following errors:

TBD

3.5. Request JSON

iat - the time of the request as a NumericDate.

nonce - a unique identifier for this request. Note the Grant

Response MUST contain a matching "nonce" attribute value.

uri - the URI being invoked

method - the HTTP method being used

3.5.1. "client" Object

The client object MUST only one of the following:

id - the Client ID the GS has for a Registered Client.

handle - the Client Handle the GS previously provided a Dynamic

Client

{

 "iat" : 15790460235,

 "uri" : "https://as.example/endpoint/grant/example1",

 "method" : "PATCH,

 "nonce" : "9b6afd70-2036-47c9-b953-5dd1fd0c699a",

 "interaction": {

 "redirect": {

 "verification" : "cb4aa22d-2fe1-4321-b87e-bbaa66fbe707"

 }

 }

}

¶

¶

* ¶

¶

¶

* ¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

*

¶

display - the display object contains the following attributes:

name - a string that represents the Dynamic Client

uri - a URI representing the Dynamic Client

The GS will show the the User the display.name and display.uri

values when prompting for authorization.

[Editor: a max length for the name and URI so a GS can reserve

appropriate space?]

3.5.2. "interaction" Object

The interaction object contains one or more interaction mode objects

per Section 5 representing the interactions the GC is willing to

provide the User. In addition to the interaction mode objects, the

interaction object may contain the "global" object;

global - an optional object containing parameters that are

applicable for all interaction modes. Only one attribute is

defined in this document:

ui_locales - End-User's preferred languages and scripts for

the user interface, represented as a space-separated list of

[RFC5646] language tag values, ordered by preference. This

attribute is OPTIONAL.

[Editor: ui_locales is taken from OIDC. Why space-separated and not

a JSON array?]

3.5.3. "user" Object

identifiers - The identifiers MAY be used by the GS to improve

the User experience. This object contains one or more of the

following identifiers for the User:

phone_number - contains a phone number per Section 5 of

[RFC3966].

email - contains an email address per [RFC5322].

oidc - is an object containing both the "iss" and "sub"

attributes from an OpenID Connect ID Token [OIDC] Section 2.

claims - an optional object containing one or more assertions the

GC has about the User.

oidc_id_token - an OpenID Connect ID Token per [OIDC] Section

2.

* ¶

- ¶

- ¶

¶

¶

¶

*

¶

-

¶

¶

*

¶

-

¶

- ¶

-

¶

*

¶

-

¶

3.5.4. "access" Object

The GC may request a single Access, or multiple. If a single Access,

the "access" object contains an array of [RAR] objects. If multiple,

the "access" object contains an object where each property name is a

unique string created by the GC, and the property value is an array

of [RAR] objects.

3.5.5. "claims" Object

Includes one or more of the following:

oidc - an object that contains one or both of the following

objects:

userinfo - Claims that will be returned as a JSON object

id_token - Claims that will be included in the returned ID

Token. If the null value, an ID Token will be returned

containing no additional Claims.

The contents of the userinfo and id_token objects are Claims as

defined in [OIDC] Section 5.

oidc4ia - OpenID Connect for Identity Assurance claims request

per [OIDC4IA].

vc - [Editor: define how W3C Verifiable Credentials can be

requested.][W3C_VC]

3.6. Read Access

The GC acquires and refreshes an Access by doing an HTTP GET to the

corresponding Access URI.

The GS MUST respond with a Access JSON document Section 4.5, or one

of the following errors:

TBD

from Error Responses Section 7.

3.7. GS Options

The GC can get the metadata for the GS by doing an HTTP OPTIONS of

the corresponding GS URI. This is the only API where the GS MAY

respond to an unauthenticated request.

¶

¶

*

¶

- ¶

-

¶

¶

*

¶

*

¶

¶

¶

* ¶

¶

¶

The GS MUST respond with the the following JSON document:

uri - the GS URI.

client_authentication - a JSON array of the GC Authentication

mechanisms supported by the GS

interactions - a JSON array of the interaction modes supported by

the GS.

access - an object containing the access the GC may request from

the GS, if any.

Details TBD

claims - an object containing the identity claims the GC may

request from the GS, if any, and what public keys the claims will

be signed with.

Details TBD

algorithms - a JSON array of the cryptographic algorithms

supported by the GS. [details TBD]*

features - an object containing feature or extension support

or one of the following errors:

TBD

from Error Responses Section 7.

4. GS Responses

There are three successful responses to a Grant Request: Grant

Response, Interaction Response, or Wait Response.

4.1. Grant Response

The Grant Response MUST include the following from the Response JSON

Section 4.4

iat

nonce

uri

and MAY include the following from the Response JSON Section 4.4

client.handle

¶

* ¶

*

¶

*

¶

*

¶

- ¶

*

¶

- ¶

*

¶

* ¶

¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

¶

* ¶

access

claims

expires_in

warnings

Example non-normative Grant Response JSON document for Example 1 in

Section 3.2:

Note in this example since no Access URI was returned in the access

object, the access token can not be refreshed, and expires in an

hour.

Example non-normative Grant Response JSON document for Example 2 in

Section 3.2:

* ¶

* ¶

* ¶

* ¶

¶

{

 "iat" : 15790460234,

 "nonce" : "f6a60810-3d07-41ac-81e7-b958c0dd21e4",

 "uri" : "https://as.example/endpoint/grant/example1",

 "expires_in" : 300

 "access": {

 "mechanism" : "bearer",

 "token" : "eyJJ2D6.example.access.token.mZf9p"

 "expires_in" : 3600,

 "granted" : ["read_contacts"],

 },

 "claims": {

 "oidc": {

 "id_token" : "eyJhbUzI1N.example.id.token.YRw5DFdbW",

 "userinfo" : {

 "name" : "John Doe",

 "picture" : "https://photos.example/p/eyJzdkiO"

 }

 }

 }

}

¶

¶

¶

{

 "iat" : 15790460234,

 "nonce" : "5c9360a5-9065-4f7b-a330-5713909e06c6",

 "uri" : "https://as.example/endpoint/grant/example2",

 "access": {

 "play_music": { "uri" : "https://as.example/endpoint/access/example2" },

 "read_user_info: { "uri" " "https://as.example/endpoint/access/"}

 }

}

¶

Note in this example the GS only provided the Access URIs. The GC

must acquire the Access per Section 3.6

[Editor: the GC needs to remember if it asked for a single access,

or multiple, as there is no crisp algorithm for differentiating

between the responses]

4.2. Interaction Response

The Interaction Response MUST include the following from the

Response JSON Section 4.4

iat

nonce

uri

interaction

and MAY include the following from the Response JSON Section 4.4

user

wait

warnings

A non-normative example of an Interaction Response follows:

4.3. Wait Response

The Wait Response MUST include the following from the Response JSON

Section 4.4

iat

nonce

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

{

 "iat" : 15790460234,

 "nonce" : "0d1998d8-fbfa-4879-b942-85a88bff1f3b",

 "uri" : "https://as.example/endpoint/grant/example4",

 "interaction" : {

 "redirect" : {

 "redirect_uri" : "https://as.example/i/example4"

 }

 }

}

¶

¶

* ¶

* ¶

uri

wait

and MAY include the following from the Response JSON Section 4.4

warnings

A non-normative example of Wait Response follows:

4.4. Response JSON

Details of the JSON document:

iat - the time of the response as a NumericDate.

nonce - the nonce that was included in the Request JSON Section

3.5.

uri - the Grant URI.

wait - a numeric value representing the number of seconds the GC

should want before making a Read Grant request to the Grant URI.

expires_in - a numeric value specifying how many seconds until

the Grant expires. This attribute is OPTIONAL.

4.4.1. "client" Object

If the GC is a Dynamic Client, the GS may return

handle the Client Handle

4.4.2. "interaction" Object

If the GS wants the GC to start the interaction, the GS MUST return

an interaction object containing one or more interaction mode

responses per Section 5 to one or more of the interaction mode

requests provided by the GC.

* ¶

* ¶

¶

* ¶

¶

{

 "iat" : 15790460234,

 "nonce" : "0d1998d8-fbfa-4879-b942-85a88bff1f3b",

 "uri" : "https://as.example/endpoint/grant/example5",

 "wait" : 300

}

¶

¶

* ¶

*

¶

* ¶

*

¶

*

¶

¶

* ¶

¶

4.4.3. "access" Object

If the GC requested a single Access, the "access" object is an

access response object Section 4.4.4. If the GC requested multiple,

the access object contains a property of the same name for each

Access requested by the GC, and each property is an access response

object Section 4.4.4.

4.4.4. Access Response Object

The access response object contains properties from the Access JSON

Section 4.5. The access response object MUST contain either the

"uri" property from, or MUST contain:

mechanism

token

and MAY contain:

access

expires_in

uri

If there is no "uri" property, the access token can not be

refreshed. If only the "uri" property is present, the GC MUST

acquire the Access per Section 3.6

4.4.5. "claims" Object

The claims object is a response to the Grant Request "claims" object

Section 3.5.5.

oidc

id_token - an OpenID Connect ID Token containing the Claims

the User consented to be released.

userinfo - the Claims the User consented to be released.

Claims are defined in [OIDC] Section 5.

oidc4ia - OpenID Connect for Identity Assurance claims response

per [OIDC4IA].

vc

¶

¶

* ¶

* ¶

¶

* ¶

* ¶

* ¶

¶

¶

* ¶

-

¶

- ¶

¶

*

¶

* ¶

The verified claims the user consented to be released. [Editor:

details TBD]

4.4.6. "warnings" JSON Array

Includes zero or more warnings from Section 8,

4.5. Access JSON

The Access JSON is a Grant Response Access Object Section 4.4.4 or

the response to a Read Access request by the GC Section 3.6.

mechanism - the RS access mechanism. This document defines the

"bearer" mechanism as defined in Section 6. Required.

token - the access token for accessing an RS. Required.

expires_in - an optional numeric value specifying how many

seconds until the access token expires.

uri - the Access URI. Used to acquire or refresh Access.

Required.

granted - an optional array of [RAR] objects containing the

resource access granted

[Editor: would an optional expiry for the Access be useful?]

The following is a non-normative example of Access JSON:

4.6. Response Verification

On receipt of a response, the GC MUST verify the following:

TBD

5. Interaction Modes

This document defines three interaction modes: "redirect",

"indirect", and "user_code". Extensions may define additional

interaction modes.

¶

¶

¶

*

¶

* ¶

*

¶

*

¶

*

¶

¶

¶

{

 "mechanism" : "bearer",

 "token" : "eyJJ2D6.example.access.token.mZf9p"

 "expires_in" : 3600,

 "uri" : "https://as.example/endpoint/access/example2",

 "granted" : ["read_calendar write_calendar"]

}

¶

¶

* ¶

¶

The "global" attribute is reserved in the interaction object for

attributes that apply to all interaction modes.

5.1. "redirect"

A Redirect Interaction is characterized by the GC redirecting the

User's browser to the GS, the GS interacting with the User, and then

GS redirecting the User's browser back to the GC. The GS correlates

the Grant Request with the unique redirect_uri, and the GC

correlates the Grant Request with the unique completion_uri.

The request "interaction" object contains:

completion_uri a unique URI at the GC that the GS will return the

User to. The URI MUST not contain the "nonce" from the Grant

Request, and MUST not be guessable. This attribute is REQUIRED.

The response "interaction" object contains:

redirect_uri a unique URI at the GS that the GC will redirect the

User to. The URI MUST not contain the "nonce" from the Grant

Request, and MUST not be guessable. This attribute is REQUIRED.

verification a boolean value indicating the GS requires the GC to

make a Verify Grant request.(Section 3.3)

5.1.1. "redirect" verification

If the GS indicates that Grant Verification is required, the GS MUST

add a 'verification' query parameter with a value of a unique

verification code to the completion_uri.

On receiving the verification code in the redirect from the GS, the

GC makes a Verify Grant request (Section 3.3) with the verification

code.

5.2. "indirect"

An Indirect Interaction is characterized by the GC causing the

User's browser to load the indirect_uri at GS, the GS interacting

with the User, and then the GS MAY optionally redirect the User's

Browser to a information_uri. There is no mechanism for the GS to

redirect the User's browser back to the GC.

Examples of how the GC may initiate the interaction are encoding the

indirect_uri as a code scannable by the User's mobile device, or

launching a system browser from a command line interface (CLI)

application.

¶

¶

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

¶

The "indirect" mode is susceptible to session fixation attacks. See

TBD in the Security Considerations for details.

The request "interaction" object contains:

information_uri an OPTIONAL URI that the GS will redirect the

User's browser to after GS interaction.

The response "interaction" object contains:

indirect_uri the URI the GC will cause to load in the User's

browser. The URI SHOULD be short enough to be easily encoded in a

scannable code. The URI MUST not contain the "nonce" from the

Grant Request, and MUST not be guessable. [Editor: recommend a

maximum length?]

5.3. "user_code"

An Indirect Interaction is characterized by the GC displaying a code

and a URI for the User to load in a browser and then enter the code.

[Editor: recommend a minimum entropy?]

The request "interaction" object contains:

information_uri an OPTIONAL URI that the GS will redirect the

User's browser to after GS interaction.

The response "interaction" object contains:

code the code the GC displays to the User to enter at the

display_uri. This attribute is REQUIRED.

display_uri the URI the GC displays to the User to load in a

browser to enter the code.

6. RS Access

The mechanism the GC MUST use to access an RS is in the Access JSON

"mechanism" attribute Section 4.4.4.

The "bearer" mechanism is defined in Section 2.1 of [RFC6750]

The "jose" and "jose+body" mechanisms are defined in

[JOSE_Authentication]

A non-normative "bearer" example of the HTTP request headers

follows:

¶

¶

*

¶

¶

*

¶

¶

¶

*

¶

¶

*

¶

*

¶

¶

¶

¶

¶

7. Error Responses

TBD

8. Warnings

[Editor: Warnings are an optional response that can assist a GC in

detecting non-fatal errors, such as ignored objects and properties.]

TBD

9. Extensibility

This standard can be extended in a number of areas:

GC Authentication Mechanisms

An extension could define other mechanisms for the GC to

authenticate to the GS and/or RS such as Mutual TLS or HTTP

Signing. Constrained environments could use CBOR [RFC7049]

instead of JSON, and COSE [RFC8152] instead of JOSE, and CoAP

[RFC8323] instead of HTTP/2.

Grant

An extension can define new objects in the Grant Request and

Grant Response JSON that return new URIs.

Top Level

Top level objects SHOULD only be defined to represent

functionality other the existing top level objects and

attributes.

"client" Object

Additional information about the GC that the GS would require

related to an extension.

"user" Object

Additional information about the User that the GS would

require related to an extension.

GET /calendar HTTP/2

Host: calendar.example

Authorization: bearer eyJJ2D6.example.access.token.mZf9pTSpA

¶

* ¶

¶

* ¶

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

* ¶

-

¶

"access" Object

RAR is inherently extensible.

"claims" Object

Additional claim schemas in addition to OpenID Connect claims

and Verified Credentials.

interaction modes

Additional types of interactions a GC can start with the User.

Continuous Authentication

An extension could define a mechanism for the GC to regularly

provide continuous authentication signals and receive

responses.

[Editor: do we specify access token introspection in this document,

or leave that to an extension?]

10. Rational

Why do GCs now always use Asymetric cryptography? Why not keep

the client secret?

In the past, asymetric cryptography was relatively

computational expensive. Modern browsers now have asymetric

cryptographic APIs available, and modern hardware has

significantly reduced the computational impact.

Why have both Client ID and Client Handle?

While they both refer to a Grant Client in the protocol, the

Client ID refers to a pre-registered client,and the Client

Handle is specific to an instance of a Dynamic Client. Using

separate terms clearly differentiates which identifier is being

presented to the GS.

Why allow GC and GS to negotiate the user interaction mode?

The GC knows what interaction modes it is capable of, and the

GS knows which interaction modes it will permit for a given

Grant Request. The GC can then present the intersection to the

User to choose which one is preferred. For example, while a

device based GC may be willing to do both "indirect" and

"user_code", a GS may not enable "indirect" for concern of a

session fixation attack. Additional interaction modes will

* ¶

- ¶

* ¶

-

¶

* ¶

- ¶

* ¶

-

¶

¶

1.

¶

¶

2. ¶

¶

3. ¶

likely become available which allows new modes to be negotiated

between GC and GS as each adds additional interaction modes.

Why have both identity claims and resource access?

There are use cases for each that are independent:

authenticating a user and providing claims vs granting access

to a resource. A request for an authorization returns an access

token which may have full CRUD capabilities, while a request

for a claim returns the claim about the User - with no create,

update or delete capabilities. While the UserInfo endpoint in

OIDC may be thought of as a resource, separating the concepts

and how they are requested keeps each of them simpler in the

Editor's opinion. :)

Why do some of the JSON objects only have one child, such as

the identifiers object in the user object in the Grant Request?

It is difficult to forecast future use cases. Having more

resolution may mean the difference between a simple extension,

and a convoluted extension. For example, the "global" object in

the "interaction" object allows new global parameters to be

added without impacting new interaction modes.

Why is the "iss" included in the "oidc" identifier object?

Would the "sub" not be enough for the GS to identify the User?

This decouples the GS from the OpenID Provider (OP). The GS

identifier is the GS URI, which is the endpoint at the GS. The

OP issuer identifier will likely not be the same as the GS URI.

The GS may also provide claims from multiple OPs.

Why is there not a UserInfo endpoint as there is with OpenID

Connect?

Since the GC can Read Grant at any time, it get the same

functionality as the UserInfo endpoint, without the GC having

to manage a separate access token and refresh token. If the GC

would like additional claims, it can Update Grant, and the GS

will let the GC know if an interaction is required to get any

of the additional claims, which the GC can then start.

[Editor: is there some other reason to have the UserInfo

endpoint?]

Why use URIs for the Grant and Access?

Grant URI and Access URI are defined to start with the GS

URI, allowing the GC, and GS to determine which GS a Grant

or Access belongs to.

¶

4. ¶

¶

5.

¶

¶

6.

¶

¶

7.

¶

¶

¶

8. ¶

*

¶

URIs also enable a RESTful interface to the GS

functionality.

A large scale GS can easily separate out the services that

provide functionality as routing of requests can be done at

the HTTP layer based on URI and HTTP method. This allows a

separation of concerns, independent deployment, and

resiliency.

Why use the OPTIONS method on the GS URI? Why not use a .well-

known mechanism?

Having the GS URI endpoint respond to the metadata allows the

GS to provide GC specific results using the same GC

authentication used for other requests to the GS. It also

reduces the risk of a mismatch between the advertised metadata,

and the actual metadata. A .well-known discovery mechanism may

be defined to resolve from a hostname to the GS URI.

Why is there a Verify Grant? The GC can protect itself from

session fixation without it.

GC implementations may not always follow the best practices.

The Verify Grant allows the GS to ensure there is not a session

fixation as the instance of the GC making creating the Grant is

the one that gets the verification code in the redirect.

**Why use the [OIDC] claims rather than the [IANA_JWT] list of

claims?

The [IANA_JWT] claims include claims that are not identity

claims, and [IANA_JWT] references the [OIDC] claims, and [OIDC]

5.1 are only identity claims.

11. Privacy Considerations

TBD

12. Security Considerations

TBD

13. Acknowledgments

This draft derives many of its concepts from Justin Richer's

Transactional Authorization draft [TxAuth].

Additional thanks to Justin Richer and Annabelle Richard Backman for

their strong critique of earlier drafts. [Editor: add in the other

contributors from mail list]

*

¶

*

¶

9.

¶

¶

10.

¶

¶

11.

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC3966]

[RFC5322]

[RFC4949]

[RFC5646]

[RFC6749]

[RFC6750]

[RFC7519]

[RFC8259]

[OIDC]

14. IANA Considerations

TBD

15. References

15.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Schulzrinne, H., "The tel URI for Telephone Numbers", RFC

3966, DOI 10.17487/RFC3966, December 2004, <https://

www.rfc-editor.org/info/rfc3966>.

Resnick, P., Ed., "Internet Message Format", RFC 5322,

DOI 10.17487/RFC5322, October 2008, <https://www.rfc-

editor.org/info/rfc5322>.

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007,

<https://www.rfc-editor.org/info/rfc4949>.

Phillips, A., Ed. and M. Davis, Ed., "Tags for

Identifying Languages", BCP 47, RFC 5646, DOI 10.17487/

RFC5646, September 2009, <https://www.rfc-editor.org/

info/rfc5646>.

Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",

RFC 6749, DOI 10.17487/RFC6749, October 2012, <https://

www.rfc-editor.org/info/rfc6749>.

Jones, M. and D. Hardt, "The OAuth 2.0 Authorization

Framework: Bearer Token Usage", RFC 6750, DOI 10.17487/

RFC6750, October 2012, <https://www.rfc-editor.org/info/

rfc6750>.

Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token

(JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,

<https://www.rfc-editor.org/info/rfc7519>.

Bray, T., Ed., "The JavaScript Object Notation (JSON)

Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/

RFC8259, December 2017, <https://www.rfc-editor.org/info/

rfc8259>.

Sakimora, N., Bradley, J., Jones, M., de Medeiros, B.,

and C. Mortimore, "OpenID Connect Core 1.0", November

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc3966
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc5322
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc5646
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc8259
https://www.rfc-editor.org/info/rfc8259

[OIDC4IA]

[RAR]

[W3C_VC]

[JOSE_Authentication]

[GNAP_Advanced]

[RFC7049]

[RFC8152]

[RFC8323]

[browser_based_apps]

[QR_Code]

2014, <https://openiD.net/specs/openiD-connect-

core-1_0.html>.

Lodderstedt, T. and D. Fett, "OpenID Connect for Identity

Assurance 1.0", October 2019, <https://openid.net/specs/

openid-connect-4-identity-assurance-1_0.html>.

Lodderstedt, T., Richer, J., and B. Campbell, "OAuth 2.0

Rich Authorization Requests", January 2020, <https://

tools.ietf.org/html/draft-ietf-oauth-rar-00>.

Sporny, M., Noble, G., and D. Chadwick, "Verifiable

Credentials Data Model 1.0", November 2019, <https://

w3c.github.io/vc-data-model/>.

Hardt, D., "JOSE Authentication", June 2020,

<https://tools.ietf.org/html/draft-hardt-gnap-jose>.

Hardt, D., "The Grant Negotiation and Authorization

Protocol - Advanced Features", June 2020, <https://

tools.ietf.org/html/draft-hardt-gnap-advanced>.

15.2. Informative References

Bormann, C. and P. Hoffman, "Concise Binary Object

Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,

October 2013, <https://www.rfc-editor.org/info/rfc7049>.

Schaad, J., "CBOR Object Signing and Encryption (COSE)",

RFC 8152, DOI 10.17487/RFC8152, July 2017, <https://

www.rfc-editor.org/info/rfc8152>.

Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,

Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained

Application Protocol) over TCP, TLS, and WebSockets", RFC

8323, DOI 10.17487/RFC8323, February 2018, <https://

www.rfc-editor.org/info/rfc8323>.

Parecki, A. and D. Waite, "OAuth 2.0 for

Browser-Based Apps", September 2019, <https://

tools.ietf.org/html/draft-ietf-oauth-browser-based-

apps-04>.

"ISO/IEC 18004:2015 - Information technology - Automatic

identification and data capture techniques - QR Code bar

https://openiD.net/specs/openiD-connect-core-1_0.html
https://openiD.net/specs/openiD-connect-core-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://openid.net/specs/openid-connect-4-identity-assurance-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-rar-00
https://tools.ietf.org/html/draft-ietf-oauth-rar-00
https://w3c.github.io/vc-data-model/
https://w3c.github.io/vc-data-model/
https://tools.ietf.org/html/draft-hardt-gnap-jose
https://tools.ietf.org/html/draft-hardt-gnap-advanced
https://tools.ietf.org/html/draft-hardt-gnap-advanced
https://www.rfc-editor.org/info/rfc7049
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8152
https://www.rfc-editor.org/info/rfc8323
https://www.rfc-editor.org/info/rfc8323
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-04
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-04
https://tools.ietf.org/html/draft-ietf-oauth-browser-based-apps-04

[TxAuth]

[IANA_JWT]

code symbology specification", February 2015, <https://

www.iso.org/standard/62021.html>.

Richer, J., "Transactional AuthN", December 2019,

<https://tools.ietf.org/html/draft-richer-transactional-

authz-04>.

"JSON Web Token Claims", January 2015, <https://

www.iana.org/assignments/jwt/jwt.xhtml>.

Appendix A. Document History

A.1. draft-hardt-xauth-protocol-00

Initial version

A.2. draft-hardt-xauth-protocol-01

text clean up

added OIDC4IA claims

added "jws" method for accessing a resource.

renamed Initiation Request -> Grant Request

renamed Initiation Response -> Interaction Response

renamed Completion Request -> Authorization Request

renamed Completion Response -> Grant Request

renamed completion handle -> authorization handle

added Authentication Request, Authentication Response,

authentication handle

A.3. draft-hardt-xauth-protocol-02

major rewrite

handles are now URIs

the collection of claims and authorizations are a Grant

an Authorization is its own type

lots of sequences added

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

https://www.iso.org/standard/62021.html
https://www.iso.org/standard/62021.html
https://tools.ietf.org/html/draft-richer-transactional-authz-04
https://tools.ietf.org/html/draft-richer-transactional-authz-04
https://www.iana.org/assignments/jwt/jwt.xhtml
https://www.iana.org/assignments/jwt/jwt.xhtml

A.4. draft-hardt-xauth-protocol-03

fixed RO definition

improved language in Rationals

added user code interaction method, and aligned qrcode

interaction method

added information_uri for code flows

A.5. draft-hardt-xauth-protocol-04

renamed interaction uris to have purpose specific names

A.6. draft-hardt-xauth-protocol-05

separated claims from identifiers in request user object

simplified reciprocal grant flow

reduced interactions to redirect and indirect

simplified interaction parameters

added in language for Client to verify interaction completion

added Verify Grant API and Interaction Nonce

replaced Refresh AuthZ with Read AuthZ. Read and refresh are same

operation.

A.7. draft-hardt-xauth-protocol-06

fixup examples to match specification

A.8. draft-hardt-xauth-protocol-07

refactored interaction request and response syntax, and enabled

interaction mode negotiation

generation of client handle by GS for dynamic clients

renamed title to Grant Negotiation and Authorization Protocol.

Preserved draft-hardt-xauth-protocol filename to ease tracking

changes.

changed Authorizations to be key / value pairs (aka dictionary)

instead of a JSON array

* ¶

* ¶

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

*

¶

* ¶

*

¶

* ¶

*

¶

*

¶

A.9. draft-hardt-xauth-protocol-08

split document into three documents: core, advanced, and JOSE

authentication.

grouped access granted into "access" object in Authorization JSON

added warnings object to the Grant Response JSON

A.10. draft-hardt-xauth-protocol-09

added editorial note that this document should be referred to as

XAuth

A.11. draft-hardt-xauth-protocol-10

added example of RAR authorization request

fixed typos

A.12. draft-hardt-xauth-protocol-11

renamed authorization_uri to interaction_uri to avoid confusion

with AZ URI

made URI names more consistent

renamed completion_uri to information_uri

renamed redirect_uri to completion_uri

renamed interaction_uri to redirect_uri

renamed short_uri to indirect_uri

editorial fixes

renamed http verb to method

added Verify Grant and verification parameters

A.13. draft-hardt-xauth-protocol-12

removed authorization object, and made authorizations object

polymorphic

A.14. draft-hardt-xauth-protocol-13

added Q about referencing OIDC claims vs IANA JWT

*

¶

* ¶

* ¶

*

¶

* ¶

* ¶

*

¶

* ¶

- ¶

- ¶

- ¶

- ¶

* ¶

* ¶

* ¶

*

¶

* ¶

made all authorizations be a RAR type as it provides the required

flexibility, removed "oauth_rar" type

added RO to places where the RO and User are the same

A.15. draft-hardt-xauth-protocol-14

rewrote introduction

add in claims issuer and grant server owner

abstract protocol

add clarification on different parties

renamed Client to Grant Client

added entity relationship diagram

updated diagrams

added placeholder for Privacy Considerations

renamed Authorization to Access

Appendix B. Comparison with OAuth 2.0 and OpenID Connect

Changed Features

The major changes between GNAP and OAuth 2.X and OpenID Connect are:

The OAuth 2.X client and the OpenID Connect replying party are

the Grant Client in GNAP.

The GNAP Grant Server is a superset of the OAuth 2.X

authorization server, and the OpenID Connect OP (OpenID

Provider).

The GC always uses a private asymetric key to authenticate to the

GS. There is no client secret.

The GC initiates the protocol by making a signed request directly

to the GS instead of redirecting the User to the GS.

The GC does not pass any parameters in redirecting the User to

the GS.

The refresh_token has been replaced with an AZ URI that both

represents the authorization, and is the URI for obtaining a

fresh access token.

*

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

The GC can request identity claims to be returned independent of

the ID Token.

The GS URI is the only static endpoint. All other URIs are

dynamically generated. The GC does not need to register it's

redirect URIs.

TBD - negotiation

Preserved Features

GNAP reuses the scopes, Client IDs, and access tokens of OAuth

2.0.

GNAP reuses the Client IDs, Claims and ID Token of OpenID

Connect.

No change is required by the GC or the RS for accessing existing

bearer token protected APIs.

New Features

All GC calls to the GS are authenticated with asymetric

cryptography

A Grant represents both the user identity claims and RS access

granted to the GC.

Support for scannable code initiated interactions.

Highly extensible per Section 9.

Author's Address

Dick Hardt (editor)

SignIn.Org

United States

Email: dick.hardt@gmail.com

*

¶

*

¶

¶

¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

* ¶

mailto:dick.hardt@gmail.com

	The Grant Negotiation and Authorization Protocol
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. The Grant
	1.2. Protocol Roles
	1.3. Human Interactions
	1.4. Trust Model
	1.5. Terminology
	1.6. Notational Conventions

	2. Exemplar Sequences
	2.1. "redirect" Interaction
	2.2. "user_code" Interaction
	2.3. Independent RO Authorization
	2.4. Resource Server Access

	3. GS APIs
	3.1. GS API Table
	3.2. Create Grant
	3.3. Verify Grant
	3.4. Read Grant
	3.5. Request JSON
	3.5.1. "client" Object
	3.5.2. "interaction" Object
	3.5.3. "user" Object
	3.5.4. "access" Object
	3.5.5. "claims" Object

	3.6. Read Access
	3.7. GS Options

	4. GS Responses
	4.1. Grant Response
	4.2. Interaction Response
	4.3. Wait Response
	4.4. Response JSON
	4.4.1. "client" Object
	4.4.2. "interaction" Object
	4.4.3. "access" Object
	4.4.4. Access Response Object
	4.4.5. "claims" Object
	4.4.6. "warnings" JSON Array

	4.5. Access JSON
	4.6. Response Verification

	5. Interaction Modes
	5.1. "redirect"
	5.1.1. "redirect" verification

	5.2. "indirect"
	5.3. "user_code"

	6. RS Access
	7. Error Responses
	8. Warnings
	9. Extensibility
	10. Rational
	11. Privacy Considerations
	12. Security Considerations
	13. Acknowledgments
	14. IANA Considerations
	15. References
	15.1. Normative References
	15.2. Informative References

	Appendix A. Document History
	A.1. draft-hardt-xauth-protocol-00
	A.2. draft-hardt-xauth-protocol-01
	A.3. draft-hardt-xauth-protocol-02
	A.4. draft-hardt-xauth-protocol-03
	A.5. draft-hardt-xauth-protocol-04
	A.6. draft-hardt-xauth-protocol-05
	A.7. draft-hardt-xauth-protocol-06
	A.8. draft-hardt-xauth-protocol-07
	A.9. draft-hardt-xauth-protocol-08
	A.10. draft-hardt-xauth-protocol-09
	A.11. draft-hardt-xauth-protocol-10
	A.12. draft-hardt-xauth-protocol-11
	A.13. draft-hardt-xauth-protocol-12
	A.14. draft-hardt-xauth-protocol-13
	A.15. draft-hardt-xauth-protocol-14
	Appendix B. Comparison with OAuth 2.0 and OpenID Connect
	Author's Address

