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Abstract

   This memo describes an Extensible Authentication Protocol (EAP)
   method, EAP-pwd, which uses a shared password for authentication.
   The password may be a low-entropy one and may be drawn from some set
   of possible passwords, like a dictionary, which is available to an
   attacker.
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1.  Introduction

1.1.  Background

   The predominant access method for the Internet today is that of a
   human using a username and password to authenticate to a computer
   enforcing access control.  Proof of knowledge of the password
   authenticates the human and computer.

   Typically these passwords are not stored on a user's computer for
   security reasons and must be entered each time the human desires
   network access.  Therefore the passwords must be ones that can be
   repeatedly entered by a human with a low probability of error.  They
   will likely not possess high-entropy and it may be assumed that an
   adversary with access to a dictionary will have the ability to guess
   a user's password.  It is therefore desirable to have a robust
   authentication method that is secure even when used with a weak
   password in the presence of a strong adversary.

   EAP-pwd is an EAP method that addresses the problem of password-based
   authenticated key exchange-- using a possibly weak password for
   authentication to derive an authenticated and cryptographically
   strong shared secret.  This problem was first described by Bellovin
   and Merritt in [BM92] and [BM93].  There have been a number of
   subsequent suggestions ([JAB96], [LUC97], [BMP00], and others) for
   password-based authenticated key exchanges.

1.2.  Keyword Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

1.3.  Requirements

   Any protocol that claims to solve the problem of password-
   authenticated key exchange must be resistant to active, passive and
   dictionary attack and have the quality of forward secrecy.  These
   characteristics are discussed further in the following sections.

1.3.1.  Resistance to Passive Attack

   A passive, or benign, attacker is one that merely relays messages
   back and forth between the peer and server, faithfully, and without
   modification.  The contents of the messages are available for
   inspection, but that is all.  To achieve resistance to passive
   attack, such an attacker must not be able to obtain any information
   about the password or anything about the resulting shared secret from

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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   watching repeated runs of the protocol.  Even if a passive attacker
   is able to learn the password, she will not be able to determine any
   information about the resulting secret shared by the peer and server.

1.3.2.  Resistance to Active Attack

   An active attacker is able to modify, add, delete, and replay
   messages sent between protocol participants.  For this protocol to be
   resistant to active attack, the attacker must not be able to obtain
   any information about the password or the shared secret by using any
   of its capabilities.  In addition, the attacker must not be able to
   fool a protocol participant into thinking that the protocol completed
   successfully.

   It is always possible for an active attacker to deny delivery of a
   message critical in completing the exchange.  This is no different
   than dropping all messages and is not an attack against the protocol.

1.3.3.  Resistance to Dictionary Attack

   For this protocol to be resistant to dictionary attack any advantage
   an adversary can gain must be directly related to the number of
   interactions she makes with an honest protocol participant and not
   through computation.  The adversary will not be able to obtain any
   information about the password except whether a single guess from a
   single protocol run is correct or incorrect.

1.3.4.  Forward Secrecy

   Compromise of the password must not provide any information about the
   secrets generated by earlier runs of the protocol.

2.  Specification of EAP-pwd

2.1.  Notation

   The following notation is used in this memo:

   peer-ID
       The peer's identity, the peer NAI [RFC4282].

   server-ID
       A string that identifies the server to the peer.

https://datatracker.ietf.org/doc/html/rfc4282
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   password
       The password shared between the peer and server.

   y = H(x)
       The binary string x is given to a function H which produces an
       output y.

   a | b
       denotes concatenation of string a with string b.

   g^x mod p
       indicates multiplication of the value "g" with itself "x" times,
       modulo the value "p".

   inv(Q)
       indicates the inverse of an element, Q, from a finite field.

   len(x)
       indicates the length in bits of the string x.

   chop(x, y)
       is reduction of string x, being at least y bits in length, to y
       bits.

   LSB(x)
       returns the least-significant bit of the bitstring "x".

   CipherSuite
       an encoding of a finite cyclic group to use with EAP-pwd, the
       definition of function H, and a PRF, in that order.

   MSK
       The Master Session Key exported by EAP-pwd.  This is a high-
       entropy secret 512 bits in length.

   EMSK
       The Extended Master Session Key exported by EAP-pwd.  This is a
       high-entropy secret 512 bits in length.

   This protocol uses a finite cyclic group in which the discrete
   logarithm problem is known to be hard.  Groups can be either based on
   exponentiation modulo a prime or on an elliptic curve.

2.1.1.  Prime Modulus Groups

   Groups formed by a prime modulus have a generator, g, a prime modulus
   p, optionally an order r.  The group operation is exponentiation
   modulus the prime:
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   y = g^x mod p

       the generator taken to the x-th power modulo the prime returns an
       element in the group.

   If the order of the generator of the group is part of the group
   definition that value MUST be used as the order of the group, r, when
   an order is called for, otherwise the order, r, MUST be computed as
   the prime minus one divided by two-- (p-1)/2.

   The inverse function for a prime modulus group is defined such that
   the product of an element and its inverse modulo the group prime
   equals one (1).  In other words,

       (q * inv(q)) mod p = 1

2.1.2.  Elliptic Curve Groups

   Elliptic curve over GF(2^m) SHALL NOT be used by EAP-pwd.  While such
   groups exist in the IANA registry used by EAP-pwd their use in EAP-
   pwd is not defined.

   Elliptic curves over GF(p) are defined by a curve equation, y^2 = x^3
   + ax + b, for a defined "a" and "b".  Groups formed by an elliptic
   curve over GF(p) have a generator G, a prime p, a cofactor f, and an
   order r.  The group operation is multiplication of a point on the
   curve by itself a number of times:

   Y = x*P

       the point P is multiplied x-times to produce another point on the
       curve, Y.

   The convention for this memo to represent a point on a curve is to
   use an upper-case letter while a scalar is indicated with a lower-
   case letter.

   Elliptic curve groups require a mapping function, q = F(Q), to
   convert a group element to an integer.  The mapping function used in
   this memo returns the x-coordinate of the point it is passed.

   The inverse function for an elliptic group is defined such that the
   sum of an element and its inverse is the "point at infinity", denoted
   here as "O".  In other words,

       Q + inv(Q) = O
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2.2.  Assumptions

   In order to see how the protocol addresses the requirements above
   (see Section 1.3) it is necessary to state some assumptions under
   which the protocol can be evaluated.  They are:

   1.  Function H maps a binary string of indeterminate length onto a
       fixed binary string that is x bits in length.  That is H: {0,1}^*
       --> {0,1}^x.

   2.  Function H is a "random oracle" (see [RANDOR]).  Given knowledge
       of the input to H an adversary is unable to distinguish the
       output of H from a random data source.

   3.  Function H is a one-way function.  Given the output of H it is
       computationally infeasible for an adversary to determine the
       input.

   4.  For any given input to function H each of the 2^x possible
       outputs are equally probable.

   5.  The discrete logarithm problem for the chosen finite cyclic group
       is hard.  That is, given g, p and y = g^x mod p it is
       computationally infeasible to determine x.  Similarly for an
       elliptic curve group given the curve definition, a generator G,
       and Y = x * G it is computationally infeasible to determine x.

   6.  There exists a pool of passwords from which the password shared
       by the peer and server is drawn.  This pool can consist of words
       from a dictionary, for example.  Each password in this pool has
       an equal probability of being the shared password.  All potential
       attackers have access to this pool of passwords.

2.3.  Instantiating the Random Function

   The protocol described in this memo uses a random function, H. As
   noted in Section 2.2 this is a "random oracle" as defined in
   [RANDOR].  At first glace one may view this as a hash function.  As
   noted in [RANDOR], though, hash functions are too structured to be
   used directly as a random oracle.  But they can be used to
   instantiate the random oracle.  [RANDOR] suggests several ways to
   instantiate a random function with a hash function, one of those is
   used here.

   The random function, H, in this memo is instantiated by concatenating
   the function's input with itself and running it through SHA-256 (see
   [FIPS.180-2.2002]).  In other words,
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       H(x) = SHA-256(x | x)

2.4.  Key Derivation Function

   The keys output by this protocol, MSK and EMSK, are 512 bits in
   length each.  The shared secret that results from the successful
   termination of this protocol is only 256 bits.  Therefore it is
   necessary to stretch the shared secret using a key derivation
   function (KDF).

   The KDF used in this protocol has a counter-mode with feed-back
   construction using a generic pseudo-random function (PRF), according
   to [SP800-108].  The specific value of the PRF is specified along
   with the random function and finite cyclic group when the server
   sends the first EAP-pwd packet to the peer.

   The KDF takes a key to stretch, a label to bind into the key, and an
   indication of the desired length of the output.  Algorithmically it
   is:

                KDF(key, label, length) {
                  i = 1
                  L = length
                  res = PRF(key, i | label | L)
                  K(1) = res
                  while (len(res) < length)
                  do
                    i = i + 1
                    K(i) = PRF(key, K(i-1) | i | label | L)
                    res = res | K(i)
                  done
                  return chop(res, length)
                }

                where "i" and "L" are 16-bits in length

                     Figure 1: Key Derivation Function

2.5.  Random Numbers

   The security of EAP-pwd relies upon each side, the peer and server,
   producing quality secret random numbers.  A poor random number chosen
   by either side in a single exchange can compromise the shared secret
   from that exchange and open up the possibility of dictionary attack.

   Producing quality random numbers without specialized hardware entails
   using a cryptographic mixing function (like a strong hash function)
   to distill entropy from multiple, uncorrelated sources of information
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   and events.  A very good discussion of this can be found in
   [RFC4086].

2.6.  Protocol

2.6.1.  Overview

   EAP is a two-party protocol spoken between an EAP peer and an
   authenticator.  For scaling purposes the functionality of the
   authenticator that speaks EAP is frequently broken out into a stand-
   alone EAP server.  In this case the EAP peer communicates with an EAP
   server through the authenticator with the authenticator merely being
   a passthrough.

   An EAP method defines the specific authentication protocol being used
   by EAP.  This memo defines a particular method and therefore defines
   the messages sent between the EAP server (or the "EAP server"
   functionality in an authenticator if it is not broken out) and the
   EAP peer for the purpose of authentication and key derivation.

2.6.2.  Message Flows

   EAP-pwd defines three message exchanges, an Identity exchange, a
   Commit exchange and a Confirm exchange.  A successful authentication
   is shown in Figure 2.

   The peer and server use the Identity exchange to discover each
   other's identities and to agree upon a ciphersuite to use in the
   subsequent exchanges; in addition, the EAP Server uses the EAP-pwd-
   ID/Request message to inform the client of any password preprocessing
   that may be required.  In the Commit exchange the peer and server
   exchange information to generate a shared key and also to bind each
   other to a particular guess of the password.  In the Confirm exchange
   the peer and server prove liveness and knowledge of the password by
   generating and verifying verification data.

https://datatracker.ietf.org/doc/html/rfc4086
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           +--------+                                     +--------+
           |        |                  EAP-pwd-ID/Request |        |
           |  EAP   |<------------------------------------|  EAP   |
           |  peer  |                                     | server |
           |        | EAP-pwd-ID/Response                 |        |
           |        |------------------------------------>|        |
           |        |                                     |        |
           |        |              EAP-pwd-Commit/Request |        |
           |        |<------------------------------------|        |
           |        |                                     |        |
           |        | EAP-pwd-Commit/Response             |        |
           |        |------------------------------------>|        |
           |        |                                     |        |
           |        |             EAP-pwd-Confirm/Request |        |
           |        |<------------------------------------|        |
           |        |                                     |        |
           |        | EAP-pwd-Confirm/Response            |        |
           |        |------------------------------------>|        |
           |        |                                     |        |
           |        |          EAP-Success                |        |
           |        |<------------------------------------|        |
           +--------+                                     +--------+

                  Figure 2: A Successful EAP-pwd Exchange

   The components of the EAP-pwd-* messages are as follows:

   EAP-pwd-ID/Request
       Server_ID, Ciphersuite

   EAP-pwd-ID/Response
       Peer_ID, Ciphersuite

   EAP-pwd-Commit/Request
       Scalar_S, Element_S

   EAP-pwd-Commit/Response
       Scalar_P, Element_P

   EAP-pwd-Confirm/Request
       Confirm_S

   EAP-pwd-Confirm/Response
       Confirm_P
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2.6.3.  Fixing the Password Element

   Once the EAP-pwd-ID exchange is completed the peer and server use
   each other's identities and the agreed upon ciphersuite to fix an
   element in the finite cyclic group called the Password Element (PWE
   or pwe, for an element in an ellipic curve group or a prime modulus
   group, respectively).  The resulting element must be selected in a
   determinstic fashion using the password but must result in selection
   of an element that will not leak any information on the password to
   an attacker.  From the point-of-view of an attacker who does not know
   the password, PWE will be a random element in a finite cyclic group.

   To properly fix the Password Element both parties must have a common
   view of the string "password".  Therefore, if a password
   preprocessing algorithm was negotiated during the EAP-pwd-ID exchange
   the client MUST perform the specified password pre-processing prior
   to fixing the Password Element.

   The actual fixing of the Password Element depends on the type of
   finite cyclic group being used.

2.6.3.1.  Elliptic Curve PWE

   For a finite cyclic group based on an elliptic curve it is necessary
   to use an iterative hunt-and-peck technique to fix the password
   element.

   First, an 8-bit counter is incremented to the value one (1).  Then,
   the agreed upon random function is used to generate a password seed:

      pwd-seed = H(peer-ID | server-ID | password | counter)

   Then, the pwd-seed is expanded using the KDF from the agreed-upon
   Ciphersuite out to the length of the prime of the curve, modulo the
   prime of the curve.

      pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))

      pwd-value = pwd-value mod p

   The pwd-value is used as the x-coordinate, x, with the equation for
   the elliptic curve to solve for a y-coordinate, y.  If there is no
   solution to the quadratic equation the counter is incremented, a new
   pwd-seed is generated and the hunting and pecking continues.  If a
   solution is found then an ambiguity exists as there are technically
   two solutions to the equation and pwd-seed is used to unambiguously
   select one of them.  If the low-order bit of pwd-seed is equal to the
   low-order bit of y then a candidate PWE is defined as the point (x,
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   y); if the low-order bit of pwd-seed differs from the low-order bit
   of y then a candidate PWE is defined as the point (x, p - y), where p
   is the prime over which the curve is defined.  The order of the
   candidate PWE is then checked to make sure it can safely be used as a
   generator in the protocol.  If the co-factor of the curve multiplied
   by the candidate PWE equals the point-at-infinity then the candidate
   PWE is discarded, the counter is incremented, a new pwd-seed is
   generated and the hunting and pecking continues.  If it does not
   equal the point-at-infinity the candidate PWE becomes the PWE and
   hunting and pecking terminates.  (Note: the point multiplied by the
   co-factor does not become PWE, it is only used to determine the order
   of the group defined with PWE as a generator).

   Algorithmically, the process looks like this:

      found = 0
      counter = 1
      do {
        pwd-seed = H(peer-ID | server-ID | password | counter)
        pwd-value = KDF(pwd-seed, "EAP-pwd Hunting And Pecking", len(p))
        x = pwd-value mod p
        if ( (y = sqrt(x^3 + ax + b)) != FAIL)
        then
          if (LSB(y) == LSB(pwd-seed))
          then
            PWE = (x,y)
          else
            PWE = (x, p-y)
          fi
          P = f*PWE
          if (P != "O")
            found = 1
          fi
        fi
        counter = counter + 1
      } while (found == 0)

                 Figure 3: Fixing PWE for Elliptic Curves

2.6.3.2.  Prime Modulus pwe

   For a finite cyclic group based on exponentiation of a generator, g,
   modulo a large prime p it is not necessary to hunt-and-peck to find
   pwe.  A pwe can be computed in a sub-field of the group directly
   using the prime, p, and order r.

   First, the agreed upon random function is used to generate a password
   seed:
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      pwd-seed = H(peer-ID | server-ID | password)

   Then the pwd-seed is expanded using the KDF to the length of the
   prime, modulo the prime.

      pwd-value = KDF(pwd-seed, "EAP-pwd Affixing the PWE", len(p))

      pwd-value = pwd-value mod p

   The pwe is then computed by exponentiating the pwd-value to the value
   ((p-1)/r) modulo the prime.

      pwe = pwd-value ^ ((p-1)/r) mod p

2.6.4.  Message Construction

   After the EAP-pwd Identity exchange the construction of the
   components of each message depends on the finite cyclic group from
   the ciphersuite.

2.6.4.1.  Elliptic Curve Groups

   Assuming an elliptic curve group with order r:
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   Server: EAP-pwd-Commit/Request
      - choose two random numbers, 1 < s_rand, s_mask < r
      - compute Element_S = inv(s_mask * PWE)
      - compute Scalar_S = (s_rand + s_mask) mod r

    Element_S and Scalar_S are used to construct EAP-pwd-Commit/Request

   Peer: EAP-pwd-Commit/Response
      - choose two random numbers, 1 < p_rand, p_mask < r
      - compute Element_P = inv(p_mask * PWE)
      - compute Scalar_P = (p_rand + p_mask) mod r

    Element_P and Scalar_P are used to construct EAP-pwd-Commit/Response

   Server: EAP-pwd-Confirm/Request
      - compute KS = s_rand * (Scalar_P * PWE + Element_P)
      - compute ks = F(KS)
      - compute Confirm_S = H(ks | Element_S | Scalar_S |
                              Element_P | Scalar_P | Ciphersuite)

    Confirm_S is used to construct EAP-pwd-Confirm/Request

   Peer: EAP-pwd-Confirm/Response
      - compute KP = p_rand * (Scalar_S * PWE + Element_S)
      - compute kp = F(KP)
      - compute Confirm_P = H(kp | Element_P | Scalar_P |
                              Element_S | Scalar_S | Ciphersuite)

    Confirm_P is used to construct EAP-pwd-Confirm/Response

   The EAP Server computes the shared secret as:
     MK = H(ks | F(Element_S+Element_P) | (Scalar_S+Scalar_P) mod r)

   The EAP Peer computes the shared secet as:
     MK = H(kp | F(Element_P+Element_S) | (Scalar_P+Scalar_S) mod r)

   The MSK and EMSK are derived from MK per Section 2.7.

2.6.4.2.  Prime Modulus Groups

   When using a finite cyclic group based on exponentiation of a
   generator (g) modulo a prime (p), a subgroup order (r) may or may not
   be specified.  If it is not specified r is set to p-1 for use in this
   protocol.  Also, there is no mapping function needed when using such
   a group.
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   Server: EAP-pwd-Commit/Request
      - choose two random numbers, 1 < s_rand, s_mask < r
      - compute Element_S = inv(pwe^s_mask mod p)
      - compute Scalar_S = (s_rand + s_mask) mod r

    Element_S and Scalar_S are used to construct EAP-pwd-Commit/Request

   Peer: EAP-pwd-Commit/Response
      - choose random two numbers, 1 < p_rand, p_mask < r
      - compute Element_P = inv(pwe^p_mask mod p)
      - compute Scalar_P = (p_rand + p_mask) mod r

    Element_P and Scalar_P are used to construct EAP-pwd-Commit/Response

   Server: EAP-pwd-Confirm/Request
      - compute ks = ((pwe^Scalar_P mod p) * Element_P)^s_rand mod p
      - compute Confirm_S = H(ks | Element_S | Scalar_S |
                              Element_P | Scalar_P | Ciphersuite)

    Confirm_S is used to construct EAP-pwd-Confirm/Request

   Peer: EAP-pwd-Confirm/Response
      - compute kp = ((pwe^Scalar_S mod p) * Element_S)^p_rand mod p
      - compute Confirm_P = H(kp | Element_P | Scalar_P |
                              Element_S | Scalar_S | Ciphersuite)

    Confirm_P is used to construct EAP-pwd-Confirm/Request

   The EAP Server computes the shared secret as:
     MK = H(ks | (Element_S + Element_P) mod r |
            (Scalar_S + Scalar_P) mod r)

   The EAP Peer computes the shared secet as:
     MK = H(kp | (Element_P + Element_S) mod r |
            (Scalar_P + Scalar_S) mod r)

   The MSK and EMSK derived from MK per Section 2.7.

2.6.5.  Message Processing

2.6.5.1.  EAP-pwd-ID Exchange

   Although EAP provides an Identity method to determine the identity of
   the peer, the value in the Identity Response may have been truncated
   or obfuscated to provide privacy or decorated for routing purposes
   [RFC3748], making it inappropriate for usage by the EAP-pwd method.
   Therefore, the EAP-pwd-ID exchange is defined for the purpose of

https://datatracker.ietf.org/doc/html/rfc3748
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   exchanging identities between the peer and server.

   The EAP-pwd-ID/Request contains the following quantities:

   o  a ciphersuite

   o  a representation of the server's identity in UTF-8

   o  an anti-clogging token

   o  a password pre-processing method

   The ciphersuite specifies the finite cyclic group, random function
   and PRF selected by the server for use in the subsequent
   authentication exchange.

   The value of the anti-clogging token MUST be unpredictable and SHOULD
   NOT be from a source of random entropy.  The purpose of the anti-
   clogging token is to provide the server an assurance that the peer
   constructing the EAP-pwd-ID/Response is genuine and not part of a
   flooding attack.

   A actual plaintext value of the user's password may not be accessible
   to the EAP server; for example, passwords may be stored in a hashed
   form.  For this reason, EAP-pwd allows the server to communicate a
   password pre-processing method to the client so that the two sides
   can be synchronized.

   The EAP-pwd-ID/Request is constructed according to Section 3.2.1 and
   is transmitted to the peer.

   Upon receipt of an EAP-pwd-ID/Request, the peer determines whether
   the ciphersuite and pre-processing method are acceptable.  If not,
   the peer MUST respond with an EAP-NAK.  If acceptable, the peer
   responds to the EAP-pwd-ID/Request, constructed according to

Section 3.2.1, that acknowledging the Ciphersuite and token and
   adding its identity.  After sending the EAP-pwd-ID/Response, the peer
   has the identity of the server (from the Request), its own identity
   (it encoded in the Response), optionally a password preprocessing
   algorithm, and it can compute the password element as specified in

Section 2.6.3.  The password element is stored in state allocated for
   this exchange.

   The EAP-pwd-ID/Response acknowledges the Ciphersuite from the
   Request, acknowledges the anti-clogging token from the Request
   providing a demonstration of "liveness" on the part of the peer, and
   contains the identity of the peer.  Upon receipt of the Response, the
   server verifies that the Ciphersuite acknowledged by the peer is the
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   same as that sent in the Request and that the token added by the peer
   in the Response is the same as the one the server sent in the
   Request.  If Ciphersuites or tokens differ, the server MUST respond
   with an EAP-Failure message.  If the Ciphersuites are the same, the
   server now knows its own identity (it encoded in the Request) and the
   peer's identity (from the Response) and can compute the password
   element according to Section 2.6.3.  The server stores the password
   element in state it has allocated for this exchange.  The server then
   initiates an EAP-pwd-Commit exchange.

2.6.5.2.  EAP-pwd-Commit Exchange

   The server begins the EAP-pwd-Confirm exchange by choosing two random
   numbers between 1 and r (where r is described in Section 2.1
   according to the group established in Section 2.6.5.1).  It then
   computes Element_S and Scalar_S as defined in Section 2.6.4 and
   constructs an EAP-pwd-Commit/Request according to Section 3.2.2.
   Element_S and Scalar_S are added to the state allocated for this
   exchange and the EAP-pwd-Commit/Request is transmitted to the peer.

   Upon receipt of the EAP-pwd-Commit/Request, the peer validates the
   length of the entire payload based upon the expected lengths of
   Element_S and Scalar_S (which are fixed according to the agreed-upon
   group).  If the length is incorrect, the peer MUST terminate the
   exchange and free up any state allocated.  If the length is correct,
   the peer chooses two random numbers between 1 and r (where r is
   described in Section 2.1 according to the group established in

Section 2.6.5.1).  It then computes Element_P and Scalar_P,
   constructs an EAP-pwd-Commit/Response according to Section 3.2.2 and
   transmits the EAP-pwd-Commit/Response to the server.  The peer also
   computes kp from p_rand, Element_S, Scalar_S and the password element
   according to Section 2.6.4 and stores kp, Element_P and Scalar_P in
   state allocated for this exchange.

   Upon receipt of the EAP-pwd-Commit/Response, the server validates the
   length of the entire payload based upon the expected lengths of
   Element_P and Scalar_P (which are fixed according to the agreed-upon
   group).  If the length is incorrect, the server MUST respond with an
   EAP-Failure message and it MUST terminate the exchange and free up
   any state allocated.  If the length is correct, the server checks
   whether Scalar_P equals Scalar_S and Element_P equals Element_S. If
   this is true it indicates a reflection attack and the server MUST
   respond with an EAP-Failure and terminate the exchange freeing up all
   allocated state.  If the scalars and elements are not equal, the
   server computes kp from s_rand, Element_P, Scalar_P and the password
   element according to Section 2.6.4.  The server stores ks in the
   state it has allocated for this exchange and initiates an EAP-pwd-
   Confirm Exchange.



Harkins & Zorn          Expires December 31, 2009              [Page 18]



Internet-Draft                EAP Password                     June 2009

2.6.5.3.  EAP-pwd-Confirm Exchange

   The server computes Confirm_S according to Section 2.6.4 and
   constructs an EAP-pwd-Confirm/Request according to Section 3.2.3 and
   sends the EAP-pwd-Confirm/Request to the peer.

   Upon receipt of an EAP-pwd-Confirm/Request, the peer validates the
   length of the entire payload based upon the expected length of
   Confirm_S (whose length is fixed by the agreed-upon random function).
   If the length is incorrect, the peer MUST terminate the exchange and
   free up any state allocated.  If the length is correct, the peer
   verifies that Confirm_S is the value it expects based on the value of
   kp.  If the value of Confirm_S is incorrect, the peer MUST terminate
   the exchange and free up any state allocated.  If the value of
   Confirm_S is correct, the peer computes Confirm_P, constructs an EAP-
   pwd-Confirm/Response according to Section 3.2.3 and sends it off to
   the server.  The peer then computes MK (according to Section 2.6.4)
   and the MSK and EMSK (according to Section 2.7) and stores these keys
   in state allocated for this exchange.  The peer SHOULD export the MSK
   and EMSK at this time in anticipation of a secure association
   protocol by the lower-layer to create session keys.  Alternately, the
   peer can wait until an EAP-success messsage from the server before
   exporting the MSK and EMSK.

   Upon receipt of an EAP-pwd-Confirm/Response, the server validates the
   length of the entire payload based upon the expected length of
   Confirm_P (whose length is fixed by the agreed-upon random function).
   If the length is incorrect, the server MUST respond with an EAP-
   Failure message and it MUST terminate the exchange and free up any
   state allocated.  If the length is correct, the server verifies that
   Confirm_P is the value it expects based on the value of ks.  If the
   value of Confirm_P is incorrect, the server MUST respond with an EAP-
   Failure message.  If the value of Confirm_P is correct, the server
   computes MK (according to Section 2.6.4) and the MSK and EMSK
   (according to Section 2.7).  It exports the MSK and EMSK and responds
   with an EAP-success Request.  The server SHOULD free up state
   allocated for this exchange.

2.7.  Management of EAP-pwd Keys

   [RFC5247] recommends each EAP method define how to construct a
   Method-ID and Session-ID to identify a particular EAP session between
   a peer and server.  This information is constructed thusly:

       Method-ID = H(Ciphersuite | Scalar_P | Scalar_S)

       Session-ID = Type-Code | Method-ID
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   where Ciphersuite, Scalar_P and Scalar_S are from the specific
   exchange being identified; H is the random function specified in the
   Ciphersuite; and, Type-Code is the code assigned by IANA for EAP-pwd:
   TBD1.

   The authenticated key exchange of EAP-pwd generates a shared and
   authenticated key, MK.  The size of MK is dependent on the random
   function, H, asserted in the Ciphersuite.  EAP-pwd must export two
   512-bit keys, MSK and EMSK.  Regardless of the value of len(MK)
   implementations MUST invoke the KDF defined in Section 2.4 to
   construct the MSK and EMSK.  The MSK and EMSK are derived thusly:

       MSK | EMSK = KDF(MK, Session-ID, 1024)

   [RFC4962] mentions the importance of naming keys, particularly when
   key caching is being used.  To faciliate such an important
   optimization, names are assigned thusly:

   o   EMSK-name = Session-ID | 'E' | 'M'| 'S' | 'K'

   o   MSK-name = Session-ID | 'M'| 'S' | 'K'

   where 'E' is a single octet of value 0x45, 'M' is a single octet of
   value 0x4d, 'S' is a single octet of value 0x53, and 'K' is a single
   octet of value 0x4b.

   This naming scheme allows for key management applications to quickly
   and accurately identify keys for a particular session or all keys of
   a particular type.

3.  Packet Formats

3.1.  EAP-pwd Header

   The EAP-pwd header has the following structure:

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Code      |  Identifier   |             Length            |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |     Type      |L|M|  PWD-Exch |         Total-Length          |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                             Data...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
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                         Figure 4: EAP-pwd Header

   Code

      Either 1 (for Request) or 2 (for Response); see [RFC3748].

   Identifier

      The Identifier field is one octet and aids in matching responses
      with requests.  The Identifier field MUST be changed on each
      Request packet.

   Length

      The Length field is two octets and indicates the length of the EAP
      packet including the Code, Identifier, Length, Type, and Data
      fields.  Octets outside the range of the Length field should be
      treated as Data Link Layer padding and MUST be ignored on
      reception.

   Type

      TBD1 - EAP-pwd

   L and M bits

      The L bit (Length included) is set to indicate the presence of the
      two-octet Total-Length field, and MUST be set for the first
      fragment of a fragmented EAP-pwd message or set of messages.

      The M bit (more fragments) is set on all but the last fragment.

   PWD-Exch

      The PWD-Exch field identifies the type of EAP-pwd payload
      excapsulated in the Data field.  This document defines the
      following values for the PWD-Exch field:

      *   0x01 : EAP-pwd-ID exchange

      *   0x02 : EAP-pwd-Commit exchange

      *   0x03 : EAP-pwd-Confirm exchange

      All other values of the PWD-Exch field are reserved to IANA.

https://datatracker.ietf.org/doc/html/rfc3748
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   Total-Length

      The Total-Length field is two octets in length, and is present
      only if the L bit is set.  This field provides the total length of
      the EAP-pwd message or set of messages that is being fragmented.

3.2.  EAP-pwd Payloads

   EAP-pwd payloads all contain the EAP-pwd header and encoded
   information.  Encoded information is comprised of sequences of data.
   Payloads in the EAP-pwd-ID exchange also include a ciphersuite
   statement indicating what finite cyclic group to use, what
   cryptographic primitive to use for H, and what PRF to use for
   deriving keys.

3.2.1.  EAP-pwd-ID

   The Group Description, Random Function, and PRF together, and in that
   order, comprise the Ciphersuite included in the calculation of the
   peer's and server's confirm messages.

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |       Group Description       | Random Func'n |      PRF      |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                             Token                             |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |      Prep     |                  Identity...
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       ~                                                               ~
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                       Figure 5: EAP-pwd-ID Payload

   The Group Description field value is taken from the IANA registry for
   DIffie-Hellman groups created by IKE [RFC2409].

   This document defines the following value for the Random Function
   field:

   o   0x01 : Function defined in this memo in Section 2.3

   All other values of the Random Function field are reserved to IANA.

https://datatracker.ietf.org/doc/html/rfc2409
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   The PRF field has the following value:

   o   0x01 : HMAC-SHA256 [RFC4634]

   All other values of the PRF field are reserved to IANA.

   The Token field contains an unpredictable value assigned by the
   server in an EAP-pwd-ID/Request and acknowledged by the peer in an
   EAP-pwd-ID/Response (see Section 2.6.5).

   The Prep field represents the password pre-processing algorithm to be
   used by the client prior to generating the password seed (see

Section 2.6.3).  This document defines the following values for the
   Prep field:

   o   0x00 : None

   o   0x01 : Microsoft

   If the value of the Prep field is equal to 0x01, the plaintext
   password is processed to produce the NtPasswordHashHash [RFC3079].
   All other values of the Prep field are reserved to IANA.

   The Identity field depends on the value of PWD-Exch.

   o   EAP-pwd-ID/Request : Server_ID

   o   EAP-pwd-ID/Response : Peer_ID

   The length of the identity is computed from the Length field in the
   EAP header.

3.2.2.  EAP-pwd-Commit

https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc3079
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        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       ~                           Element                             ~
       |                                                               |
       ~                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                               |                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               ~
       |                                                               |
       ~                            Scalar             +-+-+-+-+-+-+-+-+
       |                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 6: EAP-pwd-Commit Payload

   The Element and Scalar fields depend on the value of PWD-Exch.

   o   EAP-pwd-Commit/Request : Element_S, Scalar_S

   o   EAP-pwd-Commit/Response : Element_P, Scalar_P

   The Element is encoded according to Section 3.3.  The length of the
   Element is inferred by the finite cyclic group from the agreed-upon
   Ciphersuite.  The length of the scalar can then be computed from the
   Length in the EAP header.

3.2.3.  EAP-pwd-Confirm

        0                   1                   2                   3
        0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
       |                                                               |
       ~                            Confirm                            ~
       |                                                               |
       +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                     Figure 7: EAP-pwd-Confirm Payload

   The Confirm field depends on the value of PWD-Exch.

   o   EAP-pwd-Confirm/Request : Confirm_S

   o   EAP-pwd-Confirm/Response : Confirm_P

   The length of the Confirm field computed from the Length in the EAP
   header.
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3.3.  Representation of Field Elements

   Payloads in the EAP-pwd-Commit exchange contain elements from the
   finite cyclic group.  To ensure interoperability field elements MUST
   be represented according to one of the following two techniques,
   depending on the type of group.

3.3.1.  Prime Modulus Groups

   Field elements in a prime modulus group are integers less than the
   prime modulus.  Each element MUST have a bit length equal to the bit
   length of the prime modulus.  This length is enforced, if necessary,
   by prepending the integer with zeros until the required length is
   achieved.

3.3.2.  Elliptic Curve Groups

   Elliptic curve field elements are points on the elliptic curve and
   consist of two components, an x-coordinate and a y-coordinate.  Each
   component MUST have a bit length equal to the field size of the
   group.  This length is enforced, if necessary, by prepending the
   component with zeros until the required length is achieved.

   The field element is represented in a payload by the x-coordinate
   followed by the y-coordinate.  Therefore the field element in the
   payload MUST be twice the size of the field size defined in the
   group.

4.  Fragmentation

   EAP [RFC3748] is a request-response protocol.  The server sends
   requests and the peer responds.  These request and response messages
   are assumed to be limited to at most 1020 bytes.  Messages in EAP-pwd
   can be larger than 1020 bytes and therefore require support for
   fragmentation and reassembly.

   Implementations MUST establish a fragmentation threshold that
   indicates the maximum size of an EAP-pwd payload.  When an
   implementation knows the maximum transmission unit (MTU) of its
   lower-layer, it SHOULD calculate the fragmentation threshold from
   that value.  In lieu of knowledge of the lower-layer's MTU the
   fragmentation threshold MUST be set to 1020 bytes.

   Since EAP is a simple ACK-NAK protocol, fragmentation support can be
   added in a simple manner.  In EAP, fragments that are lost or damaged
   in transit will be retransmitted, and since sequencing information is
   provided by the Identifier field in EAP, there is no need for a

https://datatracker.ietf.org/doc/html/rfc3748
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   fragment offset field as is provided in IPv4.

   EAP-pwd fragmentation support is provided through addition of flags
   within the EAP-Response and EAP-Request packets, as well as a Total-
   Length field of two octets.  Flags include the Length included (L)
   and More fragments (M) bits.  The L flag is set to indicate the
   presence of the two octet Total-Length field, and MUST be set for the
   first fragment of a fragmented EAP-pwd message or set of messages.
   The M flag is set on all but the last fragment.  The Total-Length
   field is two octets, and provides the total length of the EAP-pwd
   message or set of messages that is being fragmented; this simplifies
   buffer allocation.

   When an EAP-pwd peer receives an EAP-Request packet with the M bit
   set, it MUST respond with an EAP-Response with EAP-Type=EAP-pwd and
   no data.  This serves as a fragment ACK.  The EAP server MUST wait
   until it receives the EAP-Response before sending another fragment.
   In order to prevent errors in processing of fragments, the EAP server
   MUST increment the Identifier field for each fragment contained
   within an EAP-Request, and the peer MUST include this Identifier
   value in the fragment ACK contained within the EAP-Response.
   Retransmitted fragments will contain the same Identifier value.

   Similarly, when the EAP server receives an EAP-Response with the M
   bit set, it MUST respond with an EAP-Request with EAP-Type=EAP-pwd
   and no data.  This serves as a fragment ACK.  The EAP peer MUST wait
   until it receives the EAP-Request before sending another fragment.
   In order to prevent errors in the processing of fragments, the EAP
   server MUST increment the Identifier value for each fragment ACK
   contained within an EAP-Request, and the peer MUST include this
   Identifier value in the subsequent fragment contained within an EAP-
   Response.

5.  IANA Considerations

   This memo contains new numberspaces to be managed by IANA.  The
   policies used to allocate numbers are described in [RFC5226].  This
   memo requires IANA to allocate a new EAP method type for EAP-pwd.

   This memo also requires IANA to create new registries for PWD-Exch
   messages, random functions, PRFs, password pre-processing methods and
   error codes and to add the message numbers, random function, PRF,
   pre-processing method and error codes specified in this memo to those
   registries, respectively.

   The following is the initial PWD-Exch message registry layout:

https://datatracker.ietf.org/doc/html/rfc5226
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   o   0x01 : EAP-pwd-ID exchange

   o   0x02 : EAP-pwd-Commit exchange

   o   0x03 : EAP-pwd-Confirm exchange

   The PWD-Exch field is 6 bits long and all other values are available
   through assignment by IANA.  IANA is instructed to assign values
   based on "IETF Review" (see [RFC5226]).

   The following is the initial Random Function registry layout:

   o   0x01 : Function defined in this memo in Section 2.3

   The Random Function field is 8 bits long and all other values are
   available through assignment by IANA.  IANA is instructed to assign
   values based on "Specification Required" and "Expert Review" (see
   [RFC5226]) to ensure that new random functions have received the
   proper vetting.

   The following is the initial PRF registry layout:

   o   0x01 : HMAC-SHA256 as defined in [RFC4634]

   The PRF field is 8 bits long and all other values are available
   through assignment by IANA.  IANA is instructed to assign values
   based on "IETF Review" (see [RFC5226]).

   The following is the initial layout for the password preprocessing
   method registry:

   o   0x00 : None

   o   0x01 : Microsoft

   The Prep field is 8 bits long and all other values are available
   through assignment by IANA.  IANA is instructed to assign values
   based on "First Come First Served" (see [RFC5226]).

6.  Security Considerations

   In Section 1.3 several security properties were presented that
   motivated the design of this protocol.  This section will address how
   well they are met.

https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc4634
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5226


Harkins & Zorn          Expires December 31, 2009              [Page 27]



Internet-Draft                EAP Password                     June 2009

6.1.  Resistance to Passive Attack

   A passive attacker will see Scalar_P, Element_P, Scalar_S, and
   Element_S. She can guess at passwords to compute the password element
   but will not know s_rand or p_rand and therefore will not be able to
   compute MK.

   The secret random value of the peer (server) is effectively hidden by
   adding p_mask (s_mask) to p_rand (s_rand) modulo the order of the
   group.  If the order is "r", then there are approximately "r"
   distinct pairs of numbers that will sum to the value Scalar_P
   (Scalar_S).  Attempting to guess the particular pair is just as
   difficult as guessing the secret random value p_rand (s_rand), the
   probability of a guess is 1/(r - i) after "i" guesses and for a large
   value of r this exhaustive search technique is computationally
   infeasible.  An attacker would do better by determining the discrete
   logarithm of Element_P (Element_S) using an algorithm like Baby-Step
   giant-step (see [APPCRY]), which runs on the order of the square root
   of r group operations (e.g. a group with order 2^160 that would be
   2^80 exponentiations or point multiplications).  Based on the
   assumptions made on the finite cyclic group made in Section 2.2 that
   is also computationally infeasible.

6.2.  Resistance to Active Attack

   An active attacker can launch her attack after an honest server has
   sent EAP-pwd-Commit/Request to an honest peer.  This would result in
   the peer sending EAP-pwd-Commit/Response.  In this case the active
   attack has been reduced to that of a passive attacker since p_rand
   and s_rand will remain unknown.  The active attacker could forge a
   value of Confirm_P (Confirm_S) and send it to the EAP server (EAP
   peer) in the hope that it will be accepted but due to the assumptions
   on H made in Section 2.2 that is computationally infeasible.

   The active attacker can launch her attack by forging EAP-pwd-Commit/
   Request and sending it to the peer.  This will result in the peer
   responding with EAP-pwd-Commit/Response.  The attacker can then
   attempt to compute ks but since she doesn't know the password this is
   infeasible.  It can be shown that an attack by receiving EAP-pwd-
   Commit/Request from an honest server and forging EAP-pwd-Commit/
   Response is an identical attack with equal infeasibility.

6.3.  Resistance to Dictionary Attack

   An active attacker can wait until an honest server sends EAP-pwd-
   Commit/Request and then forge EAP-pwd-Commit/Response and send it to
   the server.  The server will respond with EAP-pwd-Confirm/Request.
   Now the attacker can attempt to launch a dictionary attack.  She can
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   guess at potential passwords, compute the password element and
   compute kp using her p_rand, Scalar_S and Element_S from the EAP-pwd-
   Commit/Request and the candidate password element from her guess.
   She will know if her guess is correct when she is able to verify
   Confirm_S in EAP-pwd-Confirm/Request.

   But the attacker committed to a password guess with her forged EAP-
   pwd-Commit/Response when she computed Element_P. That value was used
   by the server in his computation of ks which was used when he
   constructed Confirm_S in EAP-pwd-Confirm/Request.  Any guess of the
   password that differs from the one used in the forged EAP-pwd-Commit/
   Response could not be verified as correct since the attacker has no
   way of knowing whether it is correct.  She is able to make one guess
   and one guess only per attack.  This means that any advantage she can
   gain-- guess a password, if it fails exclude it from the pool of
   possible passwords and try again-- is solely through interaction with
   an honest protocol peer.

   The attacker can commit to the guess with the forged EAP-pwd-Commit/
   Response and then run through the dictionary, computing the password
   element and ks using her forged Scalar_P and Element_P. She will know
   she is correct if she can compute the same value for Confirm_S that
   the server produced in EAP-pwd-Confirm/Request.  But this requires
   the attacker to know s_rand which we noted, above, was not possible.

   The password element PWE/pwe is chosen using a method described in
Section 2.6.3.  Since this is an element in the group there exists a

   scalar value, q, such that:

       PWE = q * G, for an elliptic curve group

       pwe = g^q mod p, for an modular exponentiation group

   Knowledge of q can be used to launch a dictionary attack.  For the
   sake of brevity, the attack will be demonstrated assuming an elliptic
   curve group.  The attack works thusly:

   The attacker waits until an honest server sends EAP-pwd-Commit/
   Request.  The attacker then generates a random Scalar_P and a random
   p_mask and computes Element_P = p_mask * G. The attacker sends the
   bogus Scalar_P and Element_P to the server and obtains Confirm_S in
   return.  Note that the server is unable to detect that Element_P was
   calculated incorrectly.

   The attacker now knows that:

       KS = (Scalar_P * q + p_mask) * s_rand * G
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   and

       s_rand * G = Scalar_P * G - ((1/q) mod r * -Element_P)

   Since Scalar_P, p_mask, G, and Element_P are all known the attacker
   can run through the dictionary, making a password guess, computing
   PWE using the technique in Section 2.6.3, determine q, and then use
   the equations above to compute KS and see if it can verify Confirm_S.
   But to determine q for a candidate PWE the attacker needs to perform
   a discrete logarithm which was assumed to be computationally
   infeasible in Section 2.2.  Therefore this attack is also infeasible.

   The best advantage an attacker can gain in a single active attack is
   to determine whether a single guess at the password was correct.
   Therefore her advantage is solely through interaction and not
   computation, which is the definition for resistance to dictionary
   attack.

   Resistance to dictionary attack means that the attacker must launch
   an active attack to make a single guess at the password.  If the size
   of the dictionary from which the password was extracted was D, and
   each password in the dictionary has an equal probability of being
   chosen, then the probability of success after a single guess is 1/D.
   After X guesses, and removal of failed guesses from the pool of
   possible passwords, the probability becomes 1/(D-X).  As X grows so
   does the probability of success.  Therefore it is possible for an
   attacker to determine the password through repeated brute-force,
   active, guessing attacks.  This protocol does not presume to be
   secure against this and implementations SHOULD ensure the size of D
   is sufficiently large to prevent this attack.  Implementations SHOULD
   also take countermeasures, for instance refusing authentication
   attempts for a certain amount of time, after the number of failed
   authentication attempts reaches a certain threshold.  No such
   threshold or amount of time is recommended in this memo.

6.4.  Forward Secrecy

   The MSK and EMSK are extracted from MK which is derived from doing
   group operations with s_rand, p_rand, and the password scalar value.
   The peer and server choose random values with each run of the
   protocol.  So even if an attacker is able to learn the password, she
   will not know the random values used by either the peer or server
   from an earlier run and will therefore be unable to determine MK, or
   the MSK or EMSK.  This is the definition of Forward Secrecy.
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6.5.  Random Functions

   The protocol described in this memo uses a function referred to as a
   "random oracle" (as defined in [RANDOR]).  A significant amount of
   care must be taken to instantiate a random oracle out of handy
   cryptographic primitives.  Section 6 of [RANDOR] provides guidance on
   how to do this using hash functions.  The random function, H, defined
   in this memo in Section 2.3 uses one of the suggested constructs-- a
   hash algorithm with doubled input.

   This protocol can use any properly instantiated random oracle.  To
   ensure that any new value for H will use a properly instantiated
   random oracle IANA has been instructed (in Section 5) to only
   allocate values from the Random Function registry after being vetted
   by an expert.

   The security of this protocol depends on the finite cyclic group used
   and the infeasibility of performing a discrete logarithm.  A few of
   the defined groups that can be used with this protocol have a
   security estimate less than 128 bits, many do not though, and to
   prevent the random function from being the gating factor (or a target
   for attack) any new random function MUST map its input to a target of
   at least 128 bits and SHOULD map its input to a target of at least
   256 bits.

7.  Security Claims

   [RFC3748] requires that documents describing new EAP methods clearly
   articulate the security properties of the method.  In addition, for
   use with wireless LANs [RFC4017] mandates and recommends several of
   these.  The claims are:

   a.  mechanism: password.

   b.  claims:

       *   mutual authentication: the peer and server both authenticate
           each other by proving possession of a shared password.  This
           is REQUIRED by [RFC4017].

       *   foward secrecy: compromise of the password does not reveal
           the secret keys-- MK, MSK, or EMSK-- from earlier runs of the
           protocol.

       *   replay protection: an attacker is unable to replay messages
           from a previous exchange either learn the password or a key
           derived by the exchange.  Similarly the attacker is unable to

https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017


Harkins & Zorn          Expires December 31, 2009              [Page 31]



Internet-Draft                EAP Password                     June 2009

           induce either the peer or server to believe the exchange has
           successfully completed when it hasn't.  Reflection attacks
           are foiled because the server ensures that the scalar and
           element supplied by the peer do not equal its own.

       *   key derivation: keys are derived by performing a group
           operation in a finite cyclic group (e.g. exponentiation)
           using secret data contributed by both the peer and server.
           An MSK and EMSK are derived from that shared secret.  This is
           REQUIRED by [RFC4017]

       *   dictionary attack resistance: an attacker can only make one
           password guess per active attack.  The advantage she can gain
           is through interaction not through computation.  This is
           REQUIRED by [RFC4017].

       *   session independence: this protocol is resistant to active
           and passive attack and does not enable compromise of
           subsequent or prior MSKs or EMSKs from either passive or
           active attack.

       *   Denial of Service Resistance: it is possible for an attacker
           to cause a server to allocate state and consume CPU
           generating Scalar_S and Element_S. Such an attack is gated,
           though, by the requirement that the attacker first obtain
           connectivity through a lower-layer protocol (e.g. 802.11
           authentication followed by 802.11 association, or 802.3
           "link-up") and respond to two EAP messages--the EAP-ID/
           Request and the EAP-pwd-ID/Request.  The EAP-pwd-ID exchange
           further includes an anti-clogging token that provides a level
           of assurance to the server that the peer is, at least,
           performing a rudimentary amount of processing and not merely
           spraying packets.  This prevents distributed denial of
           service attacks and also requires the attacker to announce,
           and commit to, a lower-layer identity (such as a MAC
           address).

       *   Man-in-the-Middle Attack Resistance: this exchange is
           resistant to active attack, which is a requirement for
           launching a man-in-the-middle attack.  This is REQUIRED by
           [RFC4017].

       *   shared state equivalence: upon completion of EAP-pwd the peer
           and server both agree on MK, MSK, EMSK, Method-ID, and
           Session-ID.  The peer has authenticated the server based on
           the Server-ID and the server has authenticated the peer based
           on the Peer-ID.  This is due to the fact that Peer-ID,
           Server-ID, and the shared password are all combined to make

https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017
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           the password element which must be shared between the peer
           and server for the exchange to complete.  This is REQUIRED by
           [RFC4017].

       *   fragmentation: this protocol defines a technique for
           fragmentation and reassembly in Section 4.

       *   resistance to "Denning-Sacco" attack: learning keys
           distributed from an earlier run of the protocol, such as the
           MSK or EMSK, will not help an adversary learn the password.

   c.  key strength: the strength of the resulting key depends on the
       finite cyclic group chosen.  For example, [RFC5114] defines new
       groups available for use with this protocol.  Using groups from
       [RFC5114] the strength can vary from 80 bits (for the 1024-bit
       MODP with 160-bit Prime Subgroup) to 256 bits (for the 521-bit
       Random ECP Group).  Other groups can be defined and the strength
       of those groups depends on their definition.  This is REQUIRED by
       [RFC4017].

   d.  key hierarchy: MSKs and EMSKs are derived from the MK using the
       KDF defined in Section 2.4 as described in Section 2.6.4.

   e.  vulnerabilities (note that none of these are REQUIRED by
       [RFC4017]):

       *   protected ciphersuite negotiation: the ciphersuite offer made
           by the server is not protected from tampering by an active
           attacker.  Downgrade attacks are prevented, though, since
           this is not a "negotiation" with a list of acceptable
           ciphersuites.  If a Ciphersuite was modified by an active
           attacker it would result in a failure to confirm the message
           sent by the other party, since the Ciphersuite is bound by
           each side into its confirm message, and the protocol would
           fail as a result.

       *   confidentiality: none of the messages sent in this protocol
           are encrypted.

       *   integrity protection: messages in the EAP-pwd-Commit exchange
           are not integrity protected.

       *   channel binding: this protocol does not enable the exchange
           of integrity-protected channel information that can be
           compared with values communicated via out-of-band mechanisms.

       *   fast reconnect: this protocol does not provide a fast
           reconnect capability.

https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc5114
https://datatracker.ietf.org/doc/html/rfc4017
https://datatracker.ietf.org/doc/html/rfc4017
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       *   cryptographic binding: this protocol is not a tunneled EAP
           method and therefore has no cryptographic information to
           bind.

       *   identity protection: the EAP-pwd-ID exchange is not
           protected.  An attacker will see the server's identity in the
           EAP-pwd-ID/Request and see the peer's identity in EAP-pwd-ID/
           Response.
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