
Internet Engineering Task Force D. Harkins, Ed.
Internet-Draft Aruba Networks
Intended status: Standards Track D. Halasz, Ed.
Expires: March 11, 2013 Halasz Ventures
 September 7, 2012

Secure Password Ciphersuites for Transport Layer Security (TLS)
draft-harkins-tls-pwd-03

Abstract

 This memo defines several new ciphersuites for the Transport Layer
 Security (TLS) protocol to support certificate-less, secure
 authentication using only a simple, low-entropy, password. The
 ciphersuites are all based on an authentication and key exchange
 protocol that is resistant to off-line dictionary attack.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 11, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as

Harkins & Halasz Expires March 11, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft TLS Password September 2012

 described in the Simplified BSD License.

Table of Contents

1. Background . 3
1.1. The Case for Certificate-less Authentication 3
1.2. Resistance to Dictionary Attack 3

2. Keyword Definitions . 4
3. Introduction . 4
3.1. Notation . 4
3.2. Discrete Logarithm Cryptography 5
3.2.1. Elliptic Curve Cryptography 5
3.2.2. Finite Field Cryptography 6

3.3. Instantiating the Random Function 7
3.4. Passwords . 7
3.5. Assumptions . 8

4. Specification of the TLS-PWD Handshake 8
4.1. Fixing the Password Element 9
4.1.1. Computing an ECC Password Element 10
4.1.2. Computing an FFC Password Element 11

4.2. Changes to Handshake Message Contents 12
4.2.1. Client Hello Changes 12
4.2.2. Server Key Exchange Changes 13
4.2.2.1. Generation of ServerKeyExchange 14
4.2.2.2. Processing of ServerKeyExchange 15

4.2.3. Client Key Exchange Changes 15
4.2.3.1. Generation of Client Key Exchange 16
4.2.3.2. Processing of Client Key Exchange 16

4.3. Computing the Premaster Secret 16
5. Ciphersuite Definition . 17
6. Acknowledgements . 18
7. IANA Considerations . 18
8. Security Considerations 19
9. Implementation Considerations 22
10. References . 22
10.1. Normative References 22
10.2. Informative References 23

 Authors' Addresses . 24

Harkins & Halasz Expires March 11, 2013 [Page 2]

Internet-Draft TLS Password September 2012

1. Background

1.1. The Case for Certificate-less Authentication

 TLS usually uses public key certificates for authentication
 [RFC5246]. This is problematic in some cases:

 o Frequently, TLS [RFC5246] is used in devices owned, operated, and
 provisioned by people who lack competency to properly use
 certificates and merely want to establish a secure connection
 using a more natural credential like a simple password. The
 proliferation of deployments that use a self-signed server
 certificate in TLS [RFC5246] followed by a PAP-style exchange over
 the unauthenticated channel underscores this case.

 o A password is a more natural credential than a certificate (from
 early childhood people learn the semantics of a shared secret), so
 a password-based TLS ciphersuite can be used to protect an HTTP-
 based certificate enrollment scheme-- e.g. an [RFC5967] -style
 request and an [RFC5751] -style response-- to parlay a simple
 password into a certificate for subsequent use with any
 certificate-based authentication protocol. This addresses a
 significant "chicken-and-egg" dilemma found with certificate-only
 use of [RFC5246].

 o Some PIN-code readers will transfer the entered PIN to a smart
 card in clear text. Assuming a hostile environment, this is a bad
 practice. A password-based TLS ciphersuite can enable the
 establishment of an authenticated connection between reader and
 card based on the PIN.

1.2. Resistance to Dictionary Attack

 It is a common misconception that a protocol that authenticates with
 a shared and secret credential is resistent to dictionary attack if
 the credential is assumed to be an N-bit uniformly random secret,
 where N is sufficiently large. The concept of resistence to
 dictionary attack really has nothing to do with whether that secret
 can be found in a standard collection of a language's defined words
 (i.e. a dictionary). It has to do with how an adversary gains an
 advantage in attacking the protocol.

 For a protocol to be resistant to dictionary attack any advantage an
 adversary can gain must be a function of the amount of interactions
 she makes with an honest protocol participant and not a function of
 the amount of computation she uses. The adversary will not be able
 to obtain any information about the password except whether a single
 guess from a single protocol run which she took part in is correct or

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5967
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5246

Harkins & Halasz Expires March 11, 2013 [Page 3]

Internet-Draft TLS Password September 2012

 incorrect.

 It is assumed that the attacker has access to a pool of data from
 which the secret was drawn-- it could be all numbers between 1 and
 2^N, it could be all defined words in a dictionary. The key is that
 the attacker cannot do a an attack and then enumerate through the
 pool trying potential secrets (computation) to see if one is correct.
 She must do an active attack for each secret she wishes to try
 (interaction) and the only information she can glean from that attack
 is whether the secret used with that particular attack is correct or
 not.

2. Keyword Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. Introduction

3.1. Notation

 The following notation is used in this memo:

 password
 a secret, and potentially low-entropy word, phrase, code or key
 used as a credential for authentication. The password is shared
 between the TLS client and TLS server.

 y = H(x)
 a binary string of arbitrary length, x, is given to a function H
 which produces a fixed-length output, y.

 a | b
 denotes concatenation of string a with string b.

 [a]b
 indicates a string consisting of the single bit "a" repeated "b"
 times.

 x mod y
 indicates the remainder of division of x by y. The result will
 be between 0 and y.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Harkins & Halasz Expires March 11, 2013 [Page 4]

Internet-Draft TLS Password September 2012

 LSB(x)
 returns the least-significant bit of the bitstring "x".

3.2. Discrete Logarithm Cryptography

 The ciphersuites defined in this memo use discrete logarithm
 cryptography (see [SP800-56A]) to produce an authenticated and shared
 secret value that is an element in a group defined by a set of domain
 parameters. The domain parameters can be based on either Finite
 Field Cryptography (FFC) or Elliptic Curve Cryptography (EEC).

 Elements in a group, either an FFC or EEC group, are indicated using
 upper-case while scalar values are indicated using lower-case.

3.2.1. Elliptic Curve Cryptography

 The authenticated key exchange defined in this memo uses fundamental
 algorithms of elliptic curves defined over GF(p) as described in
 [RFC6090].

 Domain parameters for the ECC groups used by this memo are:

 o A prime, p, determining a prime field GF(p). The cryptographic
 group will be a subgroup of the full elliptic curve group which
 consists points on an elliptic curve-- elements from GF(p) that
 satisfy the curve's equation-- together with the "point at
 infinity" that serves as the identity element.

 o Elements a and b from GF(p) that define the curve's equation. The
 point (x,y) in GF(p) x GF(p) is on the elliptic curve if and only
 if (y^2 - x^3 - a*x - b) mod p equals zero (0).

 o A point, G, on the elliptic curve, which serves as a generator for
 the ECC group. G is chosen such that its order, with respect to
 elliptic curve addition, is a sufficiently large prime.

 o A prime, q, which is the order of G, and thus is also the size of
 the cryptographic subgroup that is generated by G.

 o A co-factor, f, defined by the requirement that the size of the
 full elliptic curve group (including the "point at infinity") is
 the product of f and q.

 This memo uses the following ECC Functions:

 o Z = elem-op(X,Y) = X + Y: two points on the curve X and Y, are
 sumed to produce another point on the curve, Z. This is the group
 operation for ECC groups.

https://datatracker.ietf.org/doc/html/rfc6090

Harkins & Halasz Expires March 11, 2013 [Page 5]

Internet-Draft TLS Password September 2012

 o Z = scalar-op(x,Y) = x * Y: an integer scalar, x, acts on a point
 on the curve, Y, via repetitive addition (Y is added to itself x
 times), to produce another EEC element, Z.

 o Y = inverse(X): a point on the curve, X, has an inverse, Y, which
 is also a point on the curve, when their sum is the "point at
 infinity" (the identity for elliptic curve addition). In other
 words, R + inverse(R) = "0".

 o z = F(X): the x-coordinate of a point (x, y) on the curve is
 returned. This is a mapping function to convert a group element
 into an integer.

 Only ECC groups over GF(p) can be used with TLS-PWD. ECC groups over
 GF(2^m) SHALL NOT be used by TLS-PWD. In addition, ECC groups with a
 co-factor greater than one (1) SHALL NOT be used by TLS-PWD.

 A composite (x, y) pair can be validated as an a point on the
 elliptic curve by checking whether: 1) both coordinates x and y are
 greater than zero (0) and less than the prime defining the underlying
 field; 2) the x- and y- coordinates satisfy the equation of the
 curve; and 3) they do not represent the point-at-infinity "0". If
 any of those conditions are not true the (x, y) pair is not a valid
 point on the curve.

3.2.2. Finite Field Cryptography

 Domain parameters for the FFC groups used by this memo are:

 o A prime, p, determining a prime field GF(p), the integers modulo
 p. The FFC group will be a subgroup of GF(p)*, the multiplicative
 group of non-zero elements in GF(p).

 o An element, G, in GF(p)* which serves as a generator for the FFC
 group. G is chosen such that its multiplicative order is a
 sufficiently large prime divisor of ((p-1)/2).

 o A prime, q, which is the multiplicative order of G, and thus also
 the size of the cryptographic subgroup of GF(p)* that is generated
 by G.

 This memo uses the following FFC Functions:

 o Z = elem-op(X,Y) = (X * Y) mod p: two FFC elements, X and Y, are
 multiplied modulo the prime, p, to produce another FFC element, Z.
 This is the group operation for FFC groups.

Harkins & Halasz Expires March 11, 2013 [Page 6]

Internet-Draft TLS Password September 2012

 o Z = scalar-op(x,Y) = Y^x mod p: an integer scalar, x, acts on an
 FFC group element, Y, via exponentiation modulo the prime, p, to
 produce another FFC element, Z.

 o Y = inverse(X): a group element, X, has an inverse, Y, when the
 product of the element and its inverse modulo the prime equals one
 (1). In other words, (X * inverse(X)) mod p = 1.

 o z = F(X): is the identity function since an element in an FFC
 group is already an integer. It is included here for consistency
 in the specification.

 Many FFC groups used in IETF protocols are based on safe primes and
 do not define an order (q). For these groups, the order (q) used in
 this memo shall be the prime of the group minus one divided by two--
 (p-1)/2.

 An integer can be validated as being an element in an FFC group by
 checking whether: 1) it is between one (1) and the prime, p,
 exclusive; and 2) if modular exponentiation of the integer by the
 group order, q, equals one (1). If either of these conditions are
 not true the integer is not an element in the group.

3.3. Instantiating the Random Function

 The protocol described in this memo uses a random function, H, which
 is modeled as a "random oracle". At first glance, one may view this
 as a hash function. As noted in [RANDOR], though, hash functions are
 too structured to be used directly as a random oracle. But they can
 be used to instantiate the random oracle.

 The random function, H, in this memo is instantiated by using the
 hash algorithm defined by the particular TLS-PWD ciphersuite in HMAC
 mode with a key whose length is equal to block size of the hash
 algorithm and whose value is zero. For example, if the ciphersuite
 is TLS_ECCPWD_WITH_AES_128_GCM_SHA256 then H will be instantiated
 with SHA256 as:

 H(x) = HMAC-SHA256([0]32, x)

3.4. Passwords

 The authenticated key exchange used in TLS-PWD requires each side to
 have a common view of a shared credential. To protect a database of
 stored passwords, though, the password SHALL be salted and the
 result, called the base, SHALL be used as the authentication
 credential.

Harkins & Halasz Expires March 11, 2013 [Page 7]

Internet-Draft TLS Password September 2012

 The salting function is defined as:

 base = HMAC-SHA256(salt, username | password)

 The password used for generation of the base SHALL be represented as
 a UTF-8 encoded character string processed according to the rules of
 the [RFC4013] profile of [RFC3454] and the salt SHALL be a 32 octet
 random number. The server SHALL store a triplet of the form:

 { username, base, salt }

 And the client SHALL generate the base upon receiving the salt from
 the server.

3.5. Assumptions

 The security properties of the authenticated key exchange defined in
 this memo are based on a number of assumptions:

 1. The random function, H, is a "random oracle" as defined in
 [RANDOR].

 2. The discrete logarithm problem for the chosen group is hard.
 That is, given g, p, and y = g^x mod p, it is computationally
 infeasible to determine x. Similarly, for an ECC group given the
 curve definition, a generator G, and Y = x * G, it is
 computationally infeasible to determine x.

 3. Quality random numbers with sufficient entropy can be created.
 This may entail the use of specialized hardware. If such
 hardware is unavailable a cryptographic mixing function (like a
 strong hash function) to distill enropy from multiple,
 uncorrelated sources of information and events may be needed. A
 very good discussion of this can be found in [RFC4086].

4. Specification of the TLS-PWD Handshake

 The authenticated key exchange is accomplished by each side deriving
 a password-based element, PE, in the chosen group, making a
 "committment" to a single guess of the password using PE, and
 generating the Premaster Secret. The ability of each side to produce
 a valid finished message authenticates itself to the other side.

 The authenticated key exchange is dropped into the standard TLS
 message handshake by modifying some of the messages.

https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4086

Harkins & Halasz Expires March 11, 2013 [Page 8]

Internet-Draft TLS Password September 2012

 Client Server
 -------- --------

 Client Hello (name) -------->

 Server Hello
 Server Key Exchange (commit)
 <-------- Server Hello Done

 Client Key Exchange (commit)
 [Change cipher spec]
 Finished -------->

 [Change cipher spec]
 <-------- Finished

 Application Data <-------> Application Data

 Figure 1

4.1. Fixing the Password Element

 Prior to making a "committment" both sides must generate a secret
 element, PE, in the chosen group using the common password-derived
 base. The server generates PE after it receives the Client Hello and
 chooses the particular group to use, and the client generates PE upon
 receipt of the Server Key Exchange.

 Fixing the password element involves an iterative "hunting and
 pecking" technique using the prime from the negotiated group's domain
 parameter set and an ECC- or FFC-specific operation depending on the
 negotiated group.

 To thwart side channel attacks which attempt to determine the number
 of iterations of the "hunting-and-pecking" loop are used to find PE
 for a given password, a security parameter, k, is used to ensure that
 at least k iterations are always performed. This technique need only
 be used with ECC groups.

 First, an 8-bit counter is set to the value one (1). Then, H is used
 to generate a password seed from the a counter, the prime of the
 selected group, and the base (which is derived from the username,
 password, and salt):

 pwd-seed = H(base | counter | p)

 Then, the pwd-seed is expanded using the PRF to the length of the
 prime from the negotiated group's domain parameter set, to create

Harkins & Halasz Expires March 11, 2013 [Page 9]

Internet-Draft TLS Password September 2012

 pwd-value:

 pwd-value = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
 ClientHello.random | ServerHello.random) [0..p];

 If the pwd-value is greater than or equal to the prime, p, the
 counter is incremented, and a new pwd-seed is generated and the
 hunting-and-pecking continues. If pwd-value is less than the prime,
 p, it is passed to the group-specific operation which either returns
 the selected password element or fails. If the group-specific
 operation fails, the counter is incremented, a new pwd-seed is
 generated, and the hunting-and-pecking continues. This process
 continues until the group-specific operation returns the password
 element. For FCC groups, this terminates the hunting-and-pecking
 process. For ECC groups, after the password element has been chosen,
 the base is changed to a random number, the counter is incremented
 and the hunting-and-pecking continues until the counter is greater
 than the security parameter, k.

 When PE has been discovered, pwd-seed and pwd-value SHALL be
 irretrievably destroyed.

4.1.1. Computing an ECC Password Element

 The group-specific operation for ECC groups uses pwd-value, pwd-seed,
 and the equation for the curve to produce PE. First, pwd-value is
 used directly as the x-coordinate, x, with the equation for the
 elliptic curve, with parameters a and b from the domain parameter set
 of the curve, to solve for a y-coordinate, y. If there is no
 solution to the quadratic equation, this operation fails and the
 hunting-and-pecking process continues. If a solution is found, then
 an ambiguity exists as there are technically two solutions to the
 equation and pwd-seed is used to unambiguously select one of them.
 If the low-order bit of pwd-seed is equal to the low-order bit of y,
 then a candidate PE is defined as the point (x, y); if the low-order
 bit of pwd-seed differs from the low-order bit of y, then a candidate
 PE is defined as the point (x, p - y), where p is the prime over
 which the curve is defined. The candidate PE becomes PE, a random
 number is used instead of the base, and the hunting and pecking
 continues until it has looped through k iterations.

 Algorithmically, the process looks like this:

Harkins & Halasz Expires March 11, 2013 [Page 10]

Internet-Draft TLS Password September 2012

 found = 0
 counter = 0
 base = H(username | password | salt)
 do {
 counter = counter + 1
 pwd-seed = H(base | counter | p)
 pwd-value = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
 ClientHello.random | ServerHello.random) [0..p]
 if (pwd-value < p)
 then
 x = pwd-value
 if ((y = sqrt(x^3 + ax + b)) != FAIL)
 then
 if (found == 0)
 then
 if (LSB(y) == LSB(pwd-seed))
 then
 PE = (x, y)
 else
 PE = (x, p-y)
 fi
 found = 1
 else
 base = random()
 fi
 fi
 fi
 } while ((found == 0) || (counter <= k))

 Figure 2: Fixing PE for ECC Groups

 The probability that one requires more than "n" iterations of the
 "hunting and pecking" loop to find PE is roughly (q/2p)^n which
 rapidly approaches zero (0) as "n" increases. Therefore the security
 parameter, k, SHOULD be set sufficiently large such that the
 probability that finding PE would take more than k iterations is
 sufficiently small.

4.1.2. Computing an FFC Password Element

 The group-specific operation for FFC groups takes pwd-value, and the
 prime, p, and order, q, from the group's domain parameter set (see

Section 3.2.2 when the order is not part of the defined domain
 parameter set) to directly produce a candidate password element, by
 exponentiating the pwd-value to the value ((p-1)/q) modulo the prime.
 If the result is greater than one (1), the candidate password element
 becomes PE, and the hunting and pecking terminates successfully.

Harkins & Halasz Expires March 11, 2013 [Page 11]

Internet-Draft TLS Password September 2012

 Algorithmically, the process looks like this:

 found = 0
 counter = 0
 do {
 counter = counter + 1
 pwd-seed = H(base | counter | p)
 pwd-value = PRF(pwd-seed, "TLS-PWD Hunting And Pecking",
 ClientHello.random | ServerHello.random) [0..p]
 if (pwd-value < p)
 then
 PE = pwd-value ^ ((p-1)/q) mod p
 if (PE > 1)
 then
 found = 1
 fi
 fi
 } while (found == 0)

 Figure 3: Fixing PE for FFC Groups

4.2. Changes to Handshake Message Contents

4.2.1. Client Hello Changes

 The client is required to identify herself to the server by adding a
 PWD extension to the Client Hello message. The PWD extension uses
 the standard mechanism defined in [RFC5246]. The "extension data"
 field of the PWD extension SHALL contain a PWD_name which is used to
 identify the password shared between the client and server.

 enum { pwd(TBD) } ExtensionType;

 opaque PWD_name<1..2^8-1>;

 The PWD_name SHALL be UTF-8 encoded character string processed
 according to the rules of the [RFC4013] profile of [RFC3454].

 A client offering a PWD ciphersuite MUST include the PWD extension in
 her Client Hello.

 If a server does not have a password identified by the PWD_name in
 the PWD extension of the Client Hello, the server SHOULD hide that
 fact by simulating the protocol-- putting random data in the PWD-
 specific components of the Server Key Exchange-- and then rejecting
 the client's finished message with a "bad_record_mac" alert. To
 properly effect a simulated TLS-PWD exchange, an appropriate delay
 SHOULD be inserted between receipt of the Client Hello and response

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454

Harkins & Halasz Expires March 11, 2013 [Page 12]

Internet-Draft TLS Password September 2012

 of the Server Hello. Alternately, a server MAY choose to terminate
 the exchange if a password identified by the PWD_name in the PWD
 extension of the Client Hello is not found.

 The server decides on a group to use with the named user (see
Section 9 and generates the password element, PE, according to
Section 4.1.2.

4.2.2. Server Key Exchange Changes

 The domain parameter set for the selected group MUST be specified in
 the ServerKeyExchange, either explicitly or, in the case of some
 elliptic curve groups, by name. In addition to the group
 specification, the ServerKeyExchange also contains the server's
 "committment" in the form of a scalar and element, and the salt which
 was used to store the user's password.

 Two new values have been added to the enumerated KeyExchangeAlgorithm
 to indicate TLS-PWD using finite field cryptography, ff_pwd, and TLS-
 PWD using elliptic curve cryptography, ec_pwd.

 enum { ff_pwd, ec_pwd } KeyExchangeAlgorithms;

 struct {
 opaque salt<1..2^8-1>;
 opaque pwd_p<1..2^16-1>;
 opaque pwd_g<1..2^16-1>;
 opaque pwd_q<1..2^16-1>;
 opaque ff_selement<1..2^16-1>;
 opaque ff_sscalar<1..2^16-1>;
 } ServerFFPWDParams;

 struct
 opaque salt<1..2^8-1>;
 ECParameters curve_params;
 ECPoint ec_selement;
 opaque ec_sscalar<1..2^8-1>;
 } ServerECPWDParams;

 struct {
 select (KeyExchangeAlgorithm) {
 case ec_pwd:
 ServerECPWDParams params;
 case ff_pwd:
 ServerFFPWDParams params;
 };
 } ServerKeyExchange;

Harkins & Halasz Expires March 11, 2013 [Page 13]

Internet-Draft TLS Password September 2012

4.2.2.1. Generation of ServerKeyExchange

 The scalar and Element that comprise the server's "committment" are
 generated as follows.

 First two random numbers, called private and mask, between zero and
 the order of the group (exclusive) are generated. If their sum
 modulo the order of the group, q, equals zero the numbers must be
 thrown away and new random numbers generated. If their sum modulo
 the order of the group, q, is greater than zero the sum becomes the
 scalar.

 scalar = (private + mask) mod q

 The Element is then calculated as the inverse of the group's scalar
 operation (see the group specific operations in Section 3.2) with the
 mask and PE.

 Element = inverse(scalar-op(mask, PE))

 After calculation of the scalar and Element the mask SHALL be
 irretrievably destroyed.

4.2.2.1.1. ECC Server Key Exchange

 EEC domain parameters are specified, either explicitly or named, in
 the ECParameters component of the EEC-specific ServerKeyExchange as
 defined in [RFC4492]. The scalar SHALL become the ec_sscalar
 component and the Element SHALL become the ec_selement of the
 ServerKeyExchange. If the client requested a specific point format
 (compressed or uncompressed) with the Support Point Formats Extension
 (see [RFC4492]) in its Client Hello, the Element MUST be formatted in
 the ec_selement to conform to that request.

 As mentioned in Section 3.2.1, elliptic curves over GF(2^m), so
 called characteristic-2 curves, and curves with a co-factor greater
 than one (1) SHALL NOT be used with TLS-PWD.

4.2.2.1.2. FFC Server Key Exchange

 FFC domain parameters sent in the ServerKeyExchange are for the
 group's prime, generator (which is only used for verification of the
 group specification), and the order of the group's generator. The
 scalar SHALL become the ff_sscalar component and the Element SHALL
 become the ff_selement in the FFC-specific ServerKeyExchange.

 As mentioned in Section 3.2.2 if the prime is a safe prime and no
 order is included in the domain parameter set, the order added to the

https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492

Harkins & Halasz Expires March 11, 2013 [Page 14]

Internet-Draft TLS Password September 2012

 ServerKeyExchange SHALL be the prime minus one divided by two--
 (p-1)/2.

4.2.2.2. Processing of ServerKeyExchange

 Upon receipt of the ServerKeyExchange, the client decides whether to
 support the indicated group or not. Named elliptic curves are easy
 to validate-- either they are supported or they are not, but care
 must be taken with FFC groups and explicitly specified ECC groups.
 As mentioned in Section 3.5, the discrete logarithm problem MUST be
 hard for any group used with this memo. The specific steps taken to
 come to this assurance for a particular group are outside the scope
 of this memo but they are the same steps to take when using the
 Diffie-Hellman key exchange with TLS. If the client decides not to
 support the group indicated in the ServerKeyExchange, she MUST abort
 the exchange.

 If the client decides to support the indicated group the server's
 "commitment" MUST be validated by ensuring that: 1) the server's
 scalar value is greater than zero (0) and less than the order of the
 group, q; and 2) that the Element is valid for the chosen group (see

Section 3.2.2 and Section 3.2.1 for how to determine whether an
 Element is valid for the particular group. Note that if the Element
 is a compressed point on an elliptic curve it MUST be uncompressed
 before checking its validity).

 If the group is acceptable, the client extracts the salt from the
 ServerKeyExchange and generates the password element, PE, according
 to Section 3.4 and Section 4.1.2.

4.2.3. Client Key Exchange Changes

 When the value of KeyExchangeAlgorithm is either ff_pwd or ec_pwd,
 the ClientKeyExchange is used to convey the client's "committment" to
 the server. It, therefore, contains a scalar and an Element.

Harkins & Halasz Expires March 11, 2013 [Page 15]

Internet-Draft TLS Password September 2012

 struct {
 opaque ff_celement<1..2^16-1>;
 opaque ff_cscalar<1..2^16-1>;
 } ClientFFPWDParams;

 struct
 ECPoint ec_celement;
 opaque ec_cscalar<1..2^8-1>;
 } ClientECPWDParams;

 struct {
 select (KeyExchangeAlgorithm) {
 case ff_pwd: ClientFFPWDParams;
 case ec_pwd: ClientECPWDParams;
 } exchange_keys;
 } ClientKeyExchange;

4.2.3.1. Generation of Client Key Exchange

 The client's scalar and Element are generated in the manner described
 in Section 4.2.2.1.

 For an FFC group, the scalar SHALL become the ff_cscalar component
 and the Element SHALL become the ff_celement in the FFC-specific
 ClientKeyExchange.

 For an ECC group, the scalar SHALL become the ec_cscalar component
 and the ELement SHALL become the ec_celement in the ECC-specific
 ClientKeyExchange. If the client requested a specific point format
 (compressed or uncompressed) with the Support Point Formats Extension
 in its ClientHello, then the Element MUST be formatted in the
 ec_celement to conform to its initial request.

4.2.3.2. Processing of Client Key Exchange

 The server MUST validate the client's "committment" by ensuring that:
 1) the client's scalar value is greater than zero (0) and less than
 the order of the group, q; and 2) that the Element is valid for the
 chosen group (see Section 3.2.2 and Section 3.2.1 for how to determin
 whether an Element is valid for a particular group. Note that if the
 Element is a compressed point on an elliptic curve it MUST be
 uncompressed before checking its validity.

4.3. Computing the Premaster Secret

 The client uses her own scalar and Element, denoted here
 ClientKeyExchange.scalar and ClientKeyExchange.Element, the server's
 scalar and Element, denoted here as ServerKeyExchange.scalar and

Harkins & Halasz Expires March 11, 2013 [Page 16]

Internet-Draft TLS Password September 2012

 ServerKeyExchange.Element, and the random private value, denoted here
 as client.private, she created as part of the generation of her
 "commit" to compute an intermediate value, z, as indicated:

 z = F(scalar-op(client.private,
 element-op(ServerKeyExchange.Element,
 scalar-op(ServerKeyExchange.scalar, PE))))

 With the same notation as above, the server uses his own scalar and
 Element, the client's scalar and Element, and his random private
 value, denoted here as server.private, he created as part of the
 generation of his "commit" to compute the premaster secret as
 follows:

 z = F(scalar-op(server.private,
 element-op(ClientKeyExchange.Element,
 scalar-op(ClientKeyExchange.scalar, PE))))

 The intermediate value, z, is then used as the premaster secret after
 any leading bytes of z that contain all zero bits have been stripped
 off.

5. Ciphersuite Definition

 This memo adds the following ciphersuites:

 CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD);

 Implementations conforming to this specification MUST support the
 TLS_ECCPWD_WITH_AES_128_CCM_SHA ciphersuite; they SHOULD support
 TLS_FFCPWD_WITH_AES_128_CCM_SHA, TLS_FFCPWD_WITH_AES_128_CBC_SHA,

Harkins & Halasz Expires March 11, 2013 [Page 17]

Internet-Draft TLS Password September 2012

 TLS_ECCPWD_WITH_AES_128_CBC_SHA, TLS_ECCPWD_WITH_AES_128_GCM_SHA256,
 TLS_ECCPWD_WITH_AES_256_GCM_SHS384; and MAY support the remaining
 ciphersuites.

 When negotiated with a version of TLS prior to 1.2, the Pseudo-Random
 Function (PRF) from that version is used; otherwise, the PRF is the
 TLS PRF [RFC5246] using the hash function indicated by the
 ciphersuite. Regardless of the TLS version, the TLS-PWD random
 function, H, is always instantiated with the hash algorithm indicated
 by the ciphersuite.

 For those ciphersuites that use Cipher Block Chaining (CBC)
 [SP800-38A] mode, the MAC is HMAC [RFC2104] with the hash function
 indicated by the ciphersuite.

6. Acknowledgements

 The authenticated key exchange defined here has also been defined for
 use in 802.11 networks, as an EAP method, and as an authentication
 method for IKE. Each of these specifications has elicited very
 helpful comments from a wide collection of people that have allowed
 the definition of the authenticated key exchange to be refined and
 improved.

 The authors would like to thank Scott Fluhrer for discovering the
 "password as exponent" attack that was possible in an early version
 of this key exchange and for his very helpful suggestions on the
 techniques for fixing the PE to prevent it. The authors would also
 like to thank Hideyuki Suzuki for his insight in discovering an
 attack against a previous version of the underlying key exchange
 protocol. Special thanks to Lily Chen for helpful discussions on
 hashing into an elliptic curve and to Jin-Meng Ho for suggesting the
 countermeasures to protect against a small sub-group attack. Rich
 Davis suggested the defensive checks that are part of the processing
 of the ServerKeyExchange and ClientKeyExchange messages, and his
 various comments have greatly improved the quality of this memo and
 the underlying key exchange on which it is based.

 Martin Rex, Peter Gutmann, Marsh Ray, and Rene Struik, discussed the
 possibility of a side-channel attack against the hunting-and-pecking
 loop on the TLS mailing list. That discussion prompted the addition
 of the security parameter, k, to the hunting-and-pecking loop.

7. IANA Considerations

 IANA SHALL assign a value for a new TLS extention type from the TLS

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2104

Harkins & Halasz Expires March 11, 2013 [Page 18]

Internet-Draft TLS Password September 2012

 ExtensionType Registry defined in [RFC5246] with the name "pwd". The
 RFC editor SHALL replace TBD in Section 4.2.1 with the IANA-assigned
 value for this extension.

 IANA SHALL assign nine new ciphersuites from the TLS Ciphersuite
 Registry defined in [RFC5246] for the following ciphersuites:

 CipherSuite TLS_FFCPWD_WITH_3DES_EDE_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CBC_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_GCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_GCM_SHA384 = (TBD, TBD);

 CipherSuite TLS_FFCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_128_CCM_SHA256 = (TBD, TBD);

 CipherSuite TLS_ECCPWD_WITH_AES_256_CCM_SHA384 = (TBD, TBD);

 The RFC editor SHALL replace (TBD, TBD) in all the ciphersuites
 defined in Section 5 with the appropriate IANA-assigned values.

8. Security Considerations

 A passive attacker against this protocol will see the
 ServerKeyExchange and the ClientKeyExchange containing the server's
 scalar and Element, and the client's scalar and Element,
 respectively. The client and server effectively hide their secret
 private value by masking it modulo the order of the selected group.
 If the order is "q", then there are approximately "q" distinct pairs
 of numbers that will sum to the scalar values observed. It is
 possible for an attacker to iterate through all such values but for a
 large value of "q", this exhaustive search technique is
 computationally infeasible. The attacker would have a better chance
 in solving the discrete logarithm problem, which we have already
 assumed (see Section 3.5) to be an intractable problem.

 A passive attacker can take the Element from either the
 ServerKeyExchange or the ClientKeyExchange and try to determine the
 random "mask" value used in its construction and then recover the
 other party's "private" value from the scalar in the same message.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Harkins & Halasz Expires March 11, 2013 [Page 19]

Internet-Draft TLS Password September 2012

 But this requires the attacker to solve the discrete logarithm
 problem which we assumed was intractable.

 Both the client and the server obtain a shared secret, the premaster
 secret, based on a secret group element and the private information
 they contributed to the exchange. The secret group element is based
 on the password. If they do not share the same password they will be
 unable to derive the same secret group element and if they don't
 generate the same secret group element they will be unable to
 generate the same premaster secret. Seeing a finished message along
 with the ServerKeyExchange and ClientKeyExchange will not provide any
 additional advantage of attack since it is generated with the
 unknowable premaster secret.

 An active attacker impersonating the client can induce a server to
 send a ServerKeyExchange containing the server's scalar and Element.
 It can attempt to generate a ClientKeyExchange and send to the server
 but the attacker is required to send a finished message first so the
 only information she can obtain in this attack is less than the
 information she can obtain from a passive attack, so this particular
 active attack is not very fruitful.

 An active attacker can impersonate the server and send a forged
 ServerKeyExchange after receiving the ClientHello. The attacker then
 waits until it receives the ClientKeyExchange and finished message
 from the client. Now the attacker can attempt to run through all
 possible values of the password, computing PE (see Section 4.1),
 computing candidate premaster secrets (see Section 4.3), and
 attempting to recreate the client's finished message.

 But the attacker committed to a single guess of the password with her
 forged ServerKeyExchange. That value was used by the client in her
 computation of the premaster secret which was used to produce the
 finished message. Any guess of the password which differs from the
 one used in the forged ServerKeyExchange would result in each side
 using a different PE in the computation of the premaster secret and
 therefore the finished message cannot be verified as correct, even if
 a subsequent guess, while running through all possible values, was
 correct. The attacker gets one guess, and one guess only, per active
 attack.

 Instead of attempting to guess at the password, an attacker can
 attempt to determine PE and then launch an attack. But PE is
 determined by the output of the random function, H, which is
 indistinguishable from a random source since H is assumed to be a
 "random oracle" (Section 3.5). Therefore, each element of the finite
 cyclic group will have an equal probability of being the PE. The
 probability of guessing PE will be 1/q, where q is the order of the

Harkins & Halasz Expires March 11, 2013 [Page 20]

Internet-Draft TLS Password September 2012

 group. For a large value of "q" this will be computationally
 infeasible.

 The implications of resistance to dictionary attack are significant.
 An implementation can provision a password in a practical and
 realistic manner-- i.e. it MAY be a character string and it MAY be
 relatively short-- and still maintain security. The nature of the
 pool of potential passwords determines the size of the pool, D, and
 countermeasures can prevent an attacker from determining the password
 in the only possible way: repeated, active, guessing attacks. For
 example, a simple four character string using lower-case English
 characters, and assuming random selection of those characters, will
 result in D of over four hundred thousand. An attacker would need to
 mount over one hundred thousand active, guessing attacks (which will
 easily be detected) before gaining any significant advantage in
 determining the pre-shared key.

 Countermeasures to deal with successive active, guessing attacks are
 only possible by noticing a certain username is failing repeatedly
 over a certain period of time. Attacks which attempt to find a
 password for a random user are more difficult to detect. For
 instance, if a device uses a serial number as a username and the pool
 of potential passwords is sufficiently small, a more effective attack
 would be to select a password and try all potential "users" to
 disperse the attack and confound countermeasures. It is therefore
 RECOMMENDED that implementations of TLS-pwd keep track of the total
 number of failed authentications regardless of username in an effort
 to detect and thwart this type of attack.

 The benefits of resistance to dictionary attack can be lessened by a
 client using the same passwords with multiple servers. An attacker
 could re-direct a session from one server to the other if the
 attacker knew that the intended server stored the same password for
 the client as another server.

 An adversary that has access to, and a considerable amount of control
 over, a client or server could attempt to mount a side-channel attack
 to determine the number of times it took for a certain password (plus
 client random and server random) to select a password element. Each
 such attack could result in a successive paring-down of the size of
 the pool of potential passwords, resulting in a manageably small set
 from which to launch a series of active attacks to determine the
 password. A security parameter, k, is used to normalize the amount
 of work necessary to determine the password element (see

Section 4.1). The probability that a password will require more than
 k iterations is roughly (q/2p)^k so it is possible to mitigate a side
 channel attack at the expense of a constant cost per connection
 attempt.

Harkins & Halasz Expires March 11, 2013 [Page 21]

Internet-Draft TLS Password September 2012

9. Implementation Considerations

 The selection of the ciphersuite and selection of the particular
 finite cyclic group to use with the ciphersuite are divorced in this
 memo but they remain intimately close.

 It is RECOMMENDED that implementations take note of the strength
 estimates of particular groups and to select a ciphersuite providing
 commensurate security with its hash and encryption algorithms. A
 ciphersuite whose encryption algorithm has a keylength less than the
 strength estimate, or whose hash algorithm has a blocksize that is
 less than twice the strength estimate SHOULD NOT be used.

 For example, the elliptic curve named secp256r1 (whose IANA-assigned
 number is 23) provides an estimated 128 bits of strength and would be
 compatible with an encryption algorithm supporting a key of that
 length, and a hash algorithm that has at least a 256-bit blocksize.
 Therefore, a suitable ciphersuite to use with secp256r1 could be
 TLS_ECCPWD_WITH_AES_128_GCM_SHA256.

 Resistance to dictionary attack means that the attacker must launch
 an active attack to make a single guess at the password. If the size
 of the pool from which the password was extracted was D, and each
 password in the pool has an equal probability of being chosen, then
 the probability of success after a single guess is 1/D. After X
 guesses, and removal of failed guesses from the pool of possible
 passwords, the probability becomes 1/(D-X). As X grows so does the
 probability of success. Therefore it is possible for an attacker to
 determine the password through repeated brute-force, active, guessing
 attacks. Implementations SHOULD take note of this fact and choose an
 appropriate pool of potential passwords-- i.e. make D big.
 Implementations SHOULD also take countermeasures, for instance
 refusing authentication attempts by a particular username for a
 certain amount of time, after the number of failed authentication
 attempts reaches a certain threshold. No such threshold or amount of
 time is recommended in this memo.

10. References

10.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Harkins & Halasz Expires March 11, 2013 [Page 22]

Internet-Draft TLS Password September 2012

 [RFC3454] Hoffman, P. and M. Blanchet, "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [SP800-38A]
 National Institute of Standards and Technology,
 "Recommendation for Block Cipher Modes of Operation--
 Methods and Techniques", NIST Special Publication 800-38A,
 December 2001.

10.2. Informative References

 [RANDOR] Bellare, M. and P. Rogaway, "Random Oracles are Practical:
 A Paradigm for Designing Efficient Protocols", Proceedings
 of the 1st ACM Conference on Computer and Communication
 Security, ACM Press, 1993.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC5751] Ramsdell, B. and S. Turner, "Secure/Multipurpose Internet
 Mail Extensions (S/MIME) Version 3.2 Message
 Specification", RFC 5751, January 2010.

 [RFC5967] Turner, S., "The application/pkcs10 Media Type", RFC 5967,
 August 2010.

 [RFC6090] McGrew, D., Igoe, K., and M. Salter, "Fundamental Elliptic
 Curve Cryptography Algorithms", RFC 6090, February 2011.

 [SP800-56A]
 Barker, E., Johnson, D., and M. Smid, "Recommendations for
 Pair-Wise Key Establishment Schemes Using Discrete
 Logarithm Cryptography", NIST Special Publication 800-56A,
 March 2007.

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5751
https://datatracker.ietf.org/doc/html/rfc5967
https://datatracker.ietf.org/doc/html/rfc6090

Harkins & Halasz Expires March 11, 2013 [Page 23]

Internet-Draft TLS Password September 2012

Authors' Addresses

 Dan Harkins (editor)
 Aruba Networks
 1322 Crossman Avenue
 Sunnyvale, CA 94089-1113
 United States of America

 Email: dharkins@arubanetworks.com

 Dave Halasz (editor)
 Halasz Ventures
 8401 Chagrin Road, Suite 10A
 Chagrin Falls, OH 44023
 United States of America

 Email: david.e.halasz@gmail.com

Harkins & Halasz Expires March 11, 2013 [Page 24]

