
Internet Engineering Task Force D. Harkins
Internet-Draft HP Enterprise
Updates: 5931 (if approved) October 19, 2016
Intended status: Informational
Expires: April 22, 2017

Adding Support for Salted Password Databases to EAP-pwd
draft-harkins-salted-eap-pwd-07

Abstract

 EAP-pwd is an EAP method that uses a shared password for
 authentication using a technique that is resistant to dictionary
 attack. It included support for raw keys and [RFC2759]-style double
 hashing of a password but did not include support for salted
 passwords. There are many existing databases of salted passwords and
 it is desirable to allow their use with EAP-pwd.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 22, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Harkins Expires April 22, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Abbreviated Title October 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Background . 2
1.2. Keyword Definition 3

2. Salted Passwords in EAP-pwd 3
2.1. Password Pre-Processing 3
2.2. The Salting of a Password 4
2.3. Using UNIX crypt . 5
2.4. Using scrypt . 5
2.5. Using PBKDF2 . 6
2.6. Protocol Modifications 6
2.7. Payload Modifications 7

3. Acknowledgements . 8
4. IANA Considerations . 8
5. Security Considerations 8
6. References . 9
6.1. Normative References 9
6.2. Informative References 9

 Author's Address . 10

1. Introduction

1.1. Background

 Databases of stored passwords present an attractive target for
 attack--get access to the database, learn the passwords. To confound
 such attacks a random "salt" was hashed with the password and the
 resulting digest stored, along with the salt, instead of the raw
 password. This has the effect of randomizing the password so if two
 distinct users have chosen the same password the stored, and salted,
 password will be different. It also requires an adversary who has
 compromised the security of the stored database to launch a
 dictionary attack per entry to recover passwords.

 Dictionary attacks, especially using custom hardware, represent real-
 world attacks and merely salting a password is insufficient to
 protect a password database. To address these attacks an sequential
 memory hard function such as described in [RFC7914] is used.

 While salting a password database is not sufficient to deal with many
 real-world attacks the historic popularity of password salting means
 there are a large number of such databases deployed and EAP-pwd needs
 to be able to support them. In addition, EAP-pwd needs to be able to

https://datatracker.ietf.org/doc/html/rfc7914

Harkins Expires April 22, 2017 [Page 2]

Internet-Draft Abbreviated Title October 2016

 support databases using more modern sequential memory hard functions
 for protection.

 EAP-pwd imposes an additional security requirement on a database of
 salted passwords that otherwise would not exist, see Section 5.

1.2. Keyword Definition

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Salted Passwords in EAP-pwd

2.1. Password Pre-Processing

 EAP-pwd is based on the "dragonfly" password-authenticated key
 exchange (PAKE)--see [RFC7664]. This is a balanced PAKE and requires
 that each party to the protocol obtain an identical representation of
 a processed password (see Section 5). Salting of a password is
 therefore treated as an additional password pre-processing technique
 of EAP-pwd. The salt and digest to use is conveyed to the peer by
 the server and the password is processed prior to fixing the password
 element (see Section 2.8.3 of [RFC5931]).

 This memo defines eight (8) new password pre-processing techniques
 for EAP-pwd:

 o TBD1: a random salt with SHA-1 ([SHS])

 o TBD2: a random salt with SHA-256 ([SHS])

 o TBD3: a random salt with SHA-512 ([SHS])

 o TBD4: UNIX crypt() ([CRY])

 o TBD5: scrypt ([RFC7914])

 o TBD6: PBKDF2 with SHA-256 ([RFC2898])

 o TBD7: PBKDF2 with SHA-512 ([RFC2898])

 o TBD8: SASLprep then a random salt with SHA-1 ([SHS])

 o TBD9: SASLprep then a random salt with SHA-256 ([SHS])

 o TBD10: SASLprep then a random salt with SHA-512 ([SHS])

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7664
https://datatracker.ietf.org/doc/html/rfc5931#section-2.8.3
https://datatracker.ietf.org/doc/html/rfc7914
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898

Harkins Expires April 22, 2017 [Page 3]

Internet-Draft Abbreviated Title October 2016

 o TBD11: SASLprep then UNIX crypt() ([CRY])

 o TBD12: OpaqueString then scrypt ([RFC7914])

 o TBD13: OpaqueString then PBKDF2 with SHA-256 ([RFC2898])

 o TBD14: OpaqueString then PBKDF2 with SHA-512 ([RFC2898])

 When passing salt, the size of the salt SHOULD be at least as long as
 the message digest of the hash algorithm used. There is no guarantee
 that deployed salted databases have followed this rule, and in the
 interest of interoperability, an EAP peer SHOULD NOT abort an EAP-pwd
 exchange if the length of the salt conveyed during the exchange is
 less than the message digest of the indicated hash algorithm.

 UNIX crypt(), scrypt, and PBKDF2 impose additional formatting
 requirements on the passed salt. See below.

 SASLprep has been deprecated but databases treated with SASLprep
 exist and it is necessary to provide code points for them. When
 using SASLprep a password SHALL be considered a "stored string" per
 [RFC3454] and unassigned code points are therefore prohibited. The
 output of SASLprep SHALL be the binary representation of the
 processed UTF-8 character string. Prohibted output and unassigned
 codepoints encountered in SASLprep pre-processing SHALL cause a
 failure of pre-processing, and the output SHALL NOT be used with EAP-
 pwd.

 When performing one of TBD12-TBD14 the password SHALL be a UTF-8
 string and SHALL be pre-processed by applying the Preparation and
 Enforcement steps of the OpaqueString profile in [RFC7613] to the
 password. The output of OpaqueString, also a UTF-8 string, becomes
 the EAP-pwd password and SHALL be hashed with the indicated
 algorithm.

 There is a large number of deployed password databases that use
 [RFC7616]-style salting and hashing but these deployments require a
 nonce contribution by the client (as well as the server) and EAP-pwd
 does not have the capability to provide that information.

2.2. The Salting of a Password

 For both parties to derive the same salted password there needs to be
 a canonical method of salting a password. When using EAP-pwd, a
 password SHALL be salted by hashing the password followed by the salt
 using the designated hash function:

 salted-password = Hash(password | salt)

https://datatracker.ietf.org/doc/html/rfc7914
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc7613
https://datatracker.ietf.org/doc/html/rfc7616

Harkins Expires April 22, 2017 [Page 4]

Internet-Draft Abbreviated Title October 2016

 The server stores the salted-password, and the salt, in its database
 and the client derives the salted-password on-the-fly.

2.3. Using UNIX crypt

 Different algorithms are supported with the UNIX crypt() function.
 The particular algorithm used is indicated by prepending an encoding
 of "setting" to the passed salt. The specific algorithm used is
 opaque to EAP-pwd as the entire salt, including the encoded
 "setting", is passed as an opaque string for interpretation by
 crypt(). The salted password used for EAP-pwd SHALL be the output of
 crypt():

 salted-password = crypt(password, salt)

 The server stores the salted-password, and the encoded algorithm plus
 salt, in its database and the client derives the salted-password on-
 the-fly.

 If the server indicates a crypt() algorithm that is unsupported by
 the client, the exchange fails and the client MUST terminate the
 connection.

2.4. Using scrypt

 The scrypt function takes several parameters:

 o N, the cost parameter

 o r, the block size

 o p, the parallelization parameter

 o dkLen, the length of the output

 These parameters are encoded into the "salt" field of the modified
 EAP-pwd message. Parameters r and dkLen SHALL be 16-bit integers in
 network order. The other parameters SHALL each be 32-bit integers in
 network order. The "salt" field that gets transmitted in EAP-pwd
 SHALL therefore be:

 N || r || p || dkLen || salt

 where || represents concatenation.

 The value of N represents the exponent taken to the power of two in
 order to determine the CPU/Memory cost of scrypt-- i.e. the value is
 2^N. Per [RFC7914] the resulting CPU/Memory cost value SHALL be less

https://datatracker.ietf.org/doc/html/rfc7914

Harkins Expires April 22, 2017 [Page 5]

Internet-Draft Abbreviated Title October 2016

 than 2^(128 * r / 8) and the value p SHALL be less than or equal to
 ((2^32 - 1) * 32) / (128 * r).

 Note: EAP-pwd uses the salted password directly as the authentication
 credential and will hash it with a counter in order to obtain a
 secret element in a finite field. Therefore it makes little sense to
 use dkLen greater than the digest of the underlying hash function but
 the capability is provided to do so anyway.

2.5. Using PBKDF2

 The PBKDF2 function requires two parameters:

 o c, the iteration count

 o dkLen, the length of the output

 These parameters are encoded into the "salt" field of the modified
 EAP-pwd message. The parameters SHALL be 16-bit integers in network
 order. The "salt" field that gets transmitted in EAP-pwd SHALL
 therefore be:

 c || dkLen || salt

 where || represents concatenation.

 Note: EAP-pwd uses the salted password directly as the authentication
 credential and will hash it with a counter in order to obtain a
 secret element in a finite field. Therefore it makes little sense to
 use dkLen greater than the digest of the underlying hash function but
 the capability is provided to do so anyway.

2.6. Protocol Modifications

 Like all EAP methods, EAP-pwd is server initiated. The server is
 required to indicate its intentions, including the password pre-
 processing it wishes to use, before it knows the identity of the
 client. This limits the ability of the server to support multiple
 salt digests simultaneously in a single password database. To
 support multiple salt digests simultaneously, it is necessary to
 maintain multiple password databases and use the routable portion of
 the client identity to select one when initiating EAP-pwd.

 The server uses the EAP-pwd-ID/Request to indicate the password pre-
 processing technique. The client indicates its acceptance of the
 password pre-processing technique and identifies itself in the EAP-
 pwd-ID/Response. If the cient does not accept any of the offered
 pre-processing techniques it SHALL terminate the exchange. Upon

Harkins Expires April 22, 2017 [Page 6]

Internet-Draft Abbreviated Title October 2016

 receipt of the EAP-pwd-ID/Response, the server knows the identity of
 the client and can look up the client's salted password and the salt
 from the database. The server adds the length of the salt and the
 salt itself to the EAP-pwd-Commit/Request message (see Section 2.7).

 The server can fix the password element (Section 2.8.3 of [RFC5931])
 as soon as the salted password has been looked up in the database.
 The client, though, is required to wait until receipt of the server's
 EAP-pwd-Commit/Request before it begins fixing the password element.

2.7. Payload Modifications

 When a salted password pre-processing technique is agreed upon during
 the EAP-pwd-ID exchange the EAP-pwd-Commit payload is modified to
 include the salt and salt length (see Figure 1). The server passes
 the salt and salt length in the EAP-pwd-Commit/Request; the client's
 EAP-pwd-Commit/Response is unchanged and it MUST NOT echo the salt
 length and salt in its EAP-pwd-Commit/Response.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | salt-len | |
 +-+-+-+-+-+-+-+-+ ~
 ~ Salt +-+-+-+-+-+-+-+-+-+
 | | |
 +-+ ~
 | |
 ~ Element ~
 | |
 ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | | |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~
 | |
 ~ Scalar +-+-+-+-+-+-+-+-+
 | |
 +-+

 Figure 1: Salted EAP-pwd-Commit/Request

 The "salt-len" SHALL be non-zero and indicates the length, in octets,
 of the salt that follows. The salt SHALL be a binary string. The
 Element and Scalar are encoded according to Section 3.3 of [RFC5931].

 Note: when a non-salted password pre-processing method is used, for
 example, any of the methods from [RFC5931], the EAP-pwd-Commit
 payload MUST NOT be modified to include the salt and salt length.

https://datatracker.ietf.org/doc/html/rfc5931#section-2.8.3
https://datatracker.ietf.org/doc/html/rfc5931#section-3.3
https://datatracker.ietf.org/doc/html/rfc5931

Harkins Expires April 22, 2017 [Page 7]

Internet-Draft Abbreviated Title October 2016

3. Acknowledgements

 Thanks to Stefan Winter and the eduroam project for its continued
 interest in using EAP-pwd. Thanks to Simon Josefsson for his advice
 on support for scrypt and PBKDF2.

4. IANA Considerations

 IANA is instructed to allocate fourteen (14) values from the
 "password preprocessing method registry" established by [RFC5931] and
 replace TBD1, TBD2, TBD3, TBD4, TBD5, TBD6, TBD7, TBD8, TBD9, TBD10,
 TBD11, TBD12, TBD13, and TBD14 above with the values assigned.

5. Security Considerations

 EAP-pwd requires each side to produce an identical representation of
 the (processed) password before the password element can be fixed.
 This symmetry undercuts one of the benefits to salting a password
 database because the salted password from a compromised database can
 be used directly to impersonate the EAP-pwd client--since the
 plaintext password need not be recovered, no dictionary attack is
 needed. While the immediate effect of such a compromise would be
 compromise of the server, the per-user salt would still prevent the
 adversary from recovering the password, barring a successful
 dictionary attack, to use for other purposes.

 Salted password databases used with EAP-pwd MUST be afforded the same
 level of protection as databases of plaintext passwords.

 Hashing a password with a salt increases the work factor for an
 attacker to obtain the cleartext password but dedicated hardware
 makes this increased work factor increasingly negligible in real-
 world scenarios. Cleartext password databases SHOULD be protected
 with a scheme that uses a sequential memory hard function such as
 [RFC7914].

 Plain salting techniques are included for support of existing
 databases. scrypt and PBKDF2 techniques are RECOMMENDED for new
 password database deployments.

 EAP-pwd sends the salt in the clear. If EAP-pwd is not tunneled in
 another, encrypting, EAP method, an adversary that can observe
 traffic from server to authenticator or from authenticator to client
 would learn the salt used for a particular user. While knowledge of
 a salt by an adversary may be of a somewhat dubious nature (pre-image
 resistance of the hash function used will protect the client's
 password and, as noted above, the database of salted passwords must

https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc7914

Harkins Expires April 22, 2017 [Page 8]

Internet-Draft Abbreviated Title October 2016

 still be protected from disclosure), it does represent potential
 additional meta-data in the hands of a untrusted third party.

6. References

6.1. Normative References

 [CRY] "crypt(3) man page",
 <http://man7.org/linux/man-pages/man3/crypt.3.html>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, DOI 10.17487/

RFC2898, September 2000,
 <http://www.rfc-editor.org/info/rfc2898>.

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454, DOI
 10.17487/RFC3454, December 2002,
 <http://www.rfc-editor.org/info/rfc3454>.

 [RFC5931] Harkins, D. and G. Zorn, "Extensible Authentication
 Protocol (EAP) Authentication Using Only a Password", RFC

5931, August 2010.

 [RFC7613] Saint-Andre, P. and A. Melnikov, "Preparation,
 Enforcement, and Comparison of Internationalized Strings
 Representing Usernames and Passwords", RFC 7613, DOI
 10.17487/RFC7613, August 2015,
 <http://www.rfc-editor.org/info/rfc7613>.

 [RFC7914] Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,
 August 2016, <http://www.rfc-editor.org/info/rfc7914>.

 [SHS] National Institute of Standards and Technology, , "Federal
 Information Processing Standard Publication 180-4: Secure
 Hash Standard (SHS)", March 2012,
 <http://csrc.nist.gov/publications/fips/fips180-4/

fips-180-4.pdf>.

6.2. Informative References

 [RFC2759] Zorn, G., "Microsoft PPP CHAP Extensions, Version 2", RFC
2759, DOI 10.17487/RFC2759, January 2000,

 <http://www.rfc-editor.org/info/rfc2759>.

http://man7.org/linux/man-pages/man3/crypt.3.html
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc2898
http://www.rfc-editor.org/info/rfc2898
https://datatracker.ietf.org/doc/html/rfc3454
http://www.rfc-editor.org/info/rfc3454
https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc5931
https://datatracker.ietf.org/doc/html/rfc7613
http://www.rfc-editor.org/info/rfc7613
https://datatracker.ietf.org/doc/html/rfc7914
http://www.rfc-editor.org/info/rfc7914
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf
https://datatracker.ietf.org/doc/html/rfc2759
https://datatracker.ietf.org/doc/html/rfc2759
http://www.rfc-editor.org/info/rfc2759

Harkins Expires April 22, 2017 [Page 9]

Internet-Draft Abbreviated Title October 2016

 [RFC7616] Shekh-Yusef, R., Ed., Ahrens, D., and S. Bremer, "HTTP
 Digest Access Authentication", RFC 7616, DOI 10.17487/

RFC7616, September 2015,
 <http://www.rfc-editor.org/info/rfc7616>.

 [RFC7664] Harkins, D., Ed., "Dragonfly Key Exchange", RFC 7664, DOI
 10.17487/RFC7664, November 2015,
 <http://www.rfc-editor.org/info/rfc7664>.

Author's Address

 Dan Harkins
 HP Enterprise
 1322 Crossman Avenue
 Sunnyvale, CA 94089-1113
 United States of America

 Email: dharkins@arubanetworks.com

https://datatracker.ietf.org/doc/html/rfc7616
https://datatracker.ietf.org/doc/html/rfc7616
http://www.rfc-editor.org/info/rfc7616
https://datatracker.ietf.org/doc/html/rfc7664
http://www.rfc-editor.org/info/rfc7664

Harkins Expires April 22, 2017 [Page 10]

