
EMU D. Harkins
Internet-Draft HPE
Intended status: Informational July 24, 2019
Expires: January 25, 2020

Improved Extensible Authentication Protocol Using Only a Password
draft-harkins-eap-pwd-prime-00.txt

Abstract

 Passwords are a popular form of credential for user authentication.
 EAP-pwd (RFC 5931) is a popular method of performing secure password
 authenticaiton. EAP-pwd requires a secret element in a finite cyclic
 group, unfortunately the technique it uses to derive this secret is
 open to timing and cache attacks. This improved version, EAP-pwd',
 uses a different technique to derive the secret element which is
 resistant to timing and cache attacks.

Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 25, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Harkins Expires January 25, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft EAP-pwd Prime July 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. EAP-pwd' . 2
2.1. Secret Element Derivation for ECC 3
2.2. Secret Element Derivation for FFC 6
2.3. Fixing the Password Element 7

3. Acknowledgements . 8
4. IANA Considerations . 8
5. Implementation Considerations 8
6. Security Considerations 9
7. References . 9
7.1. Normative References 9
7.2. Informative References 10

 Author's Address . 10

1. Introduction

 EAP-pwd is a popular EAP method due to the fact that it authenticates
 without requiring certificates. Large federated networks sometimes
 have latency issues with numerous fragmented packets going between
 the EAP client and EAP server, a problem exacerbated by using EAP
 methods that require certificate-based authentication. EAP-pwd
 obviates this.

 The technique used by EAP-pwd to obtain its secret element is
 susceptible to timing attacks and cache attacks that can partition
 the dictionary enough to successfully determine the password. Recent
 work in the Crypto Forum Research Group on constant time techniques
 to hash a string into a point on an elliptic curve in constant time
 [2] provides an opportunity to address this.

2. EAP-pwd'

 EAP-pwd' is an EAP method that follows the EAP-pwd specification
 ([3]) in all respects except for the following:

 o It uses the Type code TBD-1, not 52 which is used by EAP-pwd.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Harkins Expires January 25, 2020 [Page 2]

Internet-Draft EAP-pwd Prime July 2019

 o It derives PWE/pwe as defined in Section 2.1 and Section 2.2 for
 ECC and FFC groups, respectively, using a different technique than
 the "hunting and pecking" loop defined in [3].

 o it defines three new random functions using HKDF instantiated with
 SHA-256, SHA-384, and SHA-512.

 EAP-pwd' MUST be used with one of the random functions defined in
 this document.

 The technique used by EAP-pwd' for deriving PWE/pwe can be
 implemented in constant time and is resistant to the side channel and
 timing attacks that the hunting-and-pecking loop of [3] is
 susceptible to. Computing the password element in EAP-pwd' is a two-
 step process. First, a secret element based on the password is
 generated using one of the two new techniques, one for ECC and one
 for FFC. Next the identities of the EAP server and EAP peer are
 combined with the secret element to create the password element used
 by the key exchange of [3].

 The secret element can be generated at provisioning time or a run-
 time. Either way, the EAP server will generate the password element
 prior to generation of an EAP-pwd-Commit/Request and the EAP peer
 will generate the password element prior to generation of an EAP-pwd-
 Commit/Response.

2.1. Secret Element Derivation for ECC

 The new technique to hash into an elliptic curve is the "Simplified
 Shallue-van de Woestijne-Ulas Method" from [2]. The operations to
 derive the secret element can be implemented in constant time.

 The Simplified SWU method takes a password as input and generates 2
 values-- x1 and x2-- at least one of which will be the abscissa of a
 point on the curve. Since this method does not map its input to the
 entire curve it is necessary to use a construct from [5] that uses
 Simplified SWU with two functions that operate as random oracles to
 produce two different points whose sum is the secret point S:

 S := SSWU(h1(m)) + SSWU(h2(m))

 Where m is the message to hash, h1() and h2() are random oracles
 based on hash functions, '+' is point addition, and SSWU() is the
 "Simplified SWU" hash-to-curve method.

 EAP-pwd' uses HKDF ([4]) to instantiate the random oracles. The
 password and a label is passed to HKDF() to produce a password-seed.
 The password seed is then reduced modulo the prime to produce the

Harkins Expires January 25, 2020 [Page 3]

Internet-Draft EAP-pwd Prime July 2019

 input variable, u, for "Simplified SWU" which generates the first
 intermediate point. This process is repeated with a different label
 to produce the second intermediate point. Their sum is S.

 The particular flavor of HKDF is the random function negotiated by
 EAP-pwd'.

 Algorithmically, the process looks like this:

Harkins Expires January 25, 2020 [Page 4]

Internet-Draft EAP-pwd Prime July 2019

 simplified_swu(password) {
 pwd-seed = HKDF(0^n, password,
 "EAP-pwd' Hash to Element P1", olen(p))
 u = (pwd-seed modulo (p - 2)) + 2

 t = inverse(z^2 * u^4 + z * u^2)
 x1 = (-b/a) * (1 + t)
 gx1 = x1^3 + a * x1 + b
 x2 = z * u^2 * x1
 gx2 = x2^3 + a * x2 + b

 l = gx1 is a quadratic residue modulo p
 v = CSEL(l, gx1, gx2)
 x = CSEL(l, x1, x2)
 y = sqrt(v)

 l = CEQ(LSB(u), LSB(y))
 P1 = CSEL(l, (x,y), (x, p-y))

 pwd-seed = HKDF(0^n, password,
 "EAP-pwd' Hash to Element P2", olen(p))
 u = (pwd-seed modulo (p - 2)) + 2

 t = inverse(z^2 * u^4 + z * u^2)
 x1 = (-b/a) * (1 + t)
 gx1 = x1^3 + a * x1 + b
 x2 = z * u^2 * x1
 gx2 = x2^3 + a * x2 + b

 l = gx1 is a quadratic residue modulo p
 v = CSEL(l, gx1, gx2)
 x = CSEL(l, x1, x2)
 y = sqrt(v)

 l = CEQ(LSB(u), LSB(y))
 P2 = CSEL(l, (x,y), (x, p-y))

 S = P1 + P2

 output S
 }

 Figure 1: Generation of the ECC Secret Point

 Where:

Harkins Expires January 25, 2020 [Page 5]

Internet-Draft EAP-pwd Prime July 2019

 o 0^n is a salt of all zeros whose length equals the length of the
 digest of the hash function that instantiates HKDF

 o p is the prime, q is the order, a and b are part of the equation
 of the curve, and all of these are defined in the domain parameter
 set of the chosen curve

 o z is a curve-specific parameter derived according to [2] for the
 chosen curve

 o LSB(x) returns the least significant bit of x

 o CSEL(x,y,z) operates in constant time and returns y if x is true
 and z otherwise

 o CEQ(x,y) operates in constant time and returns true if x equals y
 and false otherwise

2.2. Secret Element Derivation for FFC

 The new technique to hash into an FFC group is similar to the
 technique used in [3] but it does so without looping thereby
 obviating a timing attack that can partition the dictionary.

 EAP-pwd' uses HKDF ([4]) to produce a password value which is
 exponentiated to produce a new element of the same order as the
 generator of the group. This new element is output.

 Algorithmically, the process looks like this:

 hash_to_ffc(password) {
 pwd-value = HKDF(0^n, password,
 "EAP-pwd' Hash To Element",
 olen(p))
 pwd-value = (pwd-value modulo (p - 2)) + 2

 s = pwd-value^((p-1)/q) modulo p

 output s
 }

 Figure 2: Generation of the FFC Secret Point

 Where:

 o 0^n is a salt of all zeros whose length equals the length of the
 digest of the hash function that instantiates HKDF

Harkins Expires January 25, 2020 [Page 6]

Internet-Draft EAP-pwd Prime July 2019

 o p is the prime, and q is the order and are defined in the domain
 parameter set of the chosen group

 The secret element, s, is guaranteed to have an order of either 1 or
 q and the probability that it is 1 is remote enough to ignore.

2.3. Fixing the Password Element

 The secret element derived in Section 2.1 or Section 2.2 is used to
 fix EAP-pwd's Password Element prior to the generation of the EAP-
 pwd-Commit/Request by the EAP server and prior to generation of the
 EAP-pwd-Commit/Response by the EAP peer. To do this, they use the
 negotiated random function to hash the anti-clogging token from [3]
 and their identities to the length of the order of the negotiated
 group. This is interpreted as an integer and reduced such that it is
 between 1 and the order of the group, exclusive. The secret element
 is then operated on by this value, point multiplication for ECC and
 exponentiation for FFC, to produce the Password Element.

 For ECC groups, this process looks like:

 fix_PWE(S) {
 val = HKDF(peer-ID | server-ID, token, "Fixing PWE", olen(p))
 val = val modulo (q - 1) + 1

 PWE = val * S
 }

 Figure 3: Generation of PWE

 Where: p is the prime, and q is the order and are defined in the
 domain parameter set of the chosen group.

 For FFC groups, this process looks like:

 fix_pwe(S) {
 val = HKDF(peer-ID | server-ID, token, "Fixing pwe", olen(p))
 val = val modulo (q - 1) + 1

 pwe = s^val modulo p
 }

 Figure 4: Generation of pwe

 Where: p is the prime, and q is the order and are defined in the
 domain parameter set of the chosen group.

Harkins Expires January 25, 2020 [Page 7]

Internet-Draft EAP-pwd Prime July 2019

3. Acknowledgements

 The author thanks Hugo Krawczyk and Riad Wahby.

4. IANA Considerations

 IANA is insructed to assign a new EAP method type to EAP-pwd' and
 replace TBD-1 in this document with that value.

 IANA is instructed to assign values from the Random Function registry
 of [3] for the following:

 o TBD-2: HKDF with SHA256 as defined in [4]

 o TBD-3: HKDF with SHA384 as defined in [4]

 o TBD-4: HKDF with SHA512 as defined in [4]

 Replacing TBD-[2-4] with the assigned values.

5. Implementation Considerations

 Implementations SHOULD generate the secret element from Section 2.1
 and Section 2.2 when the password is provisioned and wait to generate
 a session-specific password element when the EAP-pwd' protocol
 begins.

 Implementations SHOULD offer use a random function that provides
 commensurate strength for the curve being negotiated. Guidance is as
 follows based on the length of the curve's prime, len(p):

 o HKDF-SHA256 when len(p) <= 256

 o HKDF-SHA384 when 256 < len(p) <= 384

 o HKDF-SHA512 when 384 < len(p)

 The technique to generate the secret element on an elliptic curve
 from Section 2.1 only works on Weierstrass curves with an equation of
 y^2 = x^3 + a*x + b, with a != 0 and b != 0. A different hash-to-
 curve technique implementable in constant time will have to be used
 for other curves. [2] defines curve-specific techniques to obtain a
 secret element for other curves. In the event that such a technique
 is used, the random function negotiated SHALL be HKDF based on the
 hash function defined in the ciphersuite of the particular hash to
 curve technique.

Harkins Expires January 25, 2020 [Page 8]

Internet-Draft EAP-pwd Prime July 2019

 [2] describes useful utility functions that can be used to perform
 the operations in Figure 1 in constant time. In addition, [7]
 describes a useful blinding technique that can be used to determine
 whether number is a quadratic residue modulo a prime in constant
 time.

6. Security Considerations

 The "hunting and pecking" loop done in [3] leaked information on how
 many loops it took to determine the password element. This allows an
 attacker to partition the dictionary by excluding possible passwords
 which would take a different number of loops. After a frighteningly
 few such partitionings it becomes possible for the attacker to
 eliminate enough passwords to feasibly launch active attacks to learn
 the password. [6] describes cache based attacks and timing attacks
 that are possible against [3].

 The Simplified SWU hash-to-curve method with the Brier construct
 allows for the password element to be derived in constant time which
 obviates these attacks.

 For implementations that cannot become completely constant time (due
 to, for instance, limitations in a crypto library) it is possible to
 limit timing attacks by generating the secret element from

Section 2.1 and Section 2.2 when the password is provisioned and then
 generating the password element at run time.

7. References

7.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997,
 <http://xml.resource.org/public/rfc/html/rfc2119.html>.

 [2] Fax-Hernandez, A., Scott, S., Sullivan, N., Wahby, R., and
 C. Wood, "Hashing to Elliptic Curves", draft-irtf-cfrg-

hash-to-curve A work in progress, July 2019.

 [3] Harkins, D. and G. Zorn, "Extensible Authentication
 Protocol (EAP) Authentication Using Only a Password", RFC

5931, August 2010.

 [4] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/

RFC5869, May 2010,
 <http://www.rfc-editor.org/info/rfc5869>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://xml.resource.org/public/rfc/html/rfc2119.html
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve
https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc5869
https://datatracker.ietf.org/doc/html/rfc5869
http://www.rfc-editor.org/info/rfc5869

Harkins Expires January 25, 2020 [Page 9]

Internet-Draft EAP-pwd Prime July 2019

7.2. Informative References

 [5] Brier, E., "Efficient Indifferentiable Hashing into
 Ordinary Elliptic Curves", Advances in Cryptology-- Crypto
 2010 Springer-Verlag, 2010.

 [6] Vanhoef, M. and E. Ronen, "Dragonblood: A Security
 Analysis of WPA3's SAE Handshake", Cryptology ePrint
 Archive Report 2019, 2019.

 [7] Harkins, D., Ed., "Dragonfly Key Exchange", RFC 7664, DOI
 10.17487/RFC7664, November 2015,
 <http://www.rfc-editor.org/info/rfc7664>.

Author's Address

 Dan Harkins
 Hewlett Packard Enterprise
 3333 Scott boulevard
 Santa Clara
 United States of America

 Email: dharkins@lounge.org

https://datatracker.ietf.org/doc/html/rfc7664
http://www.rfc-editor.org/info/rfc7664

Harkins Expires January 25, 2020 [Page 10]

