
Internet Engineering Task Force T. Harrison
Internet-Draft G. Michaelson
Intended status: Standards Track APNIC
Expires: August 5, 2019 A. Newton
 ARIN
 February 1, 2019

RDAP Mirroring Protocol (RMP)
draft-harrison-regext-rdap-mirroring-00

Abstract

 The Registration Data Access Protocol (RDAP) is used by Regional
 Internet Registries (RIRs) and Domain Name Registries (DNRs) to
 provide access to their resource registration information. While
 most clients can retrieve the information they need on an ad hoc
 basis from the public services maintained by each registry, there are
 instances where local copies of those remote data sources need to be
 maintained, for various reasons (e.g. performance requirements).
 This document defines a protocol for transferring bulk RDAP response
 data and for keeping a local copy of that data up to date.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 5, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Harrison, et al. Expires August 5, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft RDAP Mirroring Protocol February 2019

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3

2. RDAP Mirroring Protocol Implementation 3
2.1. Overview . 3
2.2. File Definitions . 4
2.2.1. Update Notification File 4
2.2.2. Snapshot File . 5
2.2.3. Delta File . 6

2.3. RDAP Objects . 7
2.4. Serial Numbers . 9
2.5. Server Use . 9
2.5.1. Initialization 9
2.5.2. Publishing Updates 10
2.5.3. Consolidation . 10

2.6. Client Use . 11
2.6.1. Processing the Update Notification File 11
2.6.1.1. Initial . 11
2.6.1.2. Subsequent 12

3. Operational Considerations 12
4. Security Considerations 12
5. Acknowledgements . 13
6. IANA Considerations . 13
7. References . 13
7.1. Normative References 13
7.2. Informative References 14

 Authors' Addresses . 14

1. Introduction

 The Registration Data Access Protocol (RDAP) [RFC7480] is used by
 Regional Internet Registries (RIRs) and Domain Name Registries (DNRs)
 to provide access to their resource registration information. For a
 client, this typically involves following the bootstrap process
 [RFC7484] to determine the base URL for the query, constructing an
 RDAP request, sending it, and then processing the response.

 This mode of operation is appropriate for many use cases. However,
 some clients may need local access to the whole data set:

https://datatracker.ietf.org/doc/html/rfc7480
https://datatracker.ietf.org/doc/html/rfc7484

Harrison, et al. Expires August 5, 2019 [Page 2]

Internet-Draft RDAP Mirroring Protocol February 2019

 their performance requirements may be such that the time required
 for sending/receiving HTTP requests to arbitrary remote servers is
 not acceptable;

 they may be conducting analysis of the data set as a whole; or

 they may be providing access to the data set in their own right,
 as an alternative to redirecting to the authoritative source for
 the data.

 This document defines a protocol that can be used by a client to
 retrieve a local copy of a remote RDAP data set, as well as to
 maintain that local copy as further remote updates occur.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. RDAP Mirroring Protocol Implementation

2.1. Overview

 A registry that wants to make use of this protocol publishes an
 Update Notification File to a specified URL. That file in turn links
 to a Snapshot File and a series of Delta Files. The Snapshot File
 contains all of the registry's RDAP state as at a given point in
 time. The Delta Files contain changes that have been made to the
 registry's RDAP state since the Snapshot File was generated.

 As further changes are made to the registry's RDAP state, the
 registry publishes new Delta Files, amends the Update Notification
 File to include links to the new Delta Files, and then republishes
 the Update Notification File. Periodically, the registry regenerates
 and republishes the Snapshot File, which in turn allows for older
 Delta Files to be removed from the Update Notification File.

 All files in the protocol are signed by the server using JSON Web
 Signature (JWS) [RFC7515]. The JSON Web Key (JWK) [RFC7517] used by
 the server to sign the files is distributed out-of-band.

 A client that wants to make use of this protocol needs to learn the
 server's Update Notification File URL and JSON Web Key out-of-band.
 Once these are known, the client retrieves the Update Notification
 File, validates its signature, and follows the links in it to
 retrieve the Snapshot File and Delta Files. It validates the
 signatures on these files, and then uses them to initialize its local

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517

Harrison, et al. Expires August 5, 2019 [Page 3]

Internet-Draft RDAP Mirroring Protocol February 2019

 state. It then records the serial number of the most-recently-issued
 Delta File, or of the Snapshot File if no Delta Files are present.

 The client will then periodically retrieve the Update Notification
 File, determine the Delta Files that have been added since it was
 last retrieved by the client, retrieve those Delta Files, and update
 its local state accordingly.

 A server may opt not to publish a Snapshot File in the Update
 Notification File. Such servers will only publish Delta Files in
 their Update Notification File, and must distribute the Snapshot File
 out-of-band.

2.2. File Definitions

2.2.1. Update Notification File

 Example Update Notification File:

 {
 "version": 1,
 "refresh": 3600,
 "snapshot": { "uri": "https://example.com/1/snapshot.json",
 "serial": 1 },
 "deltas": [
 { "uri": "https://example.com/2/delta.json",
 "serial": 2 },
 { "uri": "https://example.com/3/delta.json",
 "serial": 3 },
]
 }

 The following validation rules MUST be observed when creating or
 parsing Update Notification Files:

 Update Notification Files MUST be well-formed JSON [RFC8259].

 The "version" attribute in the root element MUST be present, with
 a value of "1".

 A "refresh" attribute MAY be present. If it is present, it is an
 integer representing how long the client should wait (in seconds)
 after retrieving the Update Notification File before attempting to
 retrieve it again.

https://datatracker.ietf.org/doc/html/rfc8259

Harrison, et al. Expires August 5, 2019 [Page 4]

Internet-Draft RDAP Mirroring Protocol February 2019

 A "snapshot" attribute containing a link to a Snapshot File MAY be
 present.

 A "deltas" attribute containing an array of links to Delta Files
 MUST be present. If no Delta Files have been published by the
 server, this array will be empty.

 The Delta File entries in the "deltas" attribute MUST be in serial
 number order, and the serial numbers MUST form a contiguous
 sequence.

 If a Snapshot File is included, its serial number MUST either be
 equal to that of one of the Delta Files, or one less than the
 smallest Delta File serial number.

2.2.2. Snapshot File

 Example Snapshot File:

 {
 "version": 1,
 "serial": 3,
 "defaults": { "port43": "whois.example.com",
 ... },
 "objects": [
 { "id": "https://example.org/I1",
 "object": { "rdapConformance": ["rdap_level_0"],
 "objectClassName": "ip network",
 ... } },
 { "id": "https://example.org/D2",
 "object": { "rdapConformance": ["rdap_level_0"],
 "objectClassName": "domain",
 ... } },
 ...
]
 }

 The following validation rules MUST be observed when creating or
 parsing Snapshot Files:

 Snapshot Files MUST be well-formed JSON [RFC8259].

 The "version" attribute in the root element MUST be present, with
 a value of "1".

https://datatracker.ietf.org/doc/html/rfc8259

Harrison, et al. Expires August 5, 2019 [Page 5]

Internet-Draft RDAP Mirroring Protocol February 2019

 The "serial" attribute in the root element MUST be present, with a
 value that is an unsigned 32-bit integer.

 An "objects" attribute containing an array of RDAP object (see
 [RFC7483]) and identifier pairs MUST be present. If no RDAP
 objects have been published by the server, this array will be
 empty.

 A "defaults" attribute MAY be present. For each object received
 from the server, the client should treat the object as also having
 each attribute from the "defaults" attribute, except where the
 object already contains an attribute with that name. This applies
 to objects received both before and after the Snapshot File is
 processed.

2.2.3. Delta File

 Example Delta File:

 {
 "version": 1,
 "serial": 4,
 "defaults": { "port43": "whois-2.example.org",
 ... },
 "removed_objects": ["1"],
 "added_or_updated_objects": [
 { "id": "https://example.org/I3",
 "object": { "rdapConformance": ["rdap_level_0"],
 "objectClassName": "ip network",
 ... } },
 { "id": "https://example.org/D4",
 "object": { "rdapConformance": ["rdap_level_0"],
 "objectClassName": "domain",
 ... } },
 ...
]
 }

 The following validation rules MUST be observed when creating or
 parsing Delta Files:

 Snapshot Files MUST be well-formed JSON [RFC8259].

 The "version" attribute in the root element MUST be present, with
 a value of "1".

https://datatracker.ietf.org/doc/html/rfc7483
https://datatracker.ietf.org/doc/html/rfc8259

Harrison, et al. Expires August 5, 2019 [Page 6]

Internet-Draft RDAP Mirroring Protocol February 2019

 The "serial" attribute in the root element MUST be present, with a
 value that is an unsigned 32-bit integer.

 A "defaults" attribute MAY be present. For each object received
 from the server, the client should treat the object as also having
 each attribute from the "defaults" attribute, except where the
 object already contains an attribute with that name. This applies
 to objects received both before and after the Delta File is
 processed.

 A "removed_objects" attribute containing an array of RDAP object
 identifiers MUST be present. If no RDAP objects have been removed
 since the previous Delta File was generated by the server, this
 array will be empty.

 An "added_or_updated_objects" attribute containing an array of
 RDAP object (see [RFC7483]) and identifier pairs MUST be present.
 If no RDAP objects have been added or updated since the previous
 Delta File was generated by the server, this array will be empty.

2.3. RDAP Objects

 The base RDAP object definitions from [RFC7483] do not contain any
 mandatory attributes. For the purposes of this protocol, each RDAP
 object MUST include an "rdapConformance" attribute, so that a client
 can determine whether the object is one that it is able to process.

 Each RDAP object is paired with an identifier (the "id" attribute in
 the parent object). The "id" attribute value MUST be a URI
 ([RFC3986]). Its value uniquely identifies an RDAP object within the
 data set, so as to support internal linking and for subsequent
 removal of the object by a Delta File.

 In each RDAP object, each link to an RDAP object that is a member of
 the data set for which the server is providing mirroring MUST have as
 the value of its "href" attribute the identifier for that object
 (i.e. the value of the "id" attribute from the target's parent
 object). This includes self-references (i.e. links with the "self"
 relation type).

 If a server includes a link object with the "self" relation type with
 each of its RDAP objects, then using the value of the "href"
 attribute of that link object as the identifier for each RDAP object
 is RECOMMENDED.

 For example, a Delta File containing an entity object, along with an
 IP network object that links to it:

https://datatracker.ietf.org/doc/html/rfc7483
https://datatracker.ietf.org/doc/html/rfc7483
https://datatracker.ietf.org/doc/html/rfc3986

Harrison, et al. Expires August 5, 2019 [Page 7]

Internet-Draft RDAP Mirroring Protocol February 2019

 {
 "version": 1,
 "serial": 5,
 "removed_objects": [],
 "added_or_updated_objects": [
 { "id": "https://example.org/E5",
 "object": { "rdapConformance": ["rdap_level_0"],
 "objectClassName": "entity",
 "handle": "E5",
 "links": [
 { "rel": "self",
 "href": "https://example.org/E5",
 ... }
],
 ... } },
 { "id": "https://example.org/I6",
 "object": { "rdapConformance": ["rdap_level_0"],
 "objectClassName": "ip network",
 "links": [
 { "rel": "self",
 "href": "https://example.org/I6",
 ... }
],
 "entities": [
 { "handle": "E5",
 "links": [
 { "rel": "self",
 "href": "https://example.org/E5",
 ... }
],
 ... }
],
 ... } }
 ...
]
 }

 A server MAY omit from an object data that it returns as part of its
 corresponding public service response, when that data can be
 determined by reference to another object in the data set. In such
 cases, the server MUST include a "links" attribute containing a link
 object with a "self" relation, so that the target object can be
 resolved by the client.

Harrison, et al. Expires August 5, 2019 [Page 8]

Internet-Draft RDAP Mirroring Protocol February 2019

2.4. Serial Numbers

 Serial numbers in the files defined in this protocol are unsigned
 32-bit integers. For the purposes of this protocol, the serial
 number arithmetic defined in [RFC1982] applies.

2.5. Server Use

2.5.1. Initialization

 If a server is publishing a Snapshot File via the Update Notification
 File, then initialization is like so:

 generate an initial Snapshot File, with a serial number selected
 by the server;

 sign the Snapshot File using JWS, and publish the result using JWS
 Compact Serialization at a URL that is unique to this serial
 number;

 generate an initial Update Notification File, with a serial number
 equal to that of the Snapshot File, and containing a link to the
 Snapshot File; and

 sign the Update Notification File using JWS, and publish the
 result using JWS Compact Serialization.

 To avoid doubt, any RDAP object that is part of the data set for
 which the server is providing mirroring, as well as being the target
 of a link contained within another RDAP object, MUST be present
 within the Snapshot File.

 If a server is not publishing a Snapshot File via the Update
 Notification File, then initialization is like so:

 generate an initial Snapshot File, with a serial number selected
 by the server;

 sign the Snapshot File using JWS, and distribute the result to
 clients out-of-band using JWS Compact Serialization;

 generate an initial Update Notification File, containing no
 Snapshot File link or Delta File links, with a serial number equal
 to that of the Snapshot File (i.e. the one that will be
 distributed out-of-band); and

 sign the Update Notification File using JWS, and publish the
 result using JWS Compact Serialization.

https://datatracker.ietf.org/doc/html/rfc1982

Harrison, et al. Expires August 5, 2019 [Page 9]

Internet-Draft RDAP Mirroring Protocol February 2019

2.5.2. Publishing Updates

 The server periodically publishes changes that have been made to its
 RDAP state as Delta Files. The timing and frequency of publication
 is a local policy matter for the server. The process is like so:

 if a Delta File has been generated previously: generate a new
 Delta File, containing the changes that have been made to the RDAP
 state since the last Delta File was generated, with a serial
 number that is one greater than the serial number of the last
 Delta File;

 if no Delta File has been generated previously: generate a new
 Delta File, containing the changes that have been made to the RDAP
 state since the last Snapshot File was generated, with a serial
 number that is one greater than the serial number of the last
 Snapshot File;

 sign the Delta File using JWS, and publish the result using JWS
 Compact Serialization at a URL that is unique to its serial
 number;

 take the currently-published Update Notification File, increment
 its serial number, add a link to the new Delta File, and
 optionally perform the steps described in the "Consolidation"
 section below; and

 sign the Update Notification File using JWS, and publish the
 result using JWS Compact Serialization.

 Delta Files MUST NOT remove an RDAP object that would cause a
 relative reference link within the client's local state to become
 unresolvable.

2.5.3. Consolidation

 On publishing an update, the server may optionally consolidate the
 Snapshot File and Delta Files that it is publishing. The process is
 like so:

 if the server is publishing a Snapshot File: generate a new
 Snapshot File based on the server's current state with a serial
 number equal to that of the new Delta File, publish the new
 Snapshot File, and replace the link in the Update Notification
 File to the previous Snapshot File with a link to the new Snapshot
 File; and

Harrison, et al. Expires August 5, 2019 [Page 10]

Internet-Draft RDAP Mirroring Protocol February 2019

 remove Delta Files from the Update Notification File that have
 become stale.

 Whether a given Delta File is 'stale' is a local policy matter for
 the server.

2.6. Client Use

2.6.1. Processing the Update Notification File

2.6.1.1. Initial

 The client downloads the signed Update Notification File using the
 URL provided by the server (out-of-band) and validates the signature
 against the server's JWK.

 The client validates the signature of the Snapshot File against the
 server's JWK, and then uses that file to initialize its local state
 by adding all of the objects from the "objects" attribute. It then
 records the serial number of the Snapshot File. The signed Snapshot
 File is either accessible from the Update Notification File, or made
 available to the client out-of-band.

 The client then processes each Delta File from the Update
 Notification File in order, from the Delta File with a serial number
 one greater than the client's recorded serial number, through to the
 Delta File with the largest serial number, in order to update its
 local state.

 Processing a Delta File involves three steps:

 verify the signature against the server's JWK;

 for each entry in the "removed_objects" attribute, remove from the
 local state any object with an "id" attribute value equal to the
 entry;

 for each entry in the "added_or_updated_objects" attribute: if an
 object with the given values for the "id" attribute exists in the
 local state, then replace that object with the new object;
 otherwise, add the new object to the local state.

 Once this is complete, the client records the serial number of the
 last Delta File that it processed.

Harrison, et al. Expires August 5, 2019 [Page 11]

Internet-Draft RDAP Mirroring Protocol February 2019

2.6.1.2. Subsequent

 The client downloads the signed Update Notification File using the
 URL provided by the server (out-of-band), and validates the signature
 against the server's JWK. If the frequency with which the client
 should do this has been suggested by the server via the "refresh"
 attribute, the client SHOULD honor that suggestion. If the "refresh"
 attribute is not present, retrieval frequency is a local policy
 matter for the client.

 The client then processes each Delta File from the Update
 Notification File in order, from the Delta File with a serial number
 one greater than that which has been recorded, through to the Delta
 File with the largest serial number. Processing of the Delta Files
 is otherwise as per the instructions for initial processing.

 If the Update Notification File retrieved by the client does not
 contain a Delta File with a serial number one greater than that which
 has been recorded, the client MUST delete all of its local state and
 reinitialize itself. If the Update Notification File contains a
 Snapshot File, then that Snapshot File can be used for
 reinitialization. If it does not, then a new Snapshot File must be
 located out-of-band.

3. Operational Considerations

 A server may omit previously-published Delta Files from its Update
 Notification File as a matter of local policy. If a server is
 publishing its Snapshot Files out-of-band, then omitting a Delta File
 that a client needs will result in the client needing to perform an
 out-of-band action in order to reinitialize its state. Even if a
 server is linking to its Snapshot Files from the Update Notification
 File, reinitialization may be an expensive operation for a client.
 Servers should consider adopting local policy that limits the chance
 of reinitialization happening: for example, by using the "refresh"
 attribute value in the Update Notification File.

4. Security Considerations

 [RFC7481] describes security requirements and considerations for RDAP
 generally. Those requirements and considerations also apply to the
 use of this protocol.

 This protocol requires the use of JWS ([RFC7515]) and JWK
 ([RFC7517]), which in turn refer to JSON Web Algorithms (JWA)
 ([RFC7518]). Implementations MUST support ES256 as defined in JWA
 ([RFC7518], section 3.4) for signing and validating files in this
 protocol. Implementations MAY support other algorithms from the

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc7518#section-3.4

Harrison, et al. Expires August 5, 2019 [Page 12]

Internet-Draft RDAP Mirroring Protocol February 2019

 "JSON Web Signature and Encryption Algorithms" registry created by
 [RFC7518].

5. Acknowledgements

 This protocol is largely a repurposing of the RPKI Repository Delta
 Protocol (RRDP) [RFC8182] for RDAP. Much of the terminology (e.g.
 Update Notification File, Snapshot File, Delta File) is taken from
 that document, and the structure is also quite similar.

 Experience with the Near Real Time Mirroring (NRTM) [NRTM] protocol,
 which serves a similar purpose for databases that are based on the
 Routing Policy Specification Language (RPSL) [RFC2622], helped to
 inform this corresponding effort in RDAP.

6. IANA Considerations

 TBD

7. References

7.1. Normative References

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 DOI 10.17487/RFC1982, August 1996,
 <https://www.rfc-editor.org/info/rfc1982>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC7481] Hollenbeck, S. and N. Kong, "Security Services for the
 Registration Data Access Protocol (RDAP)", RFC 7481,
 DOI 10.17487/RFC7481, March 2015,
 <https://www.rfc-editor.org/info/rfc7481>.

 [RFC7483] Newton, A. and S. Hollenbeck, "JSON Responses for the
 Registration Data Access Protocol (RDAP)", RFC 7483,
 DOI 10.17487/RFC7483, March 2015,
 <https://www.rfc-editor.org/info/rfc7483>.

https://datatracker.ietf.org/doc/html/rfc7518
https://datatracker.ietf.org/doc/html/rfc8182
https://datatracker.ietf.org/doc/html/rfc2622
https://datatracker.ietf.org/doc/html/rfc1982
https://www.rfc-editor.org/info/rfc1982
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc7481
https://www.rfc-editor.org/info/rfc7481
https://datatracker.ietf.org/doc/html/rfc7483
https://www.rfc-editor.org/info/rfc7483

Harrison, et al. Expires August 5, 2019 [Page 13]

Internet-Draft RDAP Mirroring Protocol February 2019

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7517] Jones, M., "JSON Web Key (JWK)", RFC 7517,
 DOI 10.17487/RFC7517, May 2015,
 <https://www.rfc-editor.org/info/rfc7517>.

 [RFC7518] Jones, M., "JSON Web Algorithms (JWA)", RFC 7518,
 DOI 10.17487/RFC7518, May 2015,
 <https://www.rfc-editor.org/info/rfc7518>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

7.2. Informative References

 [NRTM] "Near Real Time Mirroring", December 2010,
 <https://www.ripe.net/manage-ips-and-

asns/db/support/documentation/mirroring>.

 [RFC2622] Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D.,
 Meyer, D., Bates, T., Karrenberg, D., and M. Terpstra,
 "Routing Policy Specification Language (RPSL)", RFC 2622,
 DOI 10.17487/RFC2622, June 1999,
 <https://www.rfc-editor.org/info/rfc2622>.

 [RFC7480] Newton, A., Ellacott, B., and N. Kong, "HTTP Usage in the
 Registration Data Access Protocol (RDAP)", RFC 7480,
 DOI 10.17487/RFC7480, March 2015,
 <https://www.rfc-editor.org/info/rfc7480>.

 [RFC7484] Blanchet, M., "Finding the Authoritative Registration Data
 (RDAP) Service", RFC 7484, DOI 10.17487/RFC7484, March
 2015, <https://www.rfc-editor.org/info/rfc7484>.

 [RFC8182] Bruijnzeels, T., Muravskiy, O., Weber, B., and R. Austein,
 "The RPKI Repository Delta Protocol (RRDP)", RFC 8182,
 DOI 10.17487/RFC8182, July 2017,
 <https://www.rfc-editor.org/info/rfc8182>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7517
https://www.rfc-editor.org/info/rfc7517
https://datatracker.ietf.org/doc/html/rfc7518
https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259
https://www.ripe.net/manage-ips-and-asns/db/support/documentation/mirroring
https://www.ripe.net/manage-ips-and-asns/db/support/documentation/mirroring
https://datatracker.ietf.org/doc/html/rfc2622
https://www.rfc-editor.org/info/rfc2622
https://datatracker.ietf.org/doc/html/rfc7480
https://www.rfc-editor.org/info/rfc7480
https://datatracker.ietf.org/doc/html/rfc7484
https://www.rfc-editor.org/info/rfc7484
https://datatracker.ietf.org/doc/html/rfc8182
https://www.rfc-editor.org/info/rfc8182

Harrison, et al. Expires August 5, 2019 [Page 14]

Internet-Draft RDAP Mirroring Protocol February 2019

 Tom Harrison
 Asia-Pacific Network Information Centre
 6 Cordelia St
 South Brisbane, QLD 4101
 Australia

 Email: tomh@apnic.net

 George G. Michaelson
 Asia-Pacific Network Information Centre
 6 Cordelia St
 South Brisbane, QLD 4101
 Australia

 Email: ggm@apnic.net

 Andrew Lee Newton
 American Registry for Internet Numbers
 PO Box 232290
 Centreville, VA 20120
 United States of America

 Email: andy@arin.net

Harrison, et al. Expires August 5, 2019 [Page 15]

