
CoRE Working Group K. Hartke
Internet-Draft O. Bergmann
Intended status: Informational Universitaet Bremen TZI
Expires: January 17, 2013 July 16, 2012

Datagram Transport Layer Security in Constrained Environments
draft-hartke-core-codtls-02

Abstract

 This draft considers some obstacles in implementing Datagram
 Transport Layer Security (DTLS) in constrained environments, and
 presents some ideas for a constrained version of DTLS that is
 friendly to constrained nodes and networks.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 17, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hartke & Bergmann Expires January 17, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Constrained DTLS July 2012

Table of Contents

1. Introduction . 3
1.1. Background . 3
1.2. Overview . 3
1.3. Terminology . 4

2. Potential Problems and Possible Solutions 4
2.1. Handshake Message Fragmentation 4
2.2. Timer Values . 6
2.3. Connection Initiation 7
2.4. Connection Closure . 9
2.5. Application Data Fragmentation 9
2.6. Data size . 10
2.7. Code size . 11

3. Stateless Header Compression 12
3.1. Records . 12
3.2. Handshake Messages . 13

4. RESTful DTLS Handshake . 15
5. Security Considerations 17
6. IANA Considerations . 17
7. Acknowledgements . 17
8. References . 17
8.1. Normative References 17
8.2. Informative References 17

Appendix A. Templates . 20
A.1. secp256r1 . 20
A.2. secp384r1 . 21
A.3. secp521r1 . 22

 Authors' Addresses . 23

Hartke & Bergmann Expires January 17, 2013 [Page 2]

Internet-Draft Constrained DTLS July 2012

1. Introduction

1.1. Background

 Nodes that take part in the "Internet of Things" often have strict
 limitations regarding their computational power, memory size (both
 ROM and RAM), and power management [I-D.ietf-lwig-guidance]. Network
 communication, especially wireless, also imposes constraints that
 need to be considered during protocol design, e.g. low bitrate,
 variable delay and possibly high packet loss. Moreover, frames at
 the link layer might be much smaller than the IPv6 minimum MTU of
 1280 bytes and therefore require additional mapping mechanisms such
 as 6LoWPAN [RFC4944] for IEEE 802.15.4 wireless networks
 [IEEE.802-15-4], which in turn may exacerbate the limitations of the
 network: E.g., as high loss rates are anticipated by design,
 application protocols usually try to avoid fragmentation at the
 network layer.

 However, application protocols often delegate security mechanisms to
 transport layer security protocols. More often than not, the
 protocol overhead from securing the communication is highly relevant
 to the overall performance of the systems.

 One protocol that has received significant attention recently for
 constrained node/network applications is Datagram Transport Layer
 Security (DTLS) [RFC6347]. DTLS is derived from and inherits some
 characteristics from TLS [RFC5246]. Although DTLS has not been
 designed with constrained nodes/networks in mind, it is thought to be
 usable in such environments [SOS12]. Still, there are a few
 challenges when it comes to implement DTLS.

1.2. Overview

 The present document considers some obstacles in implementing DTLS in
 constrained environments, and presents a few ideas to make DTLS more
 friendly to constrained nodes and networks.

 The ideas generally fall into one of the following categories:

 Implementation guidance: Implementation techniques for achieving
 light-weight implementations of DTLS, without affecting
 conformance to the relevant specifications or interoperability
 with other implementations. This includes techniques for reducing
 complexity, memory footprint, or power usage. The result may
 eventually be incorporated into [I-D.ietf-lwig-guidance].

https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/rfc5246

Hartke & Bergmann Expires January 17, 2013 [Page 3]

Internet-Draft Constrained DTLS July 2012

 Protocol profile: Use of DTLS in a particular way, for example, by
 changing MAYs into MUSTs or MUST NOTs, or by requiring or
 precluding certain extensions or cipher suites. Existing DTLS
 implementations ought to continue to be used without change if
 they can be configured accordingly.

 Stateless header compression: Compression of DTLS records without
 explicitly building any compression context state. This is done
 by using shorter forms to represent the same bits of information
 or relying on information that is already shared by the client and
 server. Existing DTLS implementations can continue to be used if
 a thin layer is added that handles compression/decompression.

 Breaking changes: New implementations are required that do not
 interoperate with implementations of DTLS.

1.3. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].
 (Note that this document itself is informational, but it is
 discussing normative statements.)

 The term "byte" is used in its now customary sense as a synonym for
 "octet".

2. Potential Problems and Possible Solutions

2.1. Handshake Message Fragmentation

 DTLS records can be large in size for a single 6LoWPAN [RFC4944]
 payload: [IEEE.802-15-4] specifies a physical layer MTU of only 127
 bytes, which yields about 60-80 bytes of payload after adding MAC
 layer and adaptation layer headers. Although 6LoWPAN supports the
 fragmentation of IPv6 packets into small link-layer frames, this
 doesn't really work well for constrained applications and networks.

 DTLS offers fragmentation at the handshake layer and hence can get
 around IP fragmentation. However, this can add a significant
 overhead on the number of datagrams and bytes transferred (see
 Table 1). Packet loss is also still a big problem for the
 constrained nodes; buffers must be large enough to hold all messages
 after reassembly and losing a single fragment will cause all
 fragments of a message flight to be retransmitted. This is very
 likely especially during key and certificate exchange as these will
 not fit within a packet without fragmentation in most 6LoWPANs.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4944

Hartke & Bergmann Expires January 17, 2013 [Page 4]

Internet-Draft Constrained DTLS July 2012

 +--------------+-----------------+------------------+---------------+
UDP data	Number of	Total number of	Proportion of
size limit	datagrams	bytes	header data
(bytes)	transferred	transferred	
+--------------+-----------------+------------------+---------------+			
50	27	1,182	55 %
55	21	1,037	49 %
60	20	1,081	51 %
65	18	1,003	47 %
70	15	912	42 %
75	14	875	39 %
80	13	874	39 %
85	12	849	37 %
90	12	849	37 %
1,152	6	802	34 %
 +--------------+-----------------+------------------+---------------+

 Table 1: Number of datagrams and bytes transferred using different
 limits for DTLS fragmentation in an example DTLS handshake
 (TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 with raw public key certificate)

 Possible Solutions include:

 o Use IP fragmentation instead of DTLS fragmentation. If no X.509
 certificates are involved, the handshake messages of one flight
 typically require less than 400 bytes combined. Since all
 messages of a flight are retransmitted anyway when a single
 fragment is lost, the difference between performing the
 fragmentation at the DTLS layer and at the IP layer is probably
 not huge. A recipient must still be prepared to receive
 arbitrarily fragmented handshake messages at the DTLS layer,
 though.

 o Reduce the number of bytes to be transferred, so the overhead of
 header data becomes smaller when fragmenting for small packet
 sizes, and fewer packets need to be transmitted that could
 potentially be lost:

 * Use an out-of-band mechanism to exchange large blobs. For
 example, the TLS Cached Information Extension
 [I-D.ietf-tls-cached-info] allows to omit the exchange of
 fairly static information, such as the server certificate, if
 this information is already available.

 * Use 6LoWPAN General Header Compression
 [I-D.bormann-6lowpan-ghc] to compress DTLS messages, as
 proposed in [DCOSS12].

Hartke & Bergmann Expires January 17, 2013 [Page 5]

Internet-Draft Constrained DTLS July 2012

 * Use some DTLS-specific kind of Stateless Header Compression, as
 shown in Section 3. This can significantly reduce the number
 of datagrams and bytes transferred, and in particular also the
 proportion of header data in the number of bytes transferred
 (see Table 2).

 * Use compressed point formats for elliptic curve points.

 * Use self-delimiting numeric values [RFC6256] instead of fixed-
 size numeric values.

 * Use a bit field instead of multiple type fields to indicate
 which handshake messages are present in a datagram.

 o Perform the DTLS handshake over another protocol, for example,
 CoAP [I-D.ietf-core-coap] with its support for block-wise
 transfers [I-D.ietf-core-block], as shown in Section 4.

 +--------------+-----------------+------------------+---------------+
UDP data	Number of	Total number of	Proportion of
size limit	datagrams	bytes	header data
(bytes)	transferred	transferred	
+--------------+-----------------+------------------+---------------+			
50	15 (56 %)	592 (50 %)	10 %
55	13 (62 %)	585 (56 %)	9 %
60	13 (65 %)	621 (57 %)	14 %
65	11 (61 %)	588 (59 %)	10 %
70	11 (73 %)	573 (63 %)	7 %
75	11 (79 %)	573 (65 %)	7 %
80	10 (77 %)	567 (65 %)	6 %
85	10 (83 %)	567 (67 %)	6 %
90	10 (83 %)	567 (67 %)	6 %
1,152	6 (100 %)	617 (77 %)	14 %
 +--------------+-----------------+------------------+---------------+

 Table 2: Number of datagrams and bytes transferred in the same
 example DTLS handshake but using Stateless Header Compression
 (Section 4)

2.2. Timer Values

 DTLS leaves the choice of timer values to the implementation, but
 makes the following recommendation:

 "Implementations SHOULD use an initial timer value of 1 second
 (the minimum defined in RFC 6298 [RFC6298]) and double the value
 at each retransmission, up to no less than the RFC 6298 maximum of
 60 seconds." [RFC6347]

https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6347

Hartke & Bergmann Expires January 17, 2013 [Page 6]

Internet-Draft Constrained DTLS July 2012

 Given the time required by some algorithms when executed on a
 constrained devices (see Table 3), an initial value of 1 second can
 easily lead to spurious retransmissions.

 +-------------+--------------+-----------+------------+-------------+
Algorithm	Library	Memory	Execution	Comparable
		footprint	time	RSA key
		(bytes)	(seconds)	length
+-------------+--------------+-----------+------------+-------------+				
RSA 1024	AvrCryptolib	640	199.7	
RSA 2048	AvrCryptolib	1,280	1,587.6	
ECDSA 160r1	TinyECC	892	2.3	1024
ECDSA 192r1	TinyECC	1,008	3.6	1536
ECDSA 160r1	Wiselib	842	20.2	1024
ECDSA 192r1	Wiselib	952	34.6	1536
ECDSA 163k1	Relic	2,804	0.3	1024
ECDSA 233k1	Relic	3,675	1.8	2048
 +-------------+--------------+-----------+------------+-------------+

 Table 3: RSA private key operation and ECDSA signature performance
 (from [I-D.aks-crypto-sensors])

 Possible Solutions include:

 o Adjust the timer value to meet the conditions of constrained nodes
 and low-power, lossy networks.

 o Add some kind of acknowledgment message to DTLS that allows an
 implementation to confirm the receipt of a message before
 preparing the next message flight.

2.3. Connection Initiation

 Nodes with very constrained main memory also suffer from the
 complexity of the DTLS handshake protocol. We envision that the
 acceptance of DTLS as security protocol for embedded devices would
 significantly increase if a less complex connection initiation
 procedure with a smaller number of handshake messages was defined.

 Compared to TLS, DTLS exacerbates the connection initiation: A DTLS
 handshake has an additional roundtrip that results from the addition
 of a stateless cookie exchange. This exchange is designed to prevent
 certain denial-of-service attacks: consumption of excessive server
 resources caused by the transmission of a series of handshake
 initiation requests, and use of the server as an amplifier by sending
 connection initiation messages with a forged source of the victim.

Hartke & Bergmann Expires January 17, 2013 [Page 7]

Internet-Draft Constrained DTLS July 2012

 Possible Solutions include:

 o Create the DTLS connection before it is needed, so it doesn't take
 a long time to set it up when it's actually needed. This works if
 a server has do deal with a relatively small overall number of
 clients that wish to interact with the server. Care must be taken
 such that not all clients perform their handshake at the same
 time, as a handshake requires considerably more memory than
 keeping a connection open. (See also Section 2.4 below.)

 o Shorten the handshake to four flights. This may be possible
 without losing the denial-of-service roundtrip if the cipher suite
 permits that the server remains stateless after sending the
 ServerHello and if the flight fits in one datagram (see Figure 1).

 Client Server
 ------ ------

 ClientHello --------> Flight 1

 HelloVerifyRequest \
 ServerHello Flight 2
 <-------- ServerHelloDone /
 (remain stateless)

 ClientHello \
 "ServerHello" \
 ClientKeyExchange Flight 3
 [ChangeCipherSpec] /
 Finished --------> /

 [ChangeCipherSpec] \ Flight 4
 <-------- Finished /

 Figure 1: Artist's impression of a four-flight DTLS handshake with
 Pre-Shared Key

 o As an alternative, client puzzles could be used as a mechanism for
 mitigating denial-of-service attacks, resulting in a four-flight
 exchange similar to the one in HIP DEX [I-D.moskowitz-hip-rg-dex].
 The application of client puzzles to TLS has been shown
 [USENIX01]. However, a puzzle would be needed that ideally takes
 less effort for a constrained device and more effort for a less
 constrained device.

Hartke & Bergmann Expires January 17, 2013 [Page 8]

Internet-Draft Constrained DTLS July 2012

2.4. Connection Closure

 Although a connection needs considerably less memory after a
 handshake has finished, it still requires, e.g., around 80 bytes with
 AES-128-CCM [I-D.mcgrew-tls-aes-ccm] for the keys, sequence numbers
 and anti-replay window. More memory is needed if session resumption
 is supported, to keep the 48-byte master secret and negotiated
 connection parameters. This limits how many connections a
 constrained device can maintain at a given time. Often, constrained
 devices will have a fixed number of "slots" for connections rather
 than allocating memory dynamically for each connection.

 DTLS provides a facility for secure connection closure. When a valid
 closure alert is received, an implementation can be assured that no
 further data will be received on that connection. It is noteworthy,
 though, that the closure alert is not a handshake message and thus is
 not retransmitted when packet loss occurs.

 Possible Solutions include:

 o Maintain the session for as long as possible. When the server
 runs out of resources, it can close connections, e.g., using a
 Least Frequently Used (LFU) eviction policy. The client simply
 assumes that the connection is active until the server rejects its
 application data, in which case the client initiates a new
 connection.

 o Use the DTLS Heartbeat Extension [RFC6520] to figure out from time
 to time if the connection is still active.

2.5. Application Data Fragmentation

 Messages larger than an IP fragment result in undesired packet
 fragmentation. DTLS does not support fragmentation of application
 data. If an implementation of an application layer protocol such as
 CoAP [I-D.ietf-core-coap] wants to avoid IP fragmentation, it must
 fit the application data (e.g., a CoAP message) and all headers
 within a single IP packet.

 DTLS has a per-record overhead of 13 bytes for the record header.
 AEAD ciphers such as AES-CCM [I-D.mcgrew-tls-aes-ccm] eat up
 additional space to carry the explicit nonce and the authentication
 tag. Thus, cipher suites like TLS_PSK_WITH_AES_128_CCM_8 or
 TLS_ECDHE_ECDSA_AES_128_CCM_8 requires 16 additional bytes, leading
 to an overall overhead of 29 bytes for the header of each encrypted
 DTLS packet. With packet sizes of 60-80 bytes, this takes a
 considerable portion of the available packet size away (see Table 4).

https://datatracker.ietf.org/doc/html/rfc6520

Hartke & Bergmann Expires January 17, 2013 [Page 9]

Internet-Draft Constrained DTLS July 2012

 +------------------+------------------------+-----------------------+
 | UDP data size | Number of bytes left | ... with Stateless |
 | limit (bytes) | for application data | Header Compression |
 +------------------+------------------------+-----------------------+
50	21 (42 %)	39 (78 %)
55	26 (47 %)	44 (80 %)
60	31 (52 %)	49 (82 %)
65	36 (55 %)	54 (83 %)
70	41 (59 %)	59 (84 %)
75	46 (61 %)	64 (85 %)
80	51 (64 %)	69 (86 %)
85	56 (66 %)	74 (87 %)
90	61 (68 %)	79 (88 %)
1,152	1,123 (97 %)	1,141 (99 %)
 +------------------+------------------------+-----------------------+

 Table 4: Number of bytes left for data in an ApplicationData record
 using DTLS and DTLS with Stateless Header Compression (Section 4)

 Possible Solutions include:

 o Elide the GenericAEADCipher.nonce_explicit field when AES-CCM is
 used. The GenericAEADCipher.nonce_explicit field is set to the
 16-bit epoch concatenated with the 48-bit sequence number, which
 means that the epoch and sequence number are unnecessarily
 included twice in each record.

 o Elide the DTLS version field where it is implicitly clear. Since
 the DTLS version is negotiated in the handshake, there should not
 be a need to specify the DTLS version in each and every record.

 o Elide the length field of the last record in a datagram. DTLS
 records specify their length so multiple records can be
 transmitted in a single datagram. When DTLS is used with UDP
 (which preserves the boundaries of all message sent), the length
 field of the last record in a datagram can be calculated from the
 UDP payload length.

 For example, when using the Stateless Header Compression presented in
Section 3 and eliminating the redundant epoch and sequence number

 information, the number of bytes left in an ApplicationData record
 for application data can be significantly increased (see Table 4).

2.6. Data size

 As fragmented handshake messages can arrive at a constrained node in
 any order, the receiver must provide a message buffer that is large
 enough to hold multiple fragments. When several handshake messages

Hartke & Bergmann Expires January 17, 2013 [Page 10]

Internet-Draft Constrained DTLS July 2012

 forming a single flight are sent out in parallel, it is likely that
 the receiver's resources are too limited to order fragments from
 distinct handshake messages. Avoiding this might require additional
 resources on the server side to ensure serialization of a flight's
 messages.

 Furthermore, since handshake messages can be fragmented arbitrarily
 and with overlaps, the receiver must, in addition to the message
 buffer, keep track of the fragments received so far.

 Possible retransmissions require even more buffer space as replay-
 protection requires encryption of every single packet that is to be
 transmitted. In particular, this renders destructive in-place
 encryption impossible as the source data must be preserved.

 Possible Solutions include:

 o Use the same sequence number when retransmitting a message, so the
 plaintext could be encrypted in-place without the need for a
 second buffer. The security implications of this change need to
 be carefully analyzed.

 o Favour cryptographic algorithms that use less memory, possibly
 resulting in a slower performance.

 o Add some kind of acknowledgment message to DTLS that allows an
 receiver to confirm the receipt of a message, and let the sender
 wait for the acknowledgment before it sends the next part of the
 flight.

2.7. Code size

 Although probably not as severe as data size limits, the code size of
 a DTLS implementation also can play a role, in particular for
 constrained devices at the lower bound of Class 1 devices.

 Possible Solutions include:

 o Avoid static tables for cryptographic functions where possible, as
 typical embedded platforms are more restricted in RAM than in non-
 volatile memory such as flash ROM. Instead, their procedural
 equivalent is to be used, although less efficient during run-time.

 o Use using pre-composed messages instead of writing code, e.g., for
 encoding or decoding ASN.1 structures, as shown in Appendix A.

Hartke & Bergmann Expires January 17, 2013 [Page 11]

Internet-Draft Constrained DTLS July 2012

3. Stateless Header Compression

 Stateless Header Compression compresses the headers of records and
 handshake messages. The compression is lossless, does not increase
 the record length and is done without explicitly building any
 compression context state.

 The Finished MAC is computed as if each handshake message had been
 sent uncompressed.

3.1. Records

 Records are compressed by specifying the type, version, epoch,
 sequence_number and length fields using a variable number of bytes.
 A prefix is added in front of the structure to indicate the length of
 each field or to specify the value of the field directly. If the
 value is specified directly, the field itself is elided. The format
 of the prefix is as follows:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0| T | V | E |1 1 0| S | L |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The fields in the prefix are defined as follows:

 T: Describes the type field.

 0 - Content Type 20 (ChangeCipherSpec)
 1 - 8-bit type field
 2 - Content Type 22 (Handshake)
 3 - Content Type 23 (Application Data)

 V: Describes the version field.

 0 - Version 254.255 (DTLS 1.0)
 1 - 16-bit version field
 2 - Version 254.253 (DTLS 1.2)
 3 - Reserved for future use

 E: Describes the epoch field.

 0 - Epoch 0
 1 - Epoch 1
 2 - Epoch 2
 3 - Epoch 3
 4 - Epoch 4

Hartke & Bergmann Expires January 17, 2013 [Page 12]

Internet-Draft Constrained DTLS July 2012

 5 - 8-bit epoch field
 6 - 16-bit epoch field
 7 - Implicit -- same as previous record in the datagram

 S: Describes the sequence_number field.

 0 - Sequence number 0
 1 - 8-bit sequence_number field
 2 - 16-bit sequence_number field
 3 - 24-bit sequence_number field
 4 - 32-bit sequence_number field
 5 - 40-bit sequence_number field
 6 - 48-bit sequence_number field
 7 - Implicit -- number of previous record in the datagram + 1

 L: Describes the length field.

 0 - Length 0
 1 - 8-bit length field
 2 - 16-bit length field
 3 - Implicit -- last record in the datagram

3.2. Handshake Messages

 Handshake messages are compressed in a similar way. A prefix is
 added in front of the structure to indicate the length of each field
 or to specify the value of the field directly. If the value is
 specified directly, the field itself is elided. The format of the
 prefix is as follows:

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |0 0| T | L | S | O | C |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

 The fields in the prefix are defined as follows:

 T: Describes the msg_type field.

 0 - 8-bit msg_type field
 1 - Handshake Type 1 (Client Hello)
 2 - Handshake Type 2 (Server Hello)
 3 - Handshake Type 3 (Hello Verify Request)
 4 - Reserved for future use
 5 - Reserved for future use
 6 - Reserved for future use
 7 - Handshake Type 11 (Certificate)

Hartke & Bergmann Expires January 17, 2013 [Page 13]

Internet-Draft Constrained DTLS July 2012

 8 - Handshake Type 12 (Server Key Exchange)
 9 - Handshake Type 13 (Certificate Request)
 10 - Handshake Type 14 (Server Hello Done)
 11 - Handshake Type 15 (Certificate Verify)
 12 - Handshake Type 16 (Client Key Exchange)
 13 - Reserved for future use
 14 - Reserved for future use
 15 - Handshake Type 20 (Finished)

 L: Describes the length field.

 0 - Implicit -- last message in the record
 1 - 8-bit length field
 2 - 16-bit length field
 3 - 24-bit length field

 S: Describes the message_seq field.

 0 - Message sequence number 0
 1 - Message sequence number 1
 2 - Message sequence number 2
 3 - Message sequence number 3
 4 - Message sequence number 4
 5 - Message sequence number 5
 6 - Message sequence number 6
 7 - Message sequence number 7
 8 - Message sequence number 8
 9 - Message sequence number 9
 10 - Message sequence number 10
 11 - Message sequence number 11
 12 - Message sequence number 12
 13 - 8-bit message_seq field
 14 - 16-bit message_seq field
 15 - Implicit -- number of previous message in the record + 1

 O: Describes the fragment_offset field.

 0 - Offset 0
 1 - 8-bit fragment_offset field
 2 - 16-bit fragment_offset field
 3 - 24-bit fragment_offset field

 C: Describes the fragment_length field.

 0 - Implicit -- last message in the record
 1 - 8-bit fragment_length field
 2 - 16-bit fragment_length field
 3 - 24-bit fragment_length field

Hartke & Bergmann Expires January 17, 2013 [Page 14]

Internet-Draft Constrained DTLS July 2012

4. RESTful DTLS Handshake

 Where DTLS is used in conjunct with the Constrained Application
 Protocol (CoAP) [I-D.ietf-core-coap], it might be beneficial to use
 CoAP with its support for block-wise transfers [I-D.ietf-core-block]
 instead of DTLS's convoluted handshake protocol to transport DTLS
 handshake messages.

 CoAP, like HTTP, is designed for applications following the REST
 architectural style [REST]. So the DTLS connection is modeled as a
 CoAP resource which gets created when a client wants to initiate a
 connection, and gets updated to modify the state and parameters of
 the connection. A well-known URI path [RFC5785] is used to identify
 a collection resource that models the set of active connections and
 allows new connections to be created.

 Client Server
 ------ ------

 POST /.well-known/dtls
 ClientHello ----->

 1.xx Verify
 <----- HelloVerifyRequest

 POST /.well-known/dtls
 ClientHello ----->

 2.01 Created /session/4ad6bc29
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <----- ServerHelloDone

 PATCH /session/4ad6bc29
 Certificate*
 ClientKeyExchange
 CertificateVerify*
 [ChangeCipherSpec]
 Finished ----->

 2.04 Changed
 [ChangeCipherSpec]
 <----- Finished

 Figure 2: Message Flights for Full Handshake

https://datatracker.ietf.org/doc/html/rfc5785

Hartke & Bergmann Expires January 17, 2013 [Page 15]

Internet-Draft Constrained DTLS July 2012

 Client Server
 ------ ------

 PATCH /session/4ad6bc29
 ClientHello ----->

 2.04 Changed
 ServerHello
 [ChangeCipherSpec]
 <----- Finished

 PATCH /session/4ad6bc29
 [ChangeCipherSpec]
 Finished ----->

 <----- 2.04 Changed

 Figure 3: Message Flights for Session-Resuming Handshake

 There are the following possible operations:

 o POST to well-known URI: requests the server to create a new
 session resource.

 o PATCH session resource: requests the server to change session
 parameters, or to resume a session.

 o GET session resource: returns a representation of the session.

 o DELETE session resource: requests the server to delete the session
 resource and free all resources related to the session.

 The following protocols and URI schemes are used:

 o CoAP [I-D.ietf-core-coap]

 o coap+codtls://

 The following well-known URIs are used:

 o /.well-known/dtls

 The following media types are used:

 o application/dtls

 (The exact definition of these items is TBD.)

Hartke & Bergmann Expires January 17, 2013 [Page 16]

Internet-Draft Constrained DTLS July 2012

5. Security Considerations

 Beyond stateless header compression and profiling, changes to the
 TLS/DTLS protocol need to be performed extremely carefully. No
 analysis has been done in the present version of this draft.

6. IANA Considerations

 This draft includes no request to IANA.

7. Acknowledgements

 Thanks to Angelo P. Castellani, Stefan Jucker and Shahid Raza for
 helpful comments and discussions that have shaped the document.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, January 2012.

8.2. Informative References

 [DCOSS12] Raza, S., Trabalza, D., and T. Voigt, "6LoWPAN Compressed
 DTLS for CoAP", 8th IEEE International Conference on
 Distributed Computing in Sensor Systems, May 2012.

 [I-D.aks-crypto-sensors]
 Sethi, M., Arkko, J., Keranen, A., and H. Rissanen,
 "Practical Considerations and Implementation Experiences
 in Securing Smart Object Networks",

draft-aks-crypto-sensors-02 (work in progress),
 March 2012.

 [I-D.bormann-6lowpan-ghc]
 Bormann, C., "6LoWPAN Generic Compression of Headers and
 Header-like Payloads", draft-bormann-6lowpan-ghc-04 (work
 in progress), March 2012.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc6347
https://datatracker.ietf.org/doc/html/draft-aks-crypto-sensors-02
https://datatracker.ietf.org/doc/html/draft-bormann-6lowpan-ghc-04

Hartke & Bergmann Expires January 17, 2013 [Page 17]

Internet-Draft Constrained DTLS July 2012

 [I-D.ietf-core-block]
 Bormann, C. and Z. Shelby, "Blockwise transfers in CoAP",

draft-ietf-core-block-08 (work in progress),
 February 2012.

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-10 (work in progress), June 2012.

 [I-D.ietf-lwig-guidance]
 Bormann, C., "Guidance for Light-Weight Implementations of
 the Internet Protocol Suite", draft-ietf-lwig-guidance-01
 (work in progress), July 2012.

 [I-D.ietf-tls-cached-info]
 Santesson, S. and H. Tschofenig, "Transport Layer Security
 (TLS) Cached Information Extension",

draft-ietf-tls-cached-info-11 (work in progress),
 December 2011.

 [I-D.ietf-tls-oob-pubkey]
 Wouters, P., Gilmore, J., Weiler, S., Kivinen, T., and H.
 Tschofenig, "TLS Out-of-Band Public Key Validation",

draft-ietf-tls-oob-pubkey-03 (work in progress),
 April 2012.

 [I-D.mcgrew-tls-aes-ccm]
 McGrew, D. and D. Bailey, "AES-CCM Cipher Suites for TLS",

draft-mcgrew-tls-aes-ccm-03 (work in progress),
 February 2012.

 [I-D.mcgrew-tls-aes-ccm-ecc]
 McGrew, D., Bailey, D., Campagna, M., and R. Dugal, "AES-
 CCM ECC Cipher Suites for TLS",

draft-mcgrew-tls-aes-ccm-ecc-02 (work in progress),
 October 2011.

 [I-D.moskowitz-hip-rg-dex]
 Moskowitz, R., "HIP Diet EXchange (DEX)",

draft-moskowitz-hip-rg-dex-06 (work in progress),
 May 2012.

 [IEEE.802-15-4]
 "Information technology - Telecommunications and
 information exchange between systems - Local and
 metropolitan area networks - Specific requirements - Part
 15.4: Wireless Medium Access Control (MAC) and Physical

https://datatracker.ietf.org/doc/html/draft-ietf-core-block-08
https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-10
https://datatracker.ietf.org/doc/html/draft-ietf-lwig-guidance-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-cached-info-11
https://datatracker.ietf.org/doc/html/draft-ietf-tls-oob-pubkey-03
https://datatracker.ietf.org/doc/html/draft-mcgrew-tls-aes-ccm-03
https://datatracker.ietf.org/doc/html/draft-mcgrew-tls-aes-ccm-ecc-02
https://datatracker.ietf.org/doc/html/draft-moskowitz-hip-rg-dex-06

Hartke & Bergmann Expires January 17, 2013 [Page 18]

Internet-Draft Constrained DTLS July 2012

 Layer (PHY) Specifications for Low-Rate Wireless Personal
 Area Networks (WPANs)", IEEE Standard 802.15.4,
 September 2006, <http://standards.ieee.org/getieee802/

download/802.15.4-2006.pdf>.

 [REST] Fielding, R., "Architectural Styles and the Design of
 Network-based Software Architectures", Ph.D. Dissertation,
 University of California, Irvine, 2000, <http://

www.ics.uci.edu/~fielding/pubs/dissertation/
fielding_dissertation.pdf>.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC4944] Montenegro, G., Kushalnagar, N., Hui, J., and D. Culler,
 "Transmission of IPv6 Packets over IEEE 802.15.4
 Networks", RFC 4944, September 2007.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 April 2010.

 [RFC6256] Eddy, W. and E. Davies, "Using Self-Delimiting Numeric
 Values in Protocols", RFC 6256, May 2011.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP's Retransmission Timer", RFC 6298,
 June 2011.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520, February 2012.

 [SOS12] Arkko, J. and H. Tschofenig, "Conclusions from the
 Workshop on Smart Object Security", Workshop on Smart
 Object Security, March 2012, <http://

www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/
slides/sos-conclusions.ppt>.

 [USENIX01]
 Dean, D. and A. Stubblefield, "Using Client Puzzles to
 Protect TLS", 10th USENIX Security Symposium, August 2001,
 <http://static.usenix.org/events/sec01/full_papers/dean/

dean.pdf>.

http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4944
https://datatracker.ietf.org/doc/html/rfc5785
https://datatracker.ietf.org/doc/html/rfc6256
https://datatracker.ietf.org/doc/html/rfc6298
https://datatracker.ietf.org/doc/html/rfc6520
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/slides/sos-conclusions.ppt
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/slides/sos-conclusions.ppt
http://www.lix.polytechnique.fr/hipercom/SmartObjectSecurity/slides/sos-conclusions.ppt
http://static.usenix.org/events/sec01/full_papers/dean/dean.pdf
http://static.usenix.org/events/sec01/full_papers/dean/dean.pdf

Hartke & Bergmann Expires January 17, 2013 [Page 19]

Internet-Draft Constrained DTLS July 2012

Appendix A. Templates

 When elliptic curve cryptography is used, building and parsing the
 bodies of Certificate, ServerKeyExchange and ClientKeyExchange
 messages mainly involves the encoding and decoding of elliptic curve
 points. The points are encapsulated in a mix of DTLS structures and
 ASN.1 sequences. For a given elliptic curve, some parts of a message
 body are static, which allows using pre-composed messages instead of
 writing lots of memory consuming code pertaining to DTLS and ASN.1.

 This appendix provides templates for the bodies of the Certificate,
 ServerKeyExchange and ClientKeyExchange messages used in a DTLS
 handshake with raw public key certificates [I-D.ietf-tls-oob-pubkey]
 and the ECDHE_ECDSA key exchange [RFC4492].

 The templates are given for the named curves secp256r1, secp384r1 and
 secp521r1; these curves are equivalent to the NIST P-256, P-384, and
 P-521 curves. They are required in [I-D.mcgrew-tls-aes-ccm-ecc].
 The same curve is used in each case for both the raw public key
 certificate and the ephemeral keys. Points are represented in
 uncompressed point format.

 Note: The templates have not been independently verified yet.

A.1. secp256r1

 Raw Public Key Certificate:

 30 59 30 13 06 07 2a 86 48 ce 3d 02 01 06 08 2a
 86 48 ce 3d 03 01 07 03 42 00 04 __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __

 ECDSA-capable public key (x, y)

https://datatracker.ietf.org/doc/html/rfc4492

Hartke & Bergmann Expires January 17, 2013 [Page 20]

Internet-Draft Constrained DTLS July 2012

 Server Key Exchange:

 03 00 17 41 04 __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ 00 46 30 44 02 20 __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ 02 20 __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __

 ephemeral ECDH public key (x, y) and ECDSA signature (r, s)

 Client Key Exchange:

 41 04 __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __

 ephemeral ECDH public key (x, y)

A.2. secp384r1

 Raw Public Key Certificate:

 30 76 30 10 06 07 2a 86 48 ce 3d 02 01 06 05 2b
 81 04 00 22 03 62 00 04 __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __

 ECDSA-capable public key (x, y)

Hartke & Bergmann Expires January 17, 2013 [Page 21]

Internet-Draft Constrained DTLS July 2012

 Server Key Exchange:

 03 00 18 61 04 __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ 00 66 30 64 02 30 __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ 02 30 __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __

 ephemeral ECDH public key (x, y) and ECDSA signature (r, s)

 Client Key Exchange:

 61 04 __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __

 ephemeral ECDH public key (x, y)

A.3. secp521r1

 Raw Public Key Certificate:

 30 81 9b 30 10 06 07 2a 86 48 ce 3d 02 01 06 05
 2b 81 04 00 23 03 81 86 00 04 __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __

 ECDSA-capable public key (x, y)

Hartke & Bergmann Expires January 17, 2013 [Page 22]

Internet-Draft Constrained DTLS July 2012

 Server Key Exchange:

 03 00 19 85 04 __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ 00 8b 30 81 88 02 42
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ 02 42 __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __

 ephemeral ECDH public key (x, y) and ECDSA signature (r, s)

 Client Key Exchange:

 85 04 __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
 __ __ __ __ __ __

 ephemeral ECDH public key (x, y)

Hartke & Bergmann Expires January 17, 2013 [Page 23]

Internet-Draft Constrained DTLS July 2012

Authors' Addresses

 Klaus Hartke
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63905
 Email: hartke@tzi.org

 Olaf Bergmann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63904
 Email: bergmann@tzi.org

Hartke & Bergmann Expires January 17, 2013 [Page 24]

