
Network Working Group D. Harkins
Internet-Draft Aruba Networks
Intended status: Standards Track G. Zorn
Expires: December 31, 2009 NetCube
 June 29, 2009

EAP Authentication Using Only A Password
draft-harkins-emu-eap-pwd-04

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79. This document may contain material
 from IETF Documents or IETF Contributions published or made publicly
 available before November 10, 2008. The person(s) controlling the
 copyright in some of this material may not have granted the IETF
 Trust the right to allow modifications of such material outside the
 IETF Standards Process. Without obtaining an adequate license from
 the person(s) controlling the copyright in such materials, this
 document may not be modified outside the IETF Standards Process, and
 derivative works of it may not be created outside the IETF Standards
 Process, except to format it for publication as an RFC or to
 translate it into languages other than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 31, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Harkins & Zorn Expires December 31, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft EAP Password June 2009

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Abstract

 This memo describes an Extensible Authentication Protocol (EAP)
 method, EAP-pwd, which uses a shared password for authentication.
 The password may be a low-entropy one and may be drawn from some set
 of possible passwords, like a dictionary, which is available to an
 attacker.

Table of Contents

1. Introduction . 4
1.1. Background . 4
1.2. Keyword Definitions 4
1.3. Requirements . 4
1.3.1. Resistance to Passive Attack 4
1.3.2. Resistance to Active Attack 5
1.3.3. Resistance to Dictionary Attack 5
1.3.4. Forward Secrecy 5

2. Specification of EAP-pwd 5
2.1. Notation . 5
2.1.1. Prime Modulus Groups 6
2.1.2. Elliptic Curve Groups 7

2.2. Assumptions . 8
2.3. Instantiating the Random Function 8
2.4. Key Derivation Function 9
2.5. Random Numbers . 9
2.6. Protocol . 10
2.6.1. Overview . 10
2.6.2. Message Flows . 10
2.6.3. Fixing the Password Element 12
2.6.3.1. Elliptic Curve PWE 12
2.6.3.2. Prime Modulus pwe 13

2.6.4. Message Construction 14
2.6.4.1. Elliptic Curve Groups 14
2.6.4.2. Prime Modulus Groups 15

2.6.5. Message Processing 16
2.6.5.1. EAP-pwd-ID Exchange 16
2.6.5.2. EAP-pwd-Commit Exchange 18
2.6.5.3. EAP-pwd-Confirm Exchange 19

2.7. Management of EAP-pwd Keys 19
3. Packet Formats . 20

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Harkins & Zorn Expires December 31, 2009 [Page 2]

Internet-Draft EAP Password June 2009

3.1. EAP-pwd Header . 20
3.2. EAP-pwd Payloads . 22
3.2.1. EAP-pwd-ID . 22
3.2.2. EAP-pwd-Commit . 23
3.2.3. EAP-pwd-Confirm 24

3.3. Representation of Field Elements 25
3.3.1. Prime Modulus Groups 25
3.3.2. Elliptic Curve Groups 25

4. Fragmentation . 25
5. IANA Considerations . 26
6. Security Considerations 27
6.1. Resistance to Passive Attack 28
6.2. Resistance to Active Attack 28
6.3. Resistance to Dictionary Attack 28
6.4. Forward Secrecy . 30
6.5. Random Functions . 31

7. Security Claims . 31
8. Acknowledgements . 34
9. References . 34
9.1. Normative References 34
9.2. Informative References 35

 Authors' Addresses . 36

Harkins & Zorn Expires December 31, 2009 [Page 3]

Internet-Draft EAP Password June 2009

1. Introduction

1.1. Background

 The predominant access method for the Internet today is that of a
 human using a username and password to authenticate to a computer
 enforcing access control. Proof of knowledge of the password
 authenticates the human and computer.

 Typically these passwords are not stored on a user's computer for
 security reasons and must be entered each time the human desires
 network access. Therefore the passwords must be ones that can be
 repeatedly entered by a human with a low probability of error. They
 will likely not possess high-entropy and it may be assumed that an
 adversary with access to a dictionary will have the ability to guess
 a user's password. It is therefore desirable to have a robust
 authentication method that is secure even when used with a weak
 password in the presence of a strong adversary.

 EAP-pwd is an EAP method that addresses the problem of password-based
 authenticated key exchange-- using a possibly weak password for
 authentication to derive an authenticated and cryptographically
 strong shared secret. This problem was first described by Bellovin
 and Merritt in [BM92] and [BM93]. There have been a number of
 subsequent suggestions ([JAB96], [LUC97], [BMP00], and others) for
 password-based authenticated key exchanges.

1.2. Keyword Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.3. Requirements

 Any protocol that claims to solve the problem of password-
 authenticated key exchange must be resistant to active, passive and
 dictionary attack and have the quality of forward secrecy. These
 characteristics are discussed further in the following sections.

1.3.1. Resistance to Passive Attack

 A passive, or benign, attacker is one that merely relays messages
 back and forth between the peer and server, faithfully, and without
 modification. The contents of the messages are available for
 inspection, but that is all. To achieve resistance to passive
 attack, such an attacker must not be able to obtain any information
 about the password or anything about the resulting shared secret from

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Harkins & Zorn Expires December 31, 2009 [Page 4]

Internet-Draft EAP Password June 2009

 watching repeated runs of the protocol. Even if a passive attacker
 is able to learn the password, she will not be able to determine any
 information about the resulting secret shared by the peer and server.

1.3.2. Resistance to Active Attack

 An active attacker is able to modify, add, delete, and replay
 messages sent between protocol participants. For this protocol to be
 resistant to active attack, the attacker must not be able to obtain
 any information about the password or the shared secret by using any
 of its capabilities. In addition, the attacker must not be able to
 fool a protocol participant into thinking that the protocol completed
 successfully.

 It is always possible for an active attacker to deny delivery of a
 message critical in completing the exchange. This is no different
 than dropping all messages and is not an attack against the protocol.

1.3.3. Resistance to Dictionary Attack

 For this protocol to be resistant to dictionary attack any advantage
 an adversary can gain must be directly related to the number of
 interactions she makes with an honest protocol participant and not
 through computation. The adversary will not be able to obtain any
 information about the password except whether a single guess from a
 single protocol run is correct or incorrect.

1.3.4. Forward Secrecy

 Compromise of the password must not provide any information about the
 secrets generated by earlier runs of the protocol.

2. Specification of EAP-pwd

2.1. Notation

 The following notation is used in this memo:

 peer-ID
 The peer's identity, the peer NAI [RFC4282].

 server-ID
 A string that identifies the server to the peer.

https://datatracker.ietf.org/doc/html/rfc4282

Harkins & Zorn Expires December 31, 2009 [Page 5]

Internet-Draft EAP Password June 2009

 password
 The password shared between the peer and server.

 y = H(x)
 The binary string x is given to a function H which produces an
 output y.

 a | b
 denotes concatenation of string a with string b.

 g^x mod p
 indicates multiplication of the value "g" with itself "x" times,
 modulo the value "p".

 inv(Q)
 indicates the inverse of an element, Q, from a finite field.

 len(x)
 indicates the length in bits of the string x.

 chop(x, y)
 is reduction of string x, being at least y bits in length, to y
 bits.

 LSB(x)
 returns the least-significant bit of the bitstring "x".

 CipherSuite
 an encoding of a finite cyclic group to use with EAP-pwd, the
 definition of function H, and a PRF, in that order.

 MSK
 The Master Session Key exported by EAP-pwd. This is a high-
 entropy secret 512 bits in length.

 EMSK
 The Extended Master Session Key exported by EAP-pwd. This is a
 high-entropy secret 512 bits in length.

 This protocol uses a finite cyclic group in which the discrete
 logarithm problem is known to be hard. Groups can be either based on
 exponentiation modulo a prime or on an elliptic curve.

2.1.1. Prime Modulus Groups

 Groups formed by a prime modulus have a generator, g, a prime modulus
 p, optionally an order r. The group operation is exponentiation
 modulus the prime:

Harkins & Zorn Expires December 31, 2009 [Page 6]

Internet-Draft EAP Password June 2009

 y = g^x mod p

 the generator taken to the x-th power modulo the prime returns an
 element in the group.

 If the order of the generator of the group is part of the group
 definition that value MUST be used as the order of the group, r, when
 an order is called for, otherwise the order, r, MUST be computed as
 the prime minus one divided by two-- (p-1)/2.

 The inverse function for a prime modulus group is defined such that
 the product of an element and its inverse modulo the group prime
 equals one (1). In other words,

 (q * inv(q)) mod p = 1

2.1.2. Elliptic Curve Groups

 Elliptic curve over GF(2^m) SHALL NOT be used by EAP-pwd. While such
 groups exist in the IANA registry used by EAP-pwd their use in EAP-
 pwd is not defined.

 Elliptic curves over GF(p) are defined by a curve equation, y^2 = x^3
 + ax + b, for a defined "a" and "b". Groups formed by an elliptic
 curve over GF(p) have a generator G, a prime p, a cofactor f, and an
 order r. The group operation is multiplication of a point on the
 curve by itself a number of times:

 Y = x*P

 the point P is multiplied x-times to produce another point on the
 curve, Y.

 The convention for this memo to represent a point on a curve is to
 use an upper-case letter while a scalar is indicated with a lower-
 case letter.

 Elliptic curve groups require a mapping function, q = F(Q), to
 convert a group element to an integer. The mapping function used in
 this memo returns the x-coordinate of the point it is passed.

 The inverse function for an elliptic group is defined such that the
 sum of an element and its inverse is the "point at infinity", denoted
 here as "O". In other words,

 Q + inv(Q) = O

Harkins & Zorn Expires December 31, 2009 [Page 7]

Internet-Draft EAP Password June 2009

2.2. Assumptions

 In order to see how the protocol addresses the requirements above
 (see Section 1.3) it is necessary to state some assumptions under
 which the protocol can be evaluated. They are:

 1. Function H maps a binary string of indeterminate length onto a
 fixed binary string that is x bits in length. That is H: {0,1}^*
 --> {0,1}^x.

 2. Function H is a "random oracle" (see [RANDOR]). Given knowledge
 of the input to H an adversary is unable to distinguish the
 output of H from a random data source.

 3. Function H is a one-way function. Given the output of H it is
 computationally infeasible for an adversary to determine the
 input.

 4. For any given input to function H each of the 2^x possible
 outputs are equally probable.

 5. The discrete logarithm problem for the chosen finite cyclic group
 is hard. That is, given g, p and y = g^x mod p it is
 computationally infeasible to determine x. Similarly for an
 elliptic curve group given the curve definition, a generator G,
 and Y = x * G it is computationally infeasible to determine x.

 6. There exists a pool of passwords from which the password shared
 by the peer and server is drawn. This pool can consist of words
 from a dictionary, for example. Each password in this pool has
 an equal probability of being the shared password. All potential
 attackers have access to this pool of passwords.

2.3. Instantiating the Random Function

 The protocol described in this memo uses a random function, H. As
 noted in Section 2.2 this is a "random oracle" as defined in
 [RANDOR]. At first glace one may view this as a hash function. As
 noted in [RANDOR], though, hash functions are too structured to be
 used directly as a random oracle. But they can be used to
 instantiate the random oracle. [RANDOR] suggests several ways to
 instantiate a random function with a hash function, one of those is
 used here.

 The random function, H, in this memo is instantiated by concatenating
 the function's input with itself and running it through SHA-256 (see
 [FIPS.180-2.2002]). In other words,

Harkins & Zorn Expires December 31, 2009 [Page 8]

Internet-Draft EAP Password June 2009

 H(x) = SHA-256(x | x)

2.4. Key Derivation Function

 The keys output by this protocol, MSK and EMSK, are 512 bits in
 length each. The shared secret that results from the successful
 termination of this protocol is only 256 bits. Therefore it is
 necessary to stretch the shared secret using a key derivation
 function (KDF).

 The KDF used in this protocol has a counter-mode with feed-back
 construction using a generic pseudo-random function (PRF), according
 to [SP800-108]. The specific value of the PRF is specified along
 with the random function and finite cyclic group when the server
 sends the first EAP-pwd packet to the peer.

 The KDF takes a key to stretch, a label to bind into the key, and an
 indication of the desired length of the output. Algorithmically it
 is:

 KDF(key, label, length) {
 i = 1
 L = length
 res = PRF(key, i | label | L)
 K(1) = res
 while (len(res) < length)
 do
 i = i + 1
 K(i) = PRF(key, K(i-1) | i | label | L)
 res = res | K(i)
 done
 return chop(res, length)
 }

 where "i" and "L" are 16-bits in length

 Figure 1: Key Derivation Function

2.5. Random Numbers

 The security of EAP-pwd relies upon each side, the peer and server,
 producing quality secret random numbers. A poor random number chosen
 by either side in a single exchange can compromise the shared secret
 from that exchange and open up the possibility of dictionary attack.

 Producing quality random numbers without specialized hardware entails
 using a cryptographic mixing function (like a strong hash function)
 to distill entropy from multiple, uncorrelated sources of information

Harkins & Zorn Expires December 31, 2009 [Page 9]

Internet-Draft EAP Password June 2009

 and events. A very good discussion of this can be found in
 [RFC4086].

2.6. Protocol

2.6.1. Overview

 EAP is a two-party protocol spoken between an EAP peer and an
 authenticator. For scaling purposes the functionality of the
 authenticator that speaks EAP is frequently broken out into a stand-
 alone EAP server. In this case the EAP peer communicates with an EAP
 server through the authenticator with the authenticator merely being
 a passthrough.

 An EAP method defines the specific authentication protocol being used
 by EAP. This memo defines a particular method and therefore defines
 the messages sent between the EAP server (or the "EAP server"
 functionality in an authenticator if it is not broken out) and the
 EAP peer for the purpose of authentication and key derivation.

2.6.2. Message Flows

 EAP-pwd defines three message exchanges, an Identity exchange, a
 Commit exchange and a Confirm exchange. A successful authentication
 is shown in Figure 2.

 The peer and server use the Identity exchange to discover each
 other's identities and to agree upon a ciphersuite to use in the
 subsequent exchanges; in addition, the EAP Server uses the EAP-pwd-
 ID/Request message to inform the client of any password preprocessing
 that may be required. In the Commit exchange the peer and server
 exchange information to generate a shared key and also to bind each
 other to a particular guess of the password. In the Confirm exchange
 the peer and server prove liveness and knowledge of the password by
 generating and verifying verification data.

https://datatracker.ietf.org/doc/html/rfc4086

Harkins & Zorn Expires December 31, 2009 [Page 10]

Internet-Draft EAP Password June 2009

 +--------+ +--------+
 | | EAP-pwd-ID/Request | |
 | EAP |<------------------------------------| EAP |
 | peer | | server |
 | | EAP-pwd-ID/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-pwd-Commit/Request | |
 | |<------------------------------------| |
 | | | |
 | | EAP-pwd-Commit/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-pwd-Confirm/Request | |
 | |<------------------------------------| |
 | | | |
 | | EAP-pwd-Confirm/Response | |
 | |------------------------------------>| |
 | | | |
 | | EAP-Success | |
 | |<------------------------------------| |
 +--------+ +--------+

 Figure 2: A Successful EAP-pwd Exchange

 The components of the EAP-pwd-* messages are as follows:

 EAP-pwd-ID/Request
 Server_ID, Ciphersuite

 EAP-pwd-ID/Response
 Peer_ID, Ciphersuite

 EAP-pwd-Commit/Request
 Scalar_S, Element_S

 EAP-pwd-Commit/Response
 Scalar_P, Element_P

 EAP-pwd-Confirm/Request
 Confirm_S

 EAP-pwd-Confirm/Response
 Confirm_P

Harkins & Zorn Expires December 31, 2009 [Page 11]

Internet-Draft EAP Password June 2009

2.6.3. Fixing the Password Element

 Once the EAP-pwd-ID exchange is completed the peer and server use
 each other's identities and the agreed upon ciphersuite to fix an
 element in the finite cyclic group called the Password Element (PWE
 or pwe, for an element in an ellipic curve group or a prime modulus
 group, respectively). The resulting element must be selected in a
 determinstic fashion using the password but must result in selection
 of an element that will not leak any information on the password to
 an attacker. From the point-of-view of an attacker who does not know
 the password, PWE will be a random element in a finite cyclic group.

 To properly fix the Password Element both parties must have a common
 view of the string "password". Therefore, if a password
 preprocessing algorithm was negotiated during the EAP-pwd-ID exchange
 the client MUST perform the specified password pre-processing prior
 to fixing the Password Element.

 The actual fixing of the Password Element depends on the type of
 finite cyclic group being used.

2.6.3.1. Elliptic Curve PWE

 For a finite cyclic group based on an elliptic curve it is necessary
 to use an iterative hunt-and-peck technique to fix the password
 element.

 First, an 8-bit counter is incremented to the value one (1). Then,
 the agreed upon random function is used to generate a password seed:

 pwd-seed = H(peer-ID | server-ID | password | counter)

 Then, the pwd-seed is expanded using the KDF from the agreed-upon
 Ciphersuite out to the length of the prime of the curve, modulo the
 prime of the curve.

 pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))

 pwd-value = pwd-value mod p

 The pwd-value is used as the x-coordinate, x, with the equation for
 the elliptic curve to solve for a y-coordinate, y. If there is no
 solution to the quadratic equation the counter is incremented, a new
 pwd-seed is generated and the hunting and pecking continues. If a
 solution is found then an ambiguity exists as there are technically
 two solutions to the equation and pwd-seed is used to unambiguously
 select one of them. If the low-order bit of pwd-seed is equal to the
 low-order bit of y then a candidate PWE is defined as the point (x,

Harkins & Zorn Expires December 31, 2009 [Page 12]

Internet-Draft EAP Password June 2009

 y); if the low-order bit of pwd-seed differs from the low-order bit
 of y then a candidate PWE is defined as the point (x, p - y), where p
 is the prime over which the curve is defined. The order of the
 candidate PWE is then checked to make sure it can safely be used as a
 generator in the protocol. If the co-factor of the curve multiplied
 by the candidate PWE equals the point-at-infinity then the candidate
 PWE is discarded, the counter is incremented, a new pwd-seed is
 generated and the hunting and pecking continues. If it does not
 equal the point-at-infinity the candidate PWE becomes the PWE and
 hunting and pecking terminates. (Note: the point multiplied by the
 co-factor does not become PWE, it is only used to determine the order
 of the group defined with PWE as a generator).

 Algorithmically, the process looks like this:

 found = 0
 counter = 1
 do {
 pwd-seed = H(peer-ID | server-ID | password | counter)
 pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))
 x = pwd-value mod p
 if ((y = sqrt(x^3 + ax + b)) != FAIL)
 then
 if (LSB(y) == LSB(pwd-seed))
 then
 PWE = (x,y)
 else
 PWE = (x, p-y)
 fi
 P = f*PWE
 if (P != "O")
 found = 1
 fi
 fi
 counter = counter + 1
 } while (found == 0)

 Figure 3: Fixing PWE for Elliptic Curves

2.6.3.2. Prime Modulus pwe

 For a finite cyclic group based on exponentiation of a generator, g,
 modulo a large prime p it is not necessary to hunt-and-peck to find
 pwe. A pwe can be computed in a sub-field of the group directly
 using the prime, p, and order r.

 First, the agreed upon random function is used to generate a password
 seed:

Harkins & Zorn Expires December 31, 2009 [Page 13]

Internet-Draft EAP Password June 2009

 pwd-seed = H(peer-ID | server-ID | password)

 Then the pwd-seed is expanded using the KDF to the length of the
 prime, modulo the prime.

 pwd-value = KDF(pwd-seed, "EAP-pwd Affixing the PWE", len(p))

 pwd-value = pwd-value mod p

 The pwe is then computed by exponentiating the pwd-value to the value
 ((p-1)/r) modulo the prime.

 pwe = pwd-value ^ ((p-1)/r) mod p

2.6.4. Message Construction

 After the EAP-pwd Identity exchange the construction of the
 components of each message depends on the finite cyclic group from
 the ciphersuite.

2.6.4.1. Elliptic Curve Groups

 Assuming an elliptic curve group with order r:

Harkins & Zorn Expires December 31, 2009 [Page 14]

Internet-Draft EAP Password June 2009

 Server: EAP-pwd-Commit/Request
 - choose two random numbers, 1 < s_rand, s_mask < r
 - compute Element_S = inv(s_mask * PWE)
 - compute Scalar_S = (s_rand + s_mask) mod r

 Element_S and Scalar_S are used to construct EAP-pwd-Commit/Request

 Peer: EAP-pwd-Commit/Response
 - choose two random numbers, 1 < p_rand, p_mask < r
 - compute Element_P = inv(p_mask * PWE)
 - compute Scalar_P = (p_rand + p_mask) mod r

 Element_P and Scalar_P are used to construct EAP-pwd-Commit/Response

 Server: EAP-pwd-Confirm/Request
 - compute KS = s_rand * (Scalar_P * PWE + Element_P)
 - compute ks = F(KS)
 - compute Confirm_S = H(ks | Element_S | Scalar_S |
 Element_P | Scalar_P | Ciphersuite)

 Confirm_S is used to construct EAP-pwd-Confirm/Request

 Peer: EAP-pwd-Confirm/Response
 - compute KP = p_rand * (Scalar_S * PWE + Element_S)
 - compute kp = F(KP)
 - compute Confirm_P = H(kp | Element_P | Scalar_P |
 Element_S | Scalar_S | Ciphersuite)

 Confirm_P is used to construct EAP-pwd-Confirm/Response

 The EAP Server computes the shared secret as:
 MK = H(ks | F(Element_S+Element_P) | (Scalar_S+Scalar_P) mod r)

 The EAP Peer computes the shared secet as:
 MK = H(kp | F(Element_P+Element_S) | (Scalar_P+Scalar_S) mod r)

 The MSK and EMSK are derived from MK per Section 2.7.

2.6.4.2. Prime Modulus Groups

 When using a finite cyclic group based on exponentiation of a
 generator (g) modulo a prime (p), a subgroup order (r) may or may not
 be specified. If it is not specified r is set to p-1 for use in this
 protocol. Also, there is no mapping function needed when using such
 a group.

Harkins & Zorn Expires December 31, 2009 [Page 15]

Internet-Draft EAP Password June 2009

 Server: EAP-pwd-Commit/Request
 - choose two random numbers, 1 < s_rand, s_mask < r
 - compute Element_S = inv(pwe^s_mask mod p)
 - compute Scalar_S = (s_rand + s_mask) mod r

 Element_S and Scalar_S are used to construct EAP-pwd-Commit/Request

 Peer: EAP-pwd-Commit/Response
 - choose random two numbers, 1 < p_rand, p_mask < r
 - compute Element_P = inv(pwe^p_mask mod p)
 - compute Scalar_P = (p_rand + p_mask) mod r

 Element_P and Scalar_P are used to construct EAP-pwd-Commit/Response

 Server: EAP-pwd-Confirm/Request
 - compute ks = ((pwe^Scalar_P mod p) * Element_P)^s_rand mod p
 - compute Confirm_S = H(ks | Element_S | Scalar_S |
 Element_P | Scalar_P | Ciphersuite)

 Confirm_S is used to construct EAP-pwd-Confirm/Request

 Peer: EAP-pwd-Confirm/Response
 - compute kp = ((pwe^Scalar_S mod p) * Element_S)^p_rand mod p
 - compute Confirm_P = H(kp | Element_P | Scalar_P |
 Element_S | Scalar_S | Ciphersuite)

 Confirm_P is used to construct EAP-pwd-Confirm/Request

 The EAP Server computes the shared secret as:
 MK = H(ks | (Element_S + Element_P) mod r |
 (Scalar_S + Scalar_P) mod r)

 The EAP Peer computes the shared secet as:
 MK = H(kp | (Element_P + Element_S) mod r |
 (Scalar_P + Scalar_S) mod r)

 The MSK and EMSK derived from MK per Section 2.7.

2.6.5. Message Processing

2.6.5.1. EAP-pwd-ID Exchange

 Although EAP provides an Identity method to determine the identity of
 the peer, the value in the Identity Response may have been truncated
 or obfuscated to provide privacy or decorated for routing purposes
 [RFC3748], making it inappropriate for usage by the EAP-pwd method.
 Therefore, the EAP-pwd-ID exchange is defined for the purpose of

https://datatracker.ietf.org/doc/html/rfc3748

Harkins & Zorn Expires December 31, 2009 [Page 16]

Internet-Draft EAP Password June 2009

 exchanging identities between the peer and server.

 The EAP-pwd-ID/Request contains the following quantities:

 o a ciphersuite

 o a representation of the server's identity in UTF-8

 o an anti-clogging token

 o a password pre-processing method

 The ciphersuite specifies the finite cyclic group, random function
 and PRF selected by the server for use in the subsequent
 authentication exchange.

 The value of the anti-clogging token MUST be unpredictable and SHOULD
 NOT be from a source of random entropy. The purpose of the anti-
 clogging token is to provide the server an assurance that the peer
 constructing the EAP-pwd-ID/Response is genuine and not part of a
 flooding attack.

 A actual plaintext value of the user's password may not be accessible
 to the EAP server; for example, passwords may be stored in a hashed
 form. For this reason, EAP-pwd allows the server to communicate a
 password pre-processing method to the client so that the two sides
 can be synchronized.

 The EAP-pwd-ID/Request is constructed according to Section 3.2.1 and
 is transmitted to the peer.

 Upon receipt of an EAP-pwd-ID/Request, the peer determines whether
 the ciphersuite and pre-processing method are acceptable. If not,
 the peer MUST respond with an EAP-NAK. If acceptable, the peer
 responds to the EAP-pwd-ID/Request, constructed according to

Section 3.2.1, that acknowledging the Ciphersuite and token and
 adding its identity. After sending the EAP-pwd-ID/Response, the peer
 has the identity of the server (from the Request), its own identity
 (it encoded in the Response), optionally a password preprocessing
 algorithm, and it can compute the password element as specified in

Section 2.6.3. The password element is stored in state allocated for
 this exchange.

 The EAP-pwd-ID/Response acknowledges the Ciphersuite from the
 Request, acknowledges the anti-clogging token from the Request
 providing a demonstration of "liveness" on the part of the peer, and
 contains the identity of the peer. Upon receipt of the Response, the
 server verifies that the Ciphersuite acknowledged by the peer is the

Harkins & Zorn Expires December 31, 2009 [Page 17]

Internet-Draft EAP Password June 2009

 same as that sent in the Request and that the token added by the peer
 in the Response is the same as the one the server sent in the
 Request. If Ciphersuites or tokens differ, the server MUST respond
 with an EAP-Failure message. If the Ciphersuites are the same, the
 server now knows its own identity (it encoded in the Request) and the
 peer's identity (from the Response) and can compute the password
 element according to Section 2.6.3. The server stores the password
 element in state it has allocated for this exchange. The server then
 initiates an EAP-pwd-Commit exchange.

2.6.5.2. EAP-pwd-Commit Exchange

 The server begins the EAP-pwd-Confirm exchange by choosing two random
 numbers between 1 and r (where r is described in Section 2.1
 according to the group established in Section 2.6.5.1). It then
 computes Element_S and Scalar_S as defined in Section 2.6.4 and
 constructs an EAP-pwd-Commit/Request according to Section 3.2.2.
 Element_S and Scalar_S are added to the state allocated for this
 exchange and the EAP-pwd-Commit/Request is transmitted to the peer.

 Upon receipt of the EAP-pwd-Commit/Request, the peer validates the
 length of the entire payload based upon the expected lengths of
 Element_S and Scalar_S (which are fixed according to the agreed-upon
 group). If the length is incorrect, the peer MUST terminate the
 exchange and free up any state allocated. If the length is correct,
 the peer chooses two random numbers between 1 and r (where r is
 described in Section 2.1 according to the group established in

Section 2.6.5.1). It then computes Element_P and Scalar_P,
 constructs an EAP-pwd-Commit/Response according to Section 3.2.2 and
 transmits the EAP-pwd-Commit/Response to the server. The peer also
 computes kp from p_rand, Element_S, Scalar_S and the password element
 according to Section 2.6.4 and stores kp, Element_P and Scalar_P in
 state allocated for this exchange.

 Upon receipt of the EAP-pwd-Commit/Response, the server validates the
 length of the entire payload based upon the expected lengths of
 Element_P and Scalar_P (which are fixed according to the agreed-upon
 group). If the length is incorrect, the server MUST respond with an
 EAP-Failure message and it MUST terminate the exchange and free up
 any state allocated. If the length is correct, the server checks
 whether Scalar_P equals Scalar_S and Element_P equals Element_S. If
 this is true it indicates a reflection attack and the server MUST
 respond with an EAP-Failure and terminate the exchange freeing up all
 allocated state. If the scalars and elements are not equal, the
 server computes kp from s_rand, Element_P, Scalar_P and the password
 element according to Section 2.6.4. The server stores ks in the
 state it has allocated for this exchange and initiates an EAP-pwd-
 Confirm Exchange.

Harkins & Zorn Expires December 31, 2009 [Page 18]

Internet-Draft EAP Password June 2009

2.6.5.3. EAP-pwd-Confirm Exchange

 The server computes Confirm_S according to Section 2.6.4 and
 constructs an EAP-pwd-Confirm/Request according to Section 3.2.3 and
 sends the EAP-pwd-Confirm/Request to the peer.

 Upon receipt of an EAP-pwd-Confirm/Request, the peer validates the
 length of the entire payload based upon the expected length of
 Confirm_S (whose length is fixed by the agreed-upon random function).
 If the length is incorrect, the peer MUST terminate the exchange and
 free up any state allocated. If the length is correct, the peer
 verifies that Confirm_S is the value it expects based on the value of
 kp. If the value of Confirm_S is incorrect, the peer MUST terminate
 the exchange and free up any state allocated. If the value of
 Confirm_S is correct, the peer computes Confirm_P, constructs an EAP-
 pwd-Confirm/Response according to Section 3.2.3 and sends it off to
 the server. The peer then computes MK (according to Section 2.6.4)
 and the MSK and EMSK (according to Section 2.7) and stores these keys
 in state allocated for this exchange. The peer SHOULD export the MSK
 and EMSK at this time in anticipation of a secure association
 protocol by the lower-layer to create session keys. Alternately, the
 peer can wait until an EAP-success messsage from the server before
 exporting the MSK and EMSK.

 Upon receipt of an EAP-pwd-Confirm/Response, the server validates the
 length of the entire payload based upon the expected length of
 Confirm_P (whose length is fixed by the agreed-upon random function).
 If the length is incorrect, the server MUST respond with an EAP-
 Failure message and it MUST terminate the exchange and free up any
 state allocated. If the length is correct, the server verifies that
 Confirm_P is the value it expects based on the value of ks. If the
 value of Confirm_P is incorrect, the server MUST respond with an EAP-
 Failure message. If the value of Confirm_P is correct, the server
 computes MK (according to Section 2.6.4) and the MSK and EMSK
 (according to Section 2.7). It exports the MSK and EMSK and responds
 with an EAP-success Request. The server SHOULD free up state
 allocated for this exchange.

2.7. Management of EAP-pwd Keys

 [RFC5247] recommends each EAP method define how to construct a
 Method-ID and Session-ID to identify a particular EAP session between
 a peer and server. This information is constructed thusly:

 Method-ID = H(Ciphersuite | Scalar_P | Scalar_S)

 Session-ID = Type-Code | Method-ID

Harkins & Zorn Expires December 31, 2009 [Page 19]

Internet-Draft EAP Password June 2009

 where Ciphersuite, Scalar_P and Scalar_S are from the specific
 exchange being identified; H is the random function specified in the
 Ciphersuite; and, Type-Code is the code assigned by IANA for EAP-pwd:
 TBD1.

 The authenticated key exchange of EAP-pwd generates a shared and
 authenticated key, MK. The size of MK is dependent on the random
 function, H, asserted in the Ciphersuite. EAP-pwd must export two
 512-bit keys, MSK and EMSK. Regardless of the value of len(MK)
 implementations MUST invoke the KDF defined in Section 2.4 to
 construct the MSK and EMSK. The MSK and EMSK are derived thusly:

 MSK | EMSK = KDF(MK, Session-ID, 1024)

 [RFC4962] mentions the importance of naming keys, particularly when
 key caching is being used. To faciliate such an important
 optimization, names are assigned thusly:

 o EMSK-name = Session-ID | 'E' | 'M'| 'S' | 'K'

 o MSK-name = Session-ID | 'M'| 'S' | 'K'

 where 'E' is a single octet of value 0x45, 'M' is a single octet of
 value 0x4d, 'S' is a single octet of value 0x53, and 'K' is a single
 octet of value 0x4b.

 This naming scheme allows for key management applications to quickly
 and accurately identify keys for a particular session or all keys of
 a particular type.

3. Packet Formats

3.1. EAP-pwd Header

 The EAP-pwd header has the following structure:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Code | Identifier | Length |
 +-+
 | Type |L|M| PWD-Exch | Total-Length |
 +-+
 | Data...
 +-+

Harkins & Zorn Expires December 31, 2009 [Page 20]

Internet-Draft EAP Password June 2009

 Figure 4: EAP-pwd Header

 Code

 Either 1 (for Request) or 2 (for Response); see [RFC3748].

 Identifier

 The Identifier field is one octet and aids in matching responses
 with requests. The Identifier field MUST be changed on each
 Request packet.

 Length

 The Length field is two octets and indicates the length of the EAP
 packet including the Code, Identifier, Length, Type, and Data
 fields. Octets outside the range of the Length field should be
 treated as Data Link Layer padding and MUST be ignored on
 reception.

 Type

 TBD1 - EAP-pwd

 L and M bits

 The L bit (Length included) is set to indicate the presence of the
 two-octet Total-Length field, and MUST be set for the first
 fragment of a fragmented EAP-pwd message or set of messages.

 The M bit (more fragments) is set on all but the last fragment.

 PWD-Exch

 The PWD-Exch field identifies the type of EAP-pwd payload
 excapsulated in the Data field. This document defines the
 following values for the PWD-Exch field:

 * 0x01 : EAP-pwd-ID exchange

 * 0x02 : EAP-pwd-Commit exchange

 * 0x03 : EAP-pwd-Confirm exchange

 All other values of the PWD-Exch field are reserved to IANA.

https://datatracker.ietf.org/doc/html/rfc3748

Harkins & Zorn Expires December 31, 2009 [Page 21]

Internet-Draft EAP Password June 2009

 Total-Length

 The Total-Length field is two octets in length, and is present
 only if the L bit is set. This field provides the total length of
 the EAP-pwd message or set of messages that is being fragmented.

3.2. EAP-pwd Payloads

 EAP-pwd payloads all contain the EAP-pwd header and encoded
 information. Encoded information is comprised of sequences of data.
 Payloads in the EAP-pwd-ID exchange also include a ciphersuite
 statement indicating what finite cyclic group to use, what
 cryptographic primitive to use for H, and what PRF to use for
 deriving keys.

3.2.1. EAP-pwd-ID

 The Group Description, Random Function, and PRF together, and in that
 order, comprise the Ciphersuite included in the calculation of the
 peer's and server's confirm messages.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Group Description | Random Func'n | PRF |
 +-+
 | Token |
 +-+
 | Prep | Identity...
 +-+
 | |
 ~ ~
 | |
 +-+

 Figure 5: EAP-pwd-ID Payload

 The Group Description field value is taken from the IANA registry for
 DIffie-Hellman groups created by IKE [RFC2409].

 This document defines the following value for the Random Function
 field:

 o 0x01 : Function defined in this memo in Section 2.3

 All other values of the Random Function field are reserved to IANA.

https://datatracker.ietf.org/doc/html/rfc2409

Harkins & Zorn Expires December 31, 2009 [Page 22]

Internet-Draft EAP Password June 2009

 The PRF field has the following value:

 o 0x01 : HMAC-SHA256 [RFC4634]

 All other values of the PRF field are reserved to IANA.

 The Token field contains an unpredictable value assigned by the
 server in an EAP-pwd-ID/Request and acknowledged by the peer in an
 EAP-pwd-ID/Response (see Section 2.6.5).

 The Prep field represents the password pre-processing algorithm to be
 used by the client prior to generating the password seed (see

Section 2.6.3). This document defines the following values for the
 Prep field:

 o 0x00 : None

 o 0x01 : Microsoft

 If the value of the Prep field is equal to 0x01, the plaintext
 password is processed to produce the NtPasswordHashHash [RFC3079].
 All other values of the Prep field are reserved to IANA.

 The Identity field depends on the value of PWD-Exch.

 o EAP-pwd-ID/Request : Server_ID

 o EAP-pwd-ID/Response : Peer_ID

 The length of the identity is computed from the Length field in the
 EAP header.

3.2.2. EAP-pwd-Commit

https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc3079

Harkins & Zorn Expires December 31, 2009 [Page 23]

Internet-Draft EAP Password June 2009

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ~ Element ~
 | |
 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~
 | |
 ~ Scalar +-+-+-+-+-+-+-+-+
 | |
 +-+

 Figure 6: EAP-pwd-Commit Payload

 The Element and Scalar fields depend on the value of PWD-Exch.

 o EAP-pwd-Commit/Request : Element_S, Scalar_S

 o EAP-pwd-Commit/Response : Element_P, Scalar_P

 The Element is encoded according to Section 3.3. The length of the
 Element is inferred by the finite cyclic group from the agreed-upon
 Ciphersuite. The length of the scalar can then be computed from the
 Length in the EAP header.

3.2.3. EAP-pwd-Confirm

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ~ Confirm ~
 | |
 +-+

 Figure 7: EAP-pwd-Confirm Payload

 The Confirm field depends on the value of PWD-Exch.

 o EAP-pwd-Confirm/Request : Confirm_S

 o EAP-pwd-Confirm/Response : Confirm_P

 The length of the Confirm field computed from the Length in the EAP
 header.

Harkins & Zorn Expires December 31, 2009 [Page 24]

Internet-Draft EAP Password June 2009

3.3. Representation of Field Elements

 Payloads in the EAP-pwd-Commit exchange contain elements from the
 finite cyclic group. To ensure interoperability field elements MUST
 be represented according to one of the following two techniques,
 depending on the type of group.

3.3.1. Prime Modulus Groups

 Field elements in a prime modulus group are integers less than the
 prime modulus. Each element MUST have a bit length equal to the bit
 length of the prime modulus. This length is enforced, if necessary,
 by prepending the integer with zeros until the required length is
 achieved.

3.3.2. Elliptic Curve Groups

 Elliptic curve field elements are points on the elliptic curve and
 consist of two components, an x-coordinate and a y-coordinate. Each
 component MUST have a bit length equal to the field size of the
 group. This length is enforced, if necessary, by prepending the
 component with zeros until the required length is achieved.

 The field element is represented in a payload by the x-coordinate
 followed by the y-coordinate. Therefore the field element in the
 payload MUST be twice the size of the field size defined in the
 group.

4. Fragmentation

 EAP [RFC3748] is a request-response protocol. The server sends
 requests and the peer responds. These request and response messages
 are assumed to be limited to at most 1020 bytes. Messages in EAP-pwd
 can be larger than 1020 bytes and therefore require support for
 fragmentation and reassembly.

 Implementations MUST establish a fragmentation threshold that
 indicates the maximum size of an EAP-pwd payload. When an
 implementation knows the maximum transmission unit (MTU) of its
 lower-layer, it SHOULD calculate the fragmentation threshold from
 that value. In lieu of knowledge of the lower-layer's MTU the
 fragmentation threshold MUST be set to 1020 bytes.

 Since EAP is a simple ACK-NAK protocol, fragmentation support can be
 added in a simple manner. In EAP, fragments that are lost or damaged
 in transit will be retransmitted, and since sequencing information is
 provided by the Identifier field in EAP, there is no need for a

https://datatracker.ietf.org/doc/html/rfc3748

Harkins & Zorn Expires December 31, 2009 [Page 25]

Internet-Draft EAP Password June 2009

 fragment offset field as is provided in IPv4.

 EAP-pwd fragmentation support is provided through addition of flags
 within the EAP-Response and EAP-Request packets, as well as a Total-
 Length field of two octets. Flags include the Length included (L)
 and More fragments (M) bits. The L flag is set to indicate the
 presence of the two octet Total-Length field, and MUST be set for the
 first fragment of a fragmented EAP-pwd message or set of messages.
 The M flag is set on all but the last fragment. The Total-Length
 field is two octets, and provides the total length of the EAP-pwd
 message or set of messages that is being fragmented; this simplifies
 buffer allocation.

 When an EAP-pwd peer receives an EAP-Request packet with the M bit
 set, it MUST respond with an EAP-Response with EAP-Type=EAP-pwd and
 no data. This serves as a fragment ACK. The EAP server MUST wait
 until it receives the EAP-Response before sending another fragment.
 In order to prevent errors in processing of fragments, the EAP server
 MUST increment the Identifier field for each fragment contained
 within an EAP-Request, and the peer MUST include this Identifier
 value in the fragment ACK contained within the EAP-Response.
 Retransmitted fragments will contain the same Identifier value.

 Similarly, when the EAP server receives an EAP-Response with the M
 bit set, it MUST respond with an EAP-Request with EAP-Type=EAP-pwd
 and no data. This serves as a fragment ACK. The EAP peer MUST wait
 until it receives the EAP-Request before sending another fragment.
 In order to prevent errors in the processing of fragments, the EAP
 server MUST increment the Identifier value for each fragment ACK
 contained within an EAP-Request, and the peer MUST include this
 Identifier value in the subsequent fragment contained within an EAP-
 Response.

5. IANA Considerations

 This memo contains new numberspaces to be managed by IANA. The
 policies used to allocate numbers are described in [RFC5226]. This
 memo requires IANA to allocate a new EAP method type for EAP-pwd.

 This memo also requires IANA to create new registries for PWD-Exch
 messages, random functions, PRFs, password pre-processing methods and
 error codes and to add the message numbers, random function, PRF,
 pre-processing method and error codes specified in this memo to those
 registries, respectively.

 The following is the initial PWD-Exch message registry layout:

https://datatracker.ietf.org/doc/html/rfc5226

Harkins & Zorn Expires December 31, 2009 [Page 26]

Internet-Draft EAP Password June 2009

 o 0x01 : EAP-pwd-ID exchange

 o 0x02 : EAP-pwd-Commit exchange

 o 0x03 : EAP-pwd-Confirm exchange

 The PWD-Exch field is 6 bits long and all other values are available
 through assignment by IANA. IANA is instructed to assign values
 based on "IETF Review" (see [RFC5226]).

 The following is the initial Random Function registry layout:

 o 0x01 : Function defined in this memo in Section 2.3

 The Random Function field is 8 bits long and all other values are
 available through assignment by IANA. IANA is instructed to assign
 values based on "Specification Required" and "Expert Review" (see
 [RFC5226]) to ensure that new random functions have received the
 proper vetting.

 The following is the initial PRF registry layout:

 o 0x01 : HMAC-SHA256 as defined in [RFC4634]

 The PRF field is 8 bits long and all other values are available
 through assignment by IANA. IANA is instructed to assign values
 based on "IETF Review" (see [RFC5226]).

 The following is the initial layout for the password preprocessing
 method registry:

 o 0x00 : None

 o 0x01 : Microsoft

 The Prep field is 8 bits long and all other values are available
 through assignment by IANA. IANA is instructed to assign values
 based on "First Come First Served" (see [RFC5226]).

6. Security Considerations

 In Section 1.3 several security properties were presented that
 motivated the design of this protocol. This section will address how
 well they are met.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226

Harkins & Zorn Expires December 31, 2009 [Page 27]

Internet-Draft EAP Password June 2009

6.1. Resistance to Passive Attack

 A passive attacker will see Scalar_P, Element_P, Scalar_S, and
 Element_S. She can guess at passwords to compute the password element
 but will not know s_rand or p_rand and therefore will not be able to
 compute MK.

 The secret random value of the peer (server) is effectively hidden by
 adding p_mask (s_mask) to p_rand (s_rand) modulo the order of the
 group. If the order is "r", then there are approximately "r"
 distinct pairs of numbers that will sum to the value Scalar_P
 (Scalar_S). Attempting to guess the particular pair is just as
 difficult as guessing the secret random value p_rand (s_rand), the
 probability of a guess is 1/(r - i) after "i" guesses and for a large
 value of r this exhaustive search technique is computationally
 infeasible. An attacker would do better by determining the discrete
 logarithm of Element_P (Element_S) using an algorithm like Baby-Step
 giant-step (see [APPCRY]), which runs on the order of the square root
 of r group operations (e.g. a group with order 2^160 that would be
 2^80 exponentiations or point multiplications). Based on the
 assumptions made on the finite cyclic group made in Section 2.2 that
 is also computationally infeasible.

6.2. Resistance to Active Attack

 An active attacker can launch her attack after an honest server has
 sent EAP-pwd-Commit/Request to an honest peer. This would result in
 the peer sending EAP-pwd-Commit/Response. In this case the active
 attack has been reduced to that of a passive attacker since p_rand
 and s_rand will remain unknown. The active attacker could forge a
 value of Confirm_P (Confirm_S) and send it to the EAP server (EAP
 peer) in the hope that it will be accepted but due to the assumptions
 on H made in Section 2.2 that is computationally infeasible.

 The active attacker can launch her attack by forging EAP-pwd-Commit/
 Request and sending it to the peer. This will result in the peer
 responding with EAP-pwd-Commit/Response. The attacker can then
 attempt to compute ks but since she doesn't know the password this is
 infeasible. It can be shown that an attack by receiving EAP-pwd-
 Commit/Request from an honest server and forging EAP-pwd-Commit/
 Response is an identical attack with equal infeasibility.

6.3. Resistance to Dictionary Attack

 An active attacker can wait until an honest server sends EAP-pwd-
 Commit/Request and then forge EAP-pwd-Commit/Response and send it to
 the server. The server will respond with EAP-pwd-Confirm/Request.
 Now the attacker can attempt to launch a dictionary attack. She can

Harkins & Zorn Expires December 31, 2009 [Page 28]

Internet-Draft EAP Password June 2009

 guess at potential passwords, compute the password element and
 compute kp using her p_rand, Scalar_S and Element_S from the EAP-pwd-
 Commit/Request and the candidate password element from her guess.
 She will know if her guess is correct when she is able to verify
 Confirm_S in EAP-pwd-Confirm/Request.

 But the attacker committed to a password guess with her forged EAP-
 pwd-Commit/Response when she computed Element_P. That value was used
 by the server in his computation of ks which was used when he
 constructed Confirm_S in EAP-pwd-Confirm/Request. Any guess of the
 password that differs from the one used in the forged EAP-pwd-Commit/
 Response could not be verified as correct since the attacker has no
 way of knowing whether it is correct. She is able to make one guess
 and one guess only per attack. This means that any advantage she can
 gain-- guess a password, if it fails exclude it from the pool of
 possible passwords and try again-- is solely through interaction with
 an honest protocol peer.

 The attacker can commit to the guess with the forged EAP-pwd-Commit/
 Response and then run through the dictionary, computing the password
 element and ks using her forged Scalar_P and Element_P. She will know
 she is correct if she can compute the same value for Confirm_S that
 the server produced in EAP-pwd-Confirm/Request. But this requires
 the attacker to know s_rand which we noted, above, was not possible.

 The password element PWE/pwe is chosen using a method described in
Section 2.6.3. Since this is an element in the group there exists a

 scalar value, q, such that:

 PWE = q * G, for an elliptic curve group

 pwe = g^q mod p, for an modular exponentiation group

 Knowledge of q can be used to launch a dictionary attack. For the
 sake of brevity, the attack will be demonstrated assuming an elliptic
 curve group. The attack works thusly:

 The attacker waits until an honest server sends EAP-pwd-Commit/
 Request. The attacker then generates a random Scalar_P and a random
 p_mask and computes Element_P = p_mask * G. The attacker sends the
 bogus Scalar_P and Element_P to the server and obtains Confirm_S in
 return. Note that the server is unable to detect that Element_P was
 calculated incorrectly.

 The attacker now knows that:

 KS = (Scalar_P * q + p_mask) * s_rand * G

Harkins & Zorn Expires December 31, 2009 [Page 29]

Internet-Draft EAP Password June 2009

 and

 s_rand * G = Scalar_P * G - ((1/q) mod r * -Element_P)

 Since Scalar_P, p_mask, G, and Element_P are all known the attacker
 can run through the dictionary, making a password guess, computing
 PWE using the technique in Section 2.6.3, determine q, and then use
 the equations above to compute KS and see if it can verify Confirm_S.
 But to determine q for a candidate PWE the attacker needs to perform
 a discrete logarithm which was assumed to be computationally
 infeasible in Section 2.2. Therefore this attack is also infeasible.

 The best advantage an attacker can gain in a single active attack is
 to determine whether a single guess at the password was correct.
 Therefore her advantage is solely through interaction and not
 computation, which is the definition for resistance to dictionary
 attack.

 Resistance to dictionary attack means that the attacker must launch
 an active attack to make a single guess at the password. If the size
 of the dictionary from which the password was extracted was D, and
 each password in the dictionary has an equal probability of being
 chosen, then the probability of success after a single guess is 1/D.
 After X guesses, and removal of failed guesses from the pool of
 possible passwords, the probability becomes 1/(D-X). As X grows so
 does the probability of success. Therefore it is possible for an
 attacker to determine the password through repeated brute-force,
 active, guessing attacks. This protocol does not presume to be
 secure against this and implementations SHOULD ensure the size of D
 is sufficiently large to prevent this attack. Implementations SHOULD
 also take countermeasures, for instance refusing authentication
 attempts for a certain amount of time, after the number of failed
 authentication attempts reaches a certain threshold. No such
 threshold or amount of time is recommended in this memo.

6.4. Forward Secrecy

 The MSK and EMSK are extracted from MK which is derived from doing
 group operations with s_rand, p_rand, and the password scalar value.
 The peer and server choose random values with each run of the
 protocol. So even if an attacker is able to learn the password, she
 will not know the random values used by either the peer or server
 from an earlier run and will therefore be unable to determine MK, or
 the MSK or EMSK. This is the definition of Forward Secrecy.

Harkins & Zorn Expires December 31, 2009 [Page 30]

Internet-Draft EAP Password June 2009

6.5. Random Functions

 The protocol described in this memo uses a function referred to as a
 "random oracle" (as defined in [RANDOR]). A significant amount of
 care must be taken to instantiate a random oracle out of handy
 cryptographic primitives. Section 6 of [RANDOR] provides guidance on
 how to do this using hash functions. The random function, H, defined
 in this memo in Section 2.3 uses one of the suggested constructs-- a
 hash algorithm with doubled input.

 This protocol can use any properly instantiated random oracle. To
 ensure that any new value for H will use a properly instantiated
 random oracle IANA has been instructed (in Section 5) to only
 allocate values from the Random Function registry after being vetted
 by an expert.

 The security of this protocol depends on the finite cyclic group used
 and the infeasibility of performing a discrete logarithm. A few of
 the defined groups that can be used with this protocol have a
 security estimate less than 128 bits, many do not though, and to
 prevent the random function from being the gating factor (or a target
 for attack) any new random function MUST map its input to a target of
 at least 128 bits and SHOULD map its input to a target of at least
 256 bits.

7. Security Claims

 [RFC3748] requires that documents describing new EAP methods clearly
 articulate the security properties of the method. In addition, for
 use with wireless LANs [RFC4017] mandates and recommends several of
 these. The claims are:

 a. mechanism: password.

 b. claims:

 * mutual authentication: the peer and server both authenticate
 each other by proving possession of a shared password. This
 is REQUIRED by [RFC4017].

 * foward secrecy: compromise of the password does not reveal
 the secret keys-- MK, MSK, or EMSK-- from earlier runs of the
 protocol.

 * replay protection: an attacker is unable to replay messages
 from a previous exchange either learn the password or a key
 derived by the exchange. Similarly the attacker is unable to

https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017

Harkins & Zorn Expires December 31, 2009 [Page 31]

Internet-Draft EAP Password June 2009

 induce either the peer or server to believe the exchange has
 successfully completed when it hasn't. Reflection attacks
 are foiled because the server ensures that the scalar and
 element supplied by the peer do not equal its own.

 * key derivation: keys are derived by performing a group
 operation in a finite cyclic group (e.g. exponentiation)
 using secret data contributed by both the peer and server.
 An MSK and EMSK are derived from that shared secret. This is
 REQUIRED by [RFC4017]

 * dictionary attack resistance: an attacker can only make one
 password guess per active attack. The advantage she can gain
 is through interaction not through computation. This is
 REQUIRED by [RFC4017].

 * session independence: this protocol is resistant to active
 and passive attack and does not enable compromise of
 subsequent or prior MSKs or EMSKs from either passive or
 active attack.

 * Denial of Service Resistance: it is possible for an attacker
 to cause a server to allocate state and consume CPU
 generating Scalar_S and Element_S. Such an attack is gated,
 though, by the requirement that the attacker first obtain
 connectivity through a lower-layer protocol (e.g. 802.11
 authentication followed by 802.11 association, or 802.3
 "link-up") and respond to two EAP messages--the EAP-ID/
 Request and the EAP-pwd-ID/Request. The EAP-pwd-ID exchange
 further includes an anti-clogging token that provides a level
 of assurance to the server that the peer is, at least,
 performing a rudimentary amount of processing and not merely
 spraying packets. This prevents distributed denial of
 service attacks and also requires the attacker to announce,
 and commit to, a lower-layer identity (such as a MAC
 address).

 * Man-in-the-Middle Attack Resistance: this exchange is
 resistant to active attack, which is a requirement for
 launching a man-in-the-middle attack. This is REQUIRED by
 [RFC4017].

 * shared state equivalence: upon completion of EAP-pwd the peer
 and server both agree on MK, MSK, EMSK, Method-ID, and
 Session-ID. The peer has authenticated the server based on
 the Server-ID and the server has authenticated the peer based
 on the Peer-ID. This is due to the fact that Peer-ID,
 Server-ID, and the shared password are all combined to make

https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017

Harkins & Zorn Expires December 31, 2009 [Page 32]

Internet-Draft EAP Password June 2009

 the password element which must be shared between the peer
 and server for the exchange to complete. This is REQUIRED by
 [RFC4017].

 * fragmentation: this protocol defines a technique for
 fragmentation and reassembly in Section 4.

 * resistance to "Denning-Sacco" attack: learning keys
 distributed from an earlier run of the protocol, such as the
 MSK or EMSK, will not help an adversary learn the password.

 c. key strength: the strength of the resulting key depends on the
 finite cyclic group chosen. For example, [RFC5114] defines new
 groups available for use with this protocol. Using groups from
 [RFC5114] the strength can vary from 80 bits (for the 1024-bit
 MODP with 160-bit Prime Subgroup) to 256 bits (for the 521-bit
 Random ECP Group). Other groups can be defined and the strength
 of those groups depends on their definition. This is REQUIRED by
 [RFC4017].

 d. key hierarchy: MSKs and EMSKs are derived from the MK using the
 KDF defined in Section 2.4 as described in Section 2.6.4.

 e. vulnerabilities (note that none of these are REQUIRED by
 [RFC4017]):

 * protected ciphersuite negotiation: the ciphersuite offer made
 by the server is not protected from tampering by an active
 attacker. Downgrade attacks are prevented, though, since
 this is not a "negotiation" with a list of acceptable
 ciphersuites. If a Ciphersuite was modified by an active
 attacker it would result in a failure to confirm the message
 sent by the other party, since the Ciphersuite is bound by
 each side into its confirm message, and the protocol would
 fail as a result.

 * confidentiality: none of the messages sent in this protocol
 are encrypted.

 * integrity protection: messages in the EAP-pwd-Commit exchange
 are not integrity protected.

 * channel binding: this protocol does not enable the exchange
 of integrity-protected channel information that can be
 compared with values communicated via out-of-band mechanisms.

 * fast reconnect: this protocol does not provide a fast
 reconnect capability.

https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017

Harkins & Zorn Expires December 31, 2009 [Page 33]

Internet-Draft EAP Password June 2009

 * cryptographic binding: this protocol is not a tunneled EAP
 method and therefore has no cryptographic information to
 bind.

 * identity protection: the EAP-pwd-ID exchange is not
 protected. An attacker will see the server's identity in the
 EAP-pwd-ID/Request and see the peer's identity in EAP-pwd-ID/
 Response.

8. Acknowledgements

 The authors would like to thank Scott Fluhrer for discovering the
 "password as exponent" attack that was possible in the initial
 version of this memo and for his very helpful suggestions on the
 techniques for fixing the PWE/pwe to prevent it. The authors would
 also like to thank Hideyuki Suzuki for his insight in discovering an
 attack against a previous version of the underlying key exchange
 protocol. Scott Kelly suggested adding the anti-clogging token to
 the ID exchange to prevent distributed denial of service attacks.
 Dorothy Stanley provided valuable suggestions to improve the quality
 of this memo. The fragmentation method used was taken from
 [RFC5216].

9. References

9.1. Normative References

 [FIPS.180-2.2002]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-2, August 2002, <http://

csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

 [RFC4282] Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The
 Network Access Identifier", RFC 4282, December 2005.

 [SP800-108]
 Chen, L., "Recommendations for Key Derivation Using
 Pseudorandom Functions", NIST Special Publication 800-108,
 April 2008.

https://datatracker.ietf.org/doc/html/rfc5216
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc4282

Harkins & Zorn Expires December 31, 2009 [Page 34]

Internet-Draft EAP Password June 2009

9.2. Informative References

 [APPCRY] Menezes, A., van Oorshot, P., and S. Vanstone, "Handbook
 of Applied Cryptography", CRC Press Series on Discrete
 Mathematics and Its Applications, 1996.

 [BM92] Bellovin, S. and M. Merritt, "Encrypted Key Exchange:
 Password-Based Protocols Secure Against Dictionary
 Attack", Proceedings of the IEEE Symposium on Security and
 Privacy, Oakland, 1992.

 [BM93] Bellovin, S. and M. Merritt, "Augmented Encrypted Key
 Exchange: A Password-Based Protocol Secure against
 Dictionary Attacks and Password File Compromise",
 Proceedings of the 1st ACM Conference on Computer and
 Communication Security, ACM Press, 1993.

 [BMP00] Boyko, V., MacKenzie, P., and S. Patel, "Provably Secure
 Password Authenticated Key Exchange Using Diffie-Hellman",
 Eurocrypt 2000, 2000.

 [JAB96] Jablon, D., "Strong Password-Only Authenticated Key
 Exchange", ACM SIGCOMM Computer Communication
 Review Volume 1, Issue 5, October 1996.

 [LUC97] Lucks, S., "Open Key Exchange: How to Defeat Dictionary
 Attacks Without Encrypting Public Keys", Proceedings of
 the Security Protocols Workshop, LNCS 1361. Springer-
 Verlag, Berlin, 1997.

 [RANDOR] Bellare, M. and P. Rogaway, "Random Oracles are Practical:
 A Paradigm for Designing Efficient Protocols", Proceedings
 of the 1st ACM Conference on Computer and Communication
 Security, ACM Press, 1993,
 <http://www.cs.ucsd.edu/~mihir/papers/ro.pdf>.

 [RFC2409] Harkins, D. and D. Carrel, "The Internet Key Exchange
 (IKE)", RFC 2409, November 1998.

 [RFC3079] Zorn, G., "Deriving Keys for use with Microsoft Point-to-
 Point Encryption (MPPE)", RFC 3079, March 2001.

 [RFC4017] Stanley, D., Walker, J., and B. Aboba, "Extensible
 Authentication Protocol (EAP) Method Requirements for
 Wireless LANs", RFC 4017, March 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

http://www.cs.ucsd.edu/~mihir/papers/ro.pdf
https://datatracker.ietf.org/doc/html/rfc2409
https://datatracker.ietf.org/doc/html/rfc3079
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086

Harkins & Zorn Expires December 31, 2009 [Page 35]

Internet-Draft EAP Password June 2009

 [RFC4634] Eastlake, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and HMAC-SHA)", RFC 4634, July 2006.

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management",

BCP 132, RFC 4962, July 2007.

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114,
 January 2008.

 [RFC5216] Simon, D., Aboba, B., and R. Hurst, "The EAP-TLS
 Authentication Protocol", RFC 5216, March 2008.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5247] Aboba, B., Simon, D., and P. Eronen, "Extensible
 Authentication Protocol (EAP) Key Management Framework",

RFC 5247, August 2008.

Authors' Addresses

 Dan Harkins
 Aruba Networks
 1322 Crossman Avenue
 Sunnyvale, CA 94089-1113
 United States of America

 Email: dharkins@arubanetworks.com

 Glen Zorn
 NetCube
 77/440 Soi Phoomjit
 Rama IV Road
 Phrakanong Klongtoie
 Bangkok 10110
 Thailand

 Email: gwz@netcube.com

https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc5216
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5247

Harkins & Zorn Expires December 31, 2009 [Page 36]

