
Thing-to-Thing Research Group K. Hartke
Internet-Draft Ericsson
Intended status: Experimental October 22, 2018
Expires: April 25, 2019

The Constrained RESTful Application Language (CoRAL)
draft-hartke-t2trg-coral-06

Abstract

 The Constrained RESTful Application Language (CoRAL) defines a data
 model and interaction model as well as two specialized serialization
 formats for the description of typed connections between resources on
 the Web ("links"), possible operations on such resources ("forms"),
 as well as simple resource metadata.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 25, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hartke Expires April 25, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Constrained RESTful Application Language October 2018

Table of Contents

1. Introduction . 3
1.1. Requirements Notation 4

2. Examples . 4
2.1. Web Linking . 4
2.2. Links, Forms, and Metadata 5

3. Data and Interaction Model 6
3.1. Browsing Context . 7
3.2. Documents . 7
3.3. Links . 7
3.4. Forms . 8
3.5. Form Data . 9
3.6. Embedded Representations 9
3.7. Navigation . 10
3.8. History Traversal . 11

4. Binary Format . 11
4.1. Data Structure . 11
4.1.1. Documents . 12
4.1.2. Links . 12
4.1.3. Forms . 13
4.1.4. Embedded Representations 15
4.1.5. Directives . 15

5. Textual Format . 16
5.1. Lexical Structure . 16
5.1.1. Line Terminators 16
5.1.2. White Space . 16
5.1.3. Comments . 16
5.1.4. Identifiers . 17
5.1.5. IRI References 17
5.1.6. Literals . 17
5.1.7. Punctuators . 21

5.2. Syntactic Structure 21
5.2.1. Documents . 21
5.2.2. Links . 21
5.2.3. Forms . 22
5.2.4. Embedded Representations 23
5.2.5. Directives . 24

6. Usage Considerations . 25
6.1. Specifying CoRAL-based Applications 25
6.1.1. Naming Resources 26
6.1.2. Implementation Limits 26

6.2. Minting New Relation Types 27
6.3. Registering Relation Types 27
6.4. Expressing Link Target Attributes 29
6.5. Embedding CoRAL in CBOR Structures 29

7. Security Considerations 30
8. IANA Considerations . 31

Hartke Expires April 25, 2019 [Page 2]

Internet-Draft Constrained RESTful Application Language October 2018

8.1. Media Type "application/coral+cbor" 31
8.2. Media Type "text/coral" 32
8.3. CoAP Content Formats 33

9. References . 34
9.1. Normative References 34
9.2. Informative References 36

Appendix A. Core Vocabulary 37
A.1. Link Relation Types 38
A.2. Form Relation Types 38
A.3. Form Field Names . 39

Appendix B. Default Profile 39
 Author's Address . 39

1. Introduction

 The Constrained RESTful Application Language (CoRAL) is a language
 for the description of typed connections between resources on the Web
 ("links"), possible operations on such resources ("forms"), as well
 as simple resource metadata.

 CoRAL is intended for driving automated software agents that navigate
 a Web application based on a standardized vocabulary of link and form
 relation types. It is designed to be used in conjunction with a Web
 transfer protocol such as the Hypertext Transfer Protocol (HTTP)
 [RFC7230] or the Constrained Application Protocol (CoAP) [RFC7252].

 This document defines the CoRAL data and interaction model, as well
 as two specialized CoRAL serialization formats:

 The CoRAL data and interaction model is a superset of the Web Linking
 model of RFC 8288 [RFC8288]. The CoRAL data model consists of two
 elements: _links_ that describe the relationships between pairs of
 resources and the type of those relationships, and _forms_ that
 describe possible operations on resources and the type of those
 operations. Additionally, the data model can describe simple
 resource metadata in a way similar to the Resource Description
 Framework (RDF) [W3C.REC-rdf11-concepts-20140225]. In contrast to
 RDF, the focus of CoRAL is on the interaction with resources, not
 just the relationships between them. The CoRAL interaction model
 derives from HTML 5 [W3C.REC-html52-20171214] and specifies how an
 automated software agent can navigate between resources by following
 links and perform operations on resources by submitting forms.

 The primary CoRAL serialization format is a compact, binary encoding
 of links and forms in Concise Binary Object Representation (CBOR)
 [RFC7049]. It is intended for environments with constraints on
 power, memory, and processing resources [RFC7228] and shares many
 similarities with the message format of the Constrained Application

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc7228

Hartke Expires April 25, 2019 [Page 3]

Internet-Draft Constrained RESTful Application Language October 2018

 Protocol (CoAP) [RFC7252]. For example, it uses numeric identifiers
 instead of verbose strings for link and form relation types, and pre-
 parses URIs into (what CoAP considers to be) their components, which
 greatly simplifies URI processing. As a result, link serializations
 are often much more compact than equivalent serializations in CoRE
 Link Format [RFC6690] [I-D.ietf-core-links-json].

 The secondary CoRAL serialization format is a lightweight, textual
 encoding of links and forms that is intended to be easy to read and
 write for humans. The format is loosely inspired by the syntax of
 Turtle [W3C.REC-turtle-20140225] and is used throughout the document
 for examples.

1.1. Requirements Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Examples

2.1. Web Linking

 At its core, CoRAL is just yet another serialization format for Web
 links. For example, if an HTTP client sends the following request:

 GET /TheBook/chapter3 HTTP/1.1
 Host: example.com

 and receives the following response:

 HTTP/1.1 200 OK
 Content-Type: text/coral

 #using <http://www.iana.org/assignments/relation/>

 next <./chapter4>
 icon </favicon.png>
 license <http://creativecommons.org/licenses/by/4.0/>

 then the representation contains the following three links:

 o one link of type "http://www.iana.org/assignments/relation/next"
 from <http://example.com/TheBook/chapter3> to
 <http://example.com/TheBook/chapter4>,

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc6690
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
http://www.iana.org/assignments/relation/
http://creativecommons.org/licenses/by/4.0/

Hartke Expires April 25, 2019 [Page 4]

Internet-Draft Constrained RESTful Application Language October 2018

 o one link of type "http://www.iana.org/assignments/relation/icon"
 from <http://example.com/TheBook/chapter3> to <http://example.com/
 favicon.png>, and

 o one link of type "http://www.iana.org/assignments/relation/
 license" from <http://example.com/TheBook/chapter3> to
 <http://creativecommons.org/licenses/by/4.0/>.

 This representation is equivalent to the following Link header field
 [RFC8288]:

 Link: <./chapter4>; rel="next",
 </favicon.png>; rel="icon",
 <http://creativecommons.org/licenses/by/4.0/>; rel="license"

 and the following HTML 5 [W3C.REC-html52-20171214] link elements:

 <link rel="next" href="./chapter4">
 <link rel="icon" href="/favicon.png">
 <link rel="license"
 href="http://creativecommons.org/licenses/by/4.0/">

2.2. Links, Forms, and Metadata

 In its entirety, CoRAL is an expressive language for describing Web
 links between resources, possible operations on these resources, and
 simple resource metadata. For example, if an HTTP client sends the
 following request:

 GET /tasks HTTP/1.1
 Host: example.com

 and receives the following response:

http://creativecommons.org/licenses/by/4.0/
https://datatracker.ietf.org/doc/html/rfc8288
http://creativecommons.org/licenses/by/4.0/

Hartke Expires April 25, 2019 [Page 5]

Internet-Draft Constrained RESTful Application Language October 2018

 HTTP/1.1 200 OK
 Content-Type: text/coral

 #using <http://example.org/vocabulary#>
 #using coral = <urn:TBD#>

 task </tasks/1> {
 description "Pick up the kids"
 }

 task </tasks/2> {
 description "Return the books to the library"
 coral:delete -> DELETE </tasks/2>
 }

 coral:create -> POST </tasks> [coral:accept "example/task"]

 then the representation contains the following six elements:

 o one link of type "http://example.org/vocabulary#task" from
 <http://example.com/tasks> to <http://example.com/tasks/1>,

 o one link of type "http://example.org/vocabulary#description" from
 <http://example.com/tasks/1> to "Pick up the kids",

 o one link of type "http://example.org/vocabulary#task" from
 <http://example.com/tasks> to <http://example.com/tasks/2>,

 o one link of type "http://example.org/vocabulary#description" from
 <http://example.com/tasks/2> to "Return the books to the library",

 o one form of type "urn:TBD#delete" that can be used to delete
 <http://example.com/tasks/2> by making a DELETE request to
 <http://example.com/tasks/2>, and

 o one form of type "urn:TBD#create" that can be used to create a new
 item in <http://example.com/tasks> by making a POST request to
 <http://example.com/tasks> with an "example/task" payload.

3. Data and Interaction Model

 The Constrained RESTful Application Language (CoRAL) is designed for
 building Web-based applications [W3C.REC-webarch-20041215] in which
 automated software agents navigate between resources by following
 links and perform operations on resources by submitting forms.

Hartke Expires April 25, 2019 [Page 6]

Internet-Draft Constrained RESTful Application Language October 2018

3.1. Browsing Context

 Borrowing from HTML 5 [W3C.REC-html52-20171214], each such agent
 maintains a _browsing context_ in which the representations of Web
 resources are processed. (In HTML 5, the browsing context typically
 corresponds to a tab or window in a Web browser.)

 A browsing context has a _session history_ that lists the resource
 representations that the agent has processed, is processing, or will
 process. At any time, one representation in each browsing context is
 designated the _active_ representation.

 A session history consists of a flat list of session history entries.
 Each _session history entry_ consists of a resource representation
 and the Internationalized Resource Identifier (IRI) [RFC3987] that
 was used to retrieve the representation. An entry may additionally
 have other information associated with it. New entries are added to
 the session history as the agent navigates from resource to resource.

3.2. Documents

 A resource representation in one of the CoRAL serialization formats
 is called a CoRAL _document_. The IRI that was used to retrieve such
 a document is called the document's _retrieval context_.

 A CoRAL document consists of a list of zero or more links, forms, and
 embedded resource representations, collectively called _elements_.
 CoRAL serialization formats may define additional types of elements
 for efficiency or convenience, such as base IRIs for relative IRI
 references.

3.3. Links

 A _link_ describes a relationship between two resources on the Web
 [RFC8288]. As defined in RFC 8288, it consists of a _link context_,
 a _link relation type_, and a _link target_. In CoRAL, a link can
 additionally have a nested list of zero or more elements, which take
 the place of link target attributes.

 A link can be viewed as a statement of the form "{link context} has a
 {link relation type} resource at {link target}" where the link target
 may be further described by nested elements.

 The link relation type identifies the semantics of a link. In HTML 5
 and the RFC 8288 Link header field, link relation types are typically
 denoted by an IANA-registered name, such as "stylesheet" or "icon".
 In CoRAL, in contrast, link relation types are denoted by an IRI or
 an unsigned integer. IRIs on the one hand allow for the creation of

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8288

Hartke Expires April 25, 2019 [Page 7]

Internet-Draft Constrained RESTful Application Language October 2018

 new, unique relation types in a decentralized fashion, but can incur
 a high overhead in terms of message size. Small, unsigned integers
 on the other hand minimize the overhead of link relation types in
 constrained environments, but require the assignment of values by a
 registry to avoid collisions.

 The link context and the link target are both resources on the Web.
 Resources are denoted in CoRAL either by an IRI reference [RFC3987]
 or (similarly to RDF) a literal. If the IRI scheme indicates a Web
 transfer protocol such as HTTP or CoAP, then an agent can dereference
 the IRI and navigate the browsing context to the referenced resource;
 this is called _following the link_. A literal directly identifies a
 value, which in CoRAL can be a Boolean value, an integer, a floating-
 point number, a byte string, or a text string.

 A link can occur as a top-level element in a document or as a nested
 element within a link. When a link occurs as a top-level element,
 the link context is implicitly the document's retrieval context.
 When a link occurs nested within a link, the link context of the
 inner link is the link target of the outer link.

 There are no restrictions on the cardinality of links; there can be
 multiple links to and from a particular target, and multiple links of
 the same or different types between a given link context and target.
 However, the CoRAL data model constrains the description of a
 resource graph to a tree: Links between linked resources can only be
 described by further nesting links.

3.4. Forms

 A _form_ provides instructions to an agent for performing an
 operation on a Web resource. It consists of a _form context_, a
 form relation type, a _request method_, and a _submission IRI_.
 Additionally, a form may be accompanied by _form data_.

 A form can be viewed as an instruction of the form "To perform a
 {form relation type} operation on {form context}, make a {request
 method} request to {submission IRI}" where the payload of the request
 may be further described by form data.

 The form relation type identifies the semantics of the operation.
 Like link relation types, form relation types are denoted by an IRI
 or an unsigned integer.

 The form context is the resource on which an operation is ultimately
 performed. To perform the operation, an agent needs to construct a
 request with the specified request method and submission IRI. The
 submission IRI typically refers to the form context, but MAY refer to

https://datatracker.ietf.org/doc/html/rfc3987

Hartke Expires April 25, 2019 [Page 8]

Internet-Draft Constrained RESTful Application Language October 2018

 another resource. Constructing and sending the request is called
 submitting the form.

 If a form is accompanied by form data (Section 3.5), then the agent
 MUST also construct a payload that matches the specifications of the
 form data and include that in the request.

 A form can occur as a top-level element in a document or as a nested
 element within a link. When a form occurs as a top-level element,
 the form context is implicitly the document's retrieval context.
 When a form occurs nested within a link, the form context is the link
 target of the enclosing link.

3.5. Form Data

 Form data provides instructions for agents to construct a request
 payload. It consists of a list of zero or more _form fields_. Each
 form field consists of a _form field name_ and a _form field value_.

 Form fields can either directly identify data items that need to be
 included in the request payload or reference another resource (such
 as a schema) that describes the data items. Form fields may also
 provide other information, such as acceptable representation formats.

 The form field name identifies the semantics of the form field. Like
 link and form relation types, form field names are denoted by an IRI
 or an unsigned integer.

 The form field value can be an IRI, a Boolean value, an integer, a
 floating-point number, a byte string, or a text string.

3.6. Embedded Representations

 When a document contains links to many resources and an agent needs a
 representation of each link target, it may be inefficient to retrieve
 each of these representations individually. To alleviate this,
 documents can directly embed representations of resources.

 An _embedded representation_ consists of a sequence of bytes, plus
 representation metadata to describe those bytes.

 An embedded representation may be a full, partial, or inconsistent
 version of the representation served from the IRI of the represented
 resource.

 An embedded representation can occur as a top-level element in a
 document or as a nested element within a link. When it occurs as a
 top-level element, it provides an alternate representation of the

Hartke Expires April 25, 2019 [Page 9]

Internet-Draft Constrained RESTful Application Language October 2018

 document's retrieval context. When it occurs nested within a link,
 it provides a representation of link target of the enclosing link.

3.7. Navigation

 An agent begins interacting with an application by performing a GET
 request on an _entry point IRI_. The entry point IRI is the only IRI
 an agent is expected to know before interacting with an application.
 From there, the agent is expected to make all requests by following
 links and submitting forms provided by the server in responses. The
 entry point IRI can be obtained by manual configuration or through
 some discovery process.

 If dereferencing the entry point IRI yields a CoRAL document or any
 other representation that implements the CoRAL data and interaction
 model, then the agent proceeds as follows:

 1. The first step for the agent is to decide what to do next, i.e.,
 which type of link to follow or form to submit, based on the link
 relation types and form relation types it understands.

 2. The agent finds the link(s) or form(s) with the respective
 relation type in the active representation. This may yield one
 or more candidates, from which the agent must select the most
 appropriate one in the next step. The set of candidates may be
 empty, for example, when a transition is not supported or not
 allowed.

 3. The agent selects one of the candidates based on the metadata
 associated with the link(s) or form(s). Metadata typically
 includes the media type of the target resource representation,
 the IRI scheme, the request method, and other information that is
 provided as nested elements in a link and form data in a form.

 If the selected candidate contains an embedded representation,
 then the agent MAY skip the following steps and immediately
 proceed with step 8.

 4. The agent resolves the IRI reference in the link or form
 (Section 5 of RFC 3986 [RFC3986]) to obtain the _request IRI_.
 Fragment identifiers are not part of the request IRI and MUST be
 separated from the rest of the IRI prior to a dereference. The
 request IRI may need to be converted to a URI (Section 3.1 of RFC

3987 [RFC3987]) for protocols that do not support IRIs.

 5. The agent constructs a new request with the request IRI. If the
 agent follows a link, the request method MUST be GET. If the
 agent submits a form, the request method MUST be the one

https://datatracker.ietf.org/doc/html/rfc3986#section-5
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987

Hartke Expires April 25, 2019 [Page 10]

Internet-Draft Constrained RESTful Application Language October 2018

 specified in the form. The agent SHOULD set HTTP header fields
 and CoAP request options according to provided metadata (e.g.,
 set the HTTP Accept header field or the CoAP Accept option when
 the media type of the target resource is provided). In case of a
 form with form data, the agent MUST also include a request
 payload that matches the specifications of the form data.

 6. The agent sends the request and receives the response.

 7. If a fragment identifier was separated from the request IRI, the
 agent dereferences the fragment identifier within the received
 representation.

 8. The agent _updates the session history_: It removes all the
 entries in the browsing context's session history after the
 current entry. Then it appends a new entry at the end of the
 history representing the new resource and makes that entry the
 active representation.

 9. Finally, the agent processes the representation. In case of a
 CoRAL document or any other representation that implements the
 CoRAL data and interaction model, this means the agent decides
 again what to do next -- and the cycle repeats.

3.8. History Traversal

 An agent can navigate a browsing context also by traversing the
 browsing context's session history. An agent can _traverse the
 session history_ by updating the active representation to the that
 entry.

4. Binary Format

 This section defines the encoding of documents in the CoRAL binary
 format.

 A document in the binary format is a data item in Concise Binary
 Object Representation (CBOR) [RFC7049]. The structure of this data
 item is presented in the Concise Data Definition Language (CDDL)
 [I-D.ietf-cbor-cddl]. The media type is "application/coral+cbor".

4.1. Data Structure

 The data structure of a document in the binary format is made up of
 four kinds of elements: links, forms, embedded representations, and
 (as an extension to the CoRAL data model) base IRI directives. Base
 IRI directives provide a way to encode IRI references with a common
 base more efficiently.

https://datatracker.ietf.org/doc/html/rfc7049

Hartke Expires April 25, 2019 [Page 11]

Internet-Draft Constrained RESTful Application Language October 2018

 Elements are processed in the order they appear in the document.
 Document processors need to maintain an _environment_ while iterating
 an array of elements. The environment consists of three variables: a
 current context IRI, a _current base IRI_, and a _current relation
 type_. The current context IRI and current base IRI are initially
 both set to the document's retrieval context. The current relation
 type is initially set to the unsigned integer zero.

4.1.1. Documents

 The body of a document in the binary format is encoded as an array of
 zero or more links, forms, embedded representations, and directives.

 body = [*(link / form / representation / directive)]

4.1.2. Links

 A link is encoded as an array that consists of the unsigned integer
 2, followed by the link relation type and the link target, optionally
 followed by a link body that contains nested elements.

 link = [link: 2, relation, target, ?body]

 The link relation type is encoded either as a text string containing
 an absolute IRI reference or as an (unsigned or negative) integer
 representing the difference to the current relation type. A link is
 processed by updating the current relation type to the result of
 adding the specified integer (or zero in the case of a text string)
 to the current relation type. It is an error if the current relation
 type becomes negative.

 relation = text / int

 The link target is denoted by an IRI reference or represented by a
 literal value. The IRI reference MAY be relative or absolute, and
 MUST be resolved against the current base IRI. The encoding of IRI
 references in the binary format is described in RFC XXXX
 [I-D.hartke-t2trg-ciri]. The link target MAY be null, which
 indicates that the link target is an unidentified resource.

 target = ciri / literal / null

 literal = bool / int / float / bytes / text

 The array of elements in the link body, if any, MUST be processed in
 a fresh environment. The current context IRI and current base IRI in
 the new environment are initially both set to the link target of the

Hartke Expires April 25, 2019 [Page 12]

Internet-Draft Constrained RESTful Application Language October 2018

 enclosing link. The current relation type in the new environment is
 initially set to the current relation type.

4.1.3. Forms

 A form is encoded as an array that consists of the unsigned integer
 3, followed by the form relation type, the submission method, and a
 submission IRI reference, optionally followed by form data.

 form = [form: 3, relation, method, ciri, ?form-data]

 The form relation type is encoded and processed in the same way as a
 link relation type (Section 4.1.2).

 The method MUST refer to one of the request methods defined by the
 Web transfer protocol identified by the scheme of the submission IRI.
 It is encoded either as a text string or an unsigned integer.

 method = text / uint

 For HTTP [RFC7230], the method MUST be encoded as a text string in
 the format defined in Section 4.1 of RFC 7231 [RFC7231]; the set of
 possible values is maintained in the IANA HTTP Method Registry. For
 CoAP [RFC7252], the method MUST be encoded as an unsigned integer
 (e.g., the unsigned integer 2 for the POST method); the set of
 possible values is maintained in the IANA CoAP Method Codes Registry.

 The submission IRI reference MAY be relative or absolute, and MUST be
 resolved against the current base IRI. The encoding of IRI
 references in the binary format is described in RFC XXXX
 [I-D.hartke-t2trg-ciri].

4.1.3.1. Form Data

 Form data is encoded as an array of zero or more name-value pairs.

 form-data = [*(form-field-name, form-field-value)]

 Form data, if any, MUST be processed in a fresh environment. The
 current context IRI and current base IRI in the new environment are
 initially both set to the submission IRI of the enclosing form. The
 current relation type in the new environment is initially set to the
 current relation type.

 A form field name is encoded and processed in the same way as a link
 relation type (Section 4.1.2).

 form-field-name = text / uint

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires April 25, 2019 [Page 13]

Internet-Draft Constrained RESTful Application Language October 2018

 A form field value can be an IRI reference, a Boolean value, an
 integer, a floating-point number, a byte string, a text string, or
 null. An IRI reference MAY be relative or absolute, and MUST be
 resolved against the current base IRI. The encoding of IRI
 references in the binary format is described in RFC XXXX
 [I-D.hartke-t2trg-ciri].

 form-field-value = ciri / bool / int / float / bytes / text / null

4.1.3.2. Short Forms

 Forms in certain shapes can be encoded in a more efficient manner
 using short forms. The following short forms are available:

 form /= [form.create: 4, ?accept: uint .size 2]

 form /= [form.update: 5, ?accept: uint .size 2]

 form /= [form.delete: 6]

 form /= [form.search: 7, ?accept: uint .size 2]

 If the scheme of the submission IRI indicates HTTP, the short forms
 expand as follows:

 [4] -> [3, "urn:TBD#create", "POST", []]
 [4, x] -> [3, "urn:TBD#create", "POST", [],
 ["urn:TBD#accept", x]]
 [5] -> [3, "urn:TBD#update", "PUT", []]
 [5, x] -> [3, "urn:TBD#update", "PUT", [],
 ["urn:TBD#accept", x]]
 [6] -> [3, "urn:TBD#delete", "DELETE", []]
 [7] -> [3, "urn:TBD#search", "POST", []]
 [7, x] -> [3, "urn:TBD#search", "POST", [],
 ["urn:TBD#accept", x]]

 If the scheme of the submission IRI indicates CoAP, the short forms
 expand as follows (the only difference being the request methods):

Hartke Expires April 25, 2019 [Page 14]

Internet-Draft Constrained RESTful Application Language October 2018

 [4] -> [3, "urn:TBD#create", 2, []]
 [4, x] -> [3, "urn:TBD#create", 2, [],
 ["urn:TBD#accept", x]]
 [5] -> [3, "urn:TBD#update", 3, []]
 [5, x] -> [3, "urn:TBD#update", 3, [],
 ["urn:TBD#accept", x]]
 [6] -> [3, "urn:TBD#delete", 4, []]
 [7] -> [3, "urn:TBD#search", 5, []]
 [7, x] -> [3, "urn:TBD#search", 5, [],
 ["urn:TBD#accept", x]]

 The form relation types and form field names used in these expansions
 are defined in Appendix A.

4.1.4. Embedded Representations

 An embedded representation is encoded as an array that consists of
 the unsigned integer 0, followed by the HTTP content type or CoAP
 content format of the representation and a byte string containing the
 representation data.

 representation = [representation: 0, text / uint, bytes]

 For HTTP, the content type MUST be specified as a text string in the
 format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of
 possible values is maintained in the IANA Media Types Registry. For
 CoAP, the content format MUST be specified as an unsigned integer;
 the set of possible values is maintained in the IANA CoAP Content-
 Formats Registry.

4.1.5. Directives

 Directives provide the ability to manipulate the environment when
 processing a list of elements. There is one directive available: the
 Base IRI directive.

 directive = base-directive

4.1.5.1. Base IRI Directives

 A Base IRI directive is encoded as an array that consists of the
 negative integer -1, followed by an IRI reference.

 base-directive = [base: -1, ciri]

 The IRI reference MAY be relative or absolute, and MUST be resolved
 against the current context IRI. The encoding of IRI references in
 the binary format is described in RFC XXXX [I-D.hartke-t2trg-ciri].

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231

Hartke Expires April 25, 2019 [Page 15]

Internet-Draft Constrained RESTful Application Language October 2018

 The directive is processed by resolving the IRI reference against the
 current context IRI and assigning the result to the current base IRI.

5. Textual Format

 This section defines the syntax of documents in the CoRAL textual
 format using two grammars: The lexical grammar defines how Unicode
 characters are combined to form line terminators, white space,
 comments, and tokens. The syntactic grammar defines how the tokens
 are combined to form documents. Both grammars are presented in
 Augmented Backus-Naur Form (ABNF) [RFC5234].

 A document in the textual format is a Unicode string in a Unicode
 encoding form [UNICODE]. The media type for such documents is "text/
 coral". The "charset" parameter is not used; charset information is
 transported inside the document in the form of an OPTIONAL Byte Order
 Mark (BOM). The use of the UTF-8 encoding scheme [RFC3629], without
 a BOM, is RECOMMENDED.

5.1. Lexical Structure

 The lexical structure of a document in the textual format is made up
 of four basic elements: line terminators, white space, comments, and
 tokens. Of these, only tokens are significant in the syntactic
 grammar. There are four kinds of tokens: identifiers, IRI
 references, literals, and punctuators.

 When several lexical grammar rules match a sequence of characters in
 a document, the longest match takes priority.

5.1.1. Line Terminators

 Line terminators divide text into lines. A line terminator is any
 Unicode character with Line_Break class BK, CR, LF, or NL. However,
 any CR character that immediately precedes a LF character is ignored.
 (This affects only the numbering of lines in error messages.)

5.1.2. White Space

 White space is a sequence of one or more white space characters. A
 white space character is any Unicode character with the White_Space
 property.

5.1.3. Comments

 Comments are sequences of characters that are ignored when parsing
 text into tokens. Single-line comments begin with the characters
 "//" and extend to the end of the line. Delimited comments begin

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3629

Hartke Expires April 25, 2019 [Page 16]

Internet-Draft Constrained RESTful Application Language October 2018

 with the characters "/*" and end with the characters "*/". Delimited
 comments can occupy a portion of a line, a single line, or multiple
 lines.

 Comments do not nest. The character sequences "/*" and "*/" have no
 special meaning within a single-line comment; the character sequences
 "//" and "/*" have no special meaning within a delimited comment.

5.1.4. Identifiers

 An identifier tokens is a user-defined symbolic name. The rules for
 identifiers correspond to those recommended by the Unicode Standard
 Annex #31 [UNICODE-UAX31] using the following profile:

 identifier = start *continue *(medial 1*continue)

 start = <Any character with the XID_Start property>

 continue = <Any character with the XID_Continue property>

 medial = "-" / "." / "~" / %xB7 / %x58A / %xF0B

 medial =/ %x2010 / %x2027 / %x30A0 / %x30FB

 All identifiers MUST be converted into Unicode Normalization Form C
 (NFC), as defined by the Unicode Standard Annex #15 [UNICODE-UAX15].
 Comparison of identifiers is based on NFC and is case-sensitive
 (unless otherwise noted).

5.1.5. IRI References

 An IRI reference is a Unicode string that conforms to the syntax
 defined in RFC 3987 [RFC3987]. An IRI reference can be absolute or
 relative, and can contain a fragment identifier. IRI references are
 enclosed in angle brackets ("<" and ">").

 iri = "<" IRI-reference ">"

 IRI-reference = <Defined in Section 2.2 of RFC 3987>

5.1.6. Literals

 A literal is a textual representation of a value. There are six
 types of literals: Boolean, integer, floating-point, byte string,
 text string, and null.

https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987#section-2.2

Hartke Expires April 25, 2019 [Page 17]

Internet-Draft Constrained RESTful Application Language October 2018

5.1.6.1. Boolean Literals

 The case-insensitive tokens "true" and "false" denote the Boolean
 values true and false, respectively.

 boolean = "true" / "false"

5.1.6.2. Integer Literals

 Integer literals denote integer values of unspecified precision. By
 default, integer literals are expressed in decimal, but they can also
 be specified in an alternate base using a prefix. Binary literals
 begin with "0b", octal literals begin with "0o", and hexadecimal
 literals begin with "0x".

 Decimal literals contain the digits "0" through "9". Binary literals
 contain "0" and "1", octal literals contain "0" through "7", and
 hexadecimal literals contain "0" through "9" as well as "A" through
 "F" in upper- or lowercase.

 Negative integers are expressed by prepending a minus sign ("-").

 integer = ["+" / "-"] (decimal / binary / octal / hexadecimal)

 decimal = 1*DIGIT

 binary = %x30 (%x42 / %x62) 1*BINDIG

 octal = %x30 (%x4F / %x6F) 1*OCTDIG

 hexadecimal = %x30 (%x58 / %x78) 1*HEXDIG

 DIGIT = %x30-39

 BINDIG = %x30-31

 OCTDIG = %x30-37

 HEXDIG = %x30-39 / %x41-46 / %x61-66

5.1.6.3. Floating-point Literals

 Floating-point literals denote floating-point numbers of unspecified
 precision.

 Floating-point literals consist of a sequence of decimal digits
 followed by a fraction, an exponent, or both. The fraction consists
 of a decimal point (".") followed by a sequence of decimal digits.

Hartke Expires April 25, 2019 [Page 18]

Internet-Draft Constrained RESTful Application Language October 2018

 The exponent consists of the letter "e" in upper- or lowercase,
 followed by an optional sign and a sequence of decimal digits that
 indicate a power of 10 by which the value preceding the "e" is
 multiplied.

 Negative floating-point values are expressed by prepending a minus
 sign ("-").

 floating-point = ["+" / "-"] 1*DIGIT [fraction] [exponent]

 fraction = "." 1*DIGIT

 exponent = (%x45 / %x65) ["+" / "-"] 1*DIGIT

 Floating-point literals can additionally denote the special "Not-
 a-Number" (NaN) value, positive infinity, and negative infinity. The
 NaN value is produced by the case-insensitive token "NaN". The two
 infinite values are produced by the case-insensitive tokens
 "+Infinity" (or simply "Infinity") and "-Infinity".

 floating-point =/ "NaN"

 floating-point =/ ["+" / "-"] "Infinity"

5.1.6.4. Byte String Literals

 A byte string literal consists of a prefix and zero or more bytes
 encoded in Base16, Base32, or Base64 [RFC4648] and enclosed in single
 quotes. Byte string literals encoded in Base16 begin with "h" or
 "b16", byte string literals encoded in Base32 begin with "b32", and
 byte string literals encoded in Base64 begin with "b64".

 bytes = base16 / base32 / base64

 base16 = (%x68 / %x62.31.36) SQUOTE <Base16 encoded data> SQUOTE

 base32 = %x62.33.32 SQUOTE <Base32 encoded data> SQUOTE

 base64 = %x62.36.34 SQUOTE <Base64 encoded data> SQUOTE

 SQUOTE = %x27

5.1.6.5. Text String Literals

 A text string literal consists of zero or more Unicode characters
 enclosed in double quotes. It can include simple escape sequences
 (such as \t for the tab character) as well as hexadecimal and Unicode
 escape sequences.

https://datatracker.ietf.org/doc/html/rfc4648

Hartke Expires April 25, 2019 [Page 19]

Internet-Draft Constrained RESTful Application Language October 2018

 text = DQUOTE *(char / %x5C escape) DQUOTE

 char = <Any character except %x22, %x5C, and line terminators>

 escape = simple-escape / hexadecimal-escape / unicode-escape

 simple-escape = %x30 / %x62 / %x74 / %x6E / %x76

 simple-escape =/ %x66 / %x72 / %x22 / %x27 / %x5C

 hexadecimal-escape = (%x78 / %x58) 2HEXDIG

 unicode-escape = %x75 4HEXDIG / %x55 8HEXDIG

 DQUOTE = %x22

 An escape sequence denotes a single Unicode code point. For
 hexadecimal and Unicode escape sequences, the code point is expressed
 by the hexadecimal number following the "\x", "\X", "\u", or "\U"
 prefix. Simple escape sequences indicate the code points listed in
 Table 1.

 +-----------------+------------+----------------------+
 | Escape Sequence | Code Point | Character Name |
 +-----------------+------------+----------------------+
 | \0 | U+0000 | Null |
 | \b | U+0008 | Backspace |
 | \t | U+0009 | Character Tabulation |
 | \n | U+000A | Line Feed |
 | \v | U+000B | Line Tabulation |
 | \f | U+000C | Form Feed |
 | \r | U+000D | Carriage Return |
 | \" | U+0022 | Quotation Mark |
 | \' | U+0027 | Apostrophe |
 | \\ | U+005C | Reverse Solidus |
 +-----------------+------------+----------------------+

 Table 1: Simple Escape Sequences

5.1.6.6. Null Literal

 The case-insensitive tokens "null" and "_" denote the intentional
 absence of any value.

 null = "null" / "_"

Hartke Expires April 25, 2019 [Page 20]

Internet-Draft Constrained RESTful Application Language October 2018

5.1.7. Punctuators

 Punctuator tokens are used for grouping and separating.

 punctuator = "#" | ":" | "*" | "[" | "]" | "{" | "}" | "=" | "->"

5.2. Syntactic Structure

 The syntactic structure of a document in the textual format is made
 up of four kinds of elements: links, forms, embedded representations,
 and (as an extension to the CoRAL data model) directives. Directives
 provide a way to make documents easier to read and write by defining
 base IRIs for relative IRI references and introducing shorthands for
 IRIs.

 Elements are processed in the order they appear in the document.
 Document processors need to maintain an _environment_ while iterating
 a list of elements. The environment consists of three variables: a
 current context IRI, a _current base IRI_, and a _current mapping
 from identifiers to IRIs_. The current context IRI and current base
 IRI are initially both set to the document's retrieval context. The
 current mapping from identifiers to IRIs is initially empty.

5.2.1. Documents

 The body of a document in the textual format consists of zero or more
 links, forms, and directives.

 body = *(link / form / representation / directive)

5.2.2. Links

 A link consists of the link relation type, followed by the link
 target, optionally followed by a link body enclosed in curly brackets
 ("{" and "}").

 link = relation target ["{" body "}"]

 The link relation type is denoted either by an absolute IRI
 reference, a simple name, a qualified name, or an integer.

 relation = iri / simple-name / qualified-name / integer

 A simple name consists of an identifier. It is resolved to an IRI by
 looking up the empty string in the current mapping from identifiers
 to IRIs and appending the specified identifier to the result. It is
 an error if the empty string is not present in the mapping.

Hartke Expires April 25, 2019 [Page 21]

Internet-Draft Constrained RESTful Application Language October 2018

 simple-name = identifier

 A qualified name consists of two identifiers separated by a colon
 (":"). It is resolved to an IRI by looking up the identifier on the
 left hand side in the current mapping from identifiers to IRIs and
 appending the identifier on the right hand side to the result. It is
 an error if the identifier on the left hand side is not present in
 the mapping.

 qualified-name = identifier ":" identifier

 The link target is denoted by an IRI reference or represented by a
 value literal. The IRI reference MAY be relative or absolute, and
 MUST be resolved against the current base IRI. If the link target is
 null, the link target is an unidentified resource.

 target = iri / literal / null

 literal = boolean / integer / floating-point / bytes / text

 The list of elements in the link body, if any, MUST be processed in a
 fresh environment. The current context IRI and current base IRI in
 this environment are initially both set to the link target of the
 enclosing link. The mapping from identifiers to IRIs is initially
 set to a copy of the mapping from identifiers to IRIs in the current
 environment.

5.2.3. Forms

 A form consists of the form relation type, followed by a "->" token,
 a method identifier, and a submission IRI reference, optionally
 followed by form data enclosed in square brackets ("[" and "]").

 form = relation "->" method iri ["[" form-data "]"]

 The form relation type is denoted in the same way as a link relation
 type (Section 5.2.2).

 The method identifier refers to one of the request methods defined by
 the Web transfer protocol identified by the scheme of the submission
 IRI. Method identifiers are case-insensitive and constrained to
 Unicode characters in the Basic Latin block.

 method = identifier

 For HTTP [RFC7230], the set of possible method identifiers is
 maintained in the IANA HTTP Method Registry. For CoAP [RFC7252], the

https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires April 25, 2019 [Page 22]

Internet-Draft Constrained RESTful Application Language October 2018

 set of possible method identifiers is maintained in the IANA CoAP
 Method Codes Registry.

 The submission IRI reference MAY be relative or absolute, and MUST be
 resolved against the current base IRI.

5.2.3.1. Form Data

 Form data consists of zero or more name-value pairs.

 form-data = *(form-field-name form-field-value)

 Form data, if any, MUST be processed in a fresh environment. The
 current context IRI and current base IRI in this environment are
 initially both set to the submission IRI of the enclosing form. The
 mapping from identifiers to IRIs is initially set to a copy of the
 mapping from identifiers to IRIs in the current environment.

 The form field name is denoted in the same way as a link relation
 type (Section 5.2.2).

 form-field-name = iri / simple-name / qualified-name / integer

 The form field value can be an IRI reference, Boolean literal,
 integer literal, floating-point literal, byte string literal, text
 string literal, or null. An IRI reference MAY be relative or
 absolute, and MUST be resolved against the current base IRI.

 form-field-value = iri / boolean / integer

 form-field-value =/ floating-point / bytes / text / null

5.2.4. Embedded Representations

 An embedded representation consists of a "*" token, followed by the
 representation data, optionally followed by representation metadata
 enclosed in square brackets ("[" and "]").

 representation = "*" bytes ["[" representation-metadata "]"]

 Representation metadata consists of zero or more name-value pairs.

 representation-metadata = *(metadata-name metadata-value)

 This document specifies only one kind of metadata item, labeled with
 the name "type": the HTTP content type or CoAP content format of the
 representation.

Hartke Expires April 25, 2019 [Page 23]

Internet-Draft Constrained RESTful Application Language October 2018

 metadata-name = "type"

 metadata-value = text / integer

 For HTTP, the content type MUST be specified as a text string in the
 format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the set of
 possible values is maintained in the IANA Media Types Registry. For
 CoAP, the content format MUST be specified as an integer; the set of
 possible values is maintained in the IANA CoAP Content-Formats
 Registry.

 A metadata item with the name "type" MUST NOT occur more than once.
 If absent, its value defaults to content type "application/octet-
 stream" or content format 42.

5.2.5. Directives

 Directives provide the ability to manipulate the environment when
 processing a list of elements. All directives start with a number
 sign ("#") followed by a directive identifier. Directive identifiers
 are case-insensitive and constrained to Unicode characters in the
 Basic Latin block.

 The following directives are available: Base IRI directives and Using
 directives.

 directive = base-directive / using-directive

5.2.5.1. Base IRI Directives

 A Base IRI directive consists of a number sign ("#"), followed by the
 case-insensitive identifier "base", followed by an IRI reference.

 base-directive = "#" "base" iri

 The IRI reference MAY be relative or absolute, and MUST be resolved
 against the current context IRI.

 The directive is processed by resolving the IRI reference against the
 current context IRI and assigning the result to the current base IRI.

5.2.5.2. Using Directives

 A Using directive consists of a number sign ("#"), followed by the
 case-insensitive identifier "using", optionally followed by an
 identifier and an equals sign ("="), finally followed by an absolute
 IRI reference. If the identifier is not specified, it is assumed to
 be the empty string.

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231

Hartke Expires April 25, 2019 [Page 24]

Internet-Draft Constrained RESTful Application Language October 2018

 using-directive = "#" "using" [identifier "="] iri

 The IRI reference MUST be absolute.

 The directive is processed by adding the specified identifier and IRI
 to the current mapping from identifiers to IRIs. It is an error if
 the identifier is already present in the mapping.

6. Usage Considerations

 This section discusses some considerations in creating CoRAL-based
 applications and managing link and form relation types.

6.1. Specifying CoRAL-based Applications

 CoRAL-based applications naturally implement the Web architecture
 [W3C.REC-webarch-20041215] and thus are centered around orthogonal
 specifications for identification, interaction, and representation:

 o Resources are identified by IRIs or represented by value literals.

 o Interactions are based on the hypermedia interaction model of the
 Web and the methods provided by the Web transfer protocol. The
 semantics of possible interactions are identified by link and form
 relation types.

 o Representations are CoRAL documents encoded in the binary format
 defined in Section 4 or the textual format defined in Section 5.
 Depending on the application, additional representation formats
 may be used.

 Specifications for CoRAL-based applications need to list the specific
 components used in the application and their identifiers. This
 SHOULD include at least the following items:

 o IRI schemes that identify the Web transfer protocol(s) used in the
 application.

 o Internet media types that identify the representation format(s)
 used in the application, including the media type(s) of the CoRAL
 serialization format(s).

 o Link relation types that identify the semantics of links.

 o Form relation types that identify the semantics of forms.
 Additionally, for each form relation type, the permissible request
 method(s).

Hartke Expires April 25, 2019 [Page 25]

Internet-Draft Constrained RESTful Application Language October 2018

 o Form field names that identify the semantics of form fields.
 Additionally, for each form field name, the permissible form field
 value(s) or type(s).

6.1.1. Naming Resources

 Resource names -- URIs [RFC3986] and IRIs [RFC3987] -- are a
 cornerstone of Web-based applications. They enable the uniform
 identification of resources and are used every time a client
 interacts with a server or a resource representation needs to refer
 to another resource.

 URIs and IRIs often include structured application data in the path
 and query components, such as paths in a filesystem or keys in a
 database. It is a common practice in many HTTP-based applications to
 make this part of the application specification, i.e., to prescribe
 fixed URI templates that are hard-coded in implementations. There
 are, however, a number of problems with this practice [RFC7320].

 In CoRAL-based applications, resource names are not part of the
 application specification; they are an implementation detail. The
 specification of a CoRAL-based application MUST NOT mandate any
 particular form of resource name structure. BCP 190 [RFC7320]
 describes the problematic practice of fixed URI structures in more
 detail and provides some acceptable alternatives.

6.1.2. Implementation Limits

 This document places no restrictions on the number of elements in a
 CoRAL document or the depth of nested elements. Applications using
 CoRAL (in particular those running in constrained environments) MAY
 wish to limit these numbers and specify implementation limits that an
 application implementation must at least support to be interoperable.

 Applications MAY also mandate the following and other restrictions:

 o use of only either the binary format or the text format;

 o use of only either HTTP or CoAP as supported Web transfer
 protocol;

 o use of only either IRIs or unsigned integers to denote link
 relation types, form relation types, and form field names;

 o use of only either short forms or long forms in the binary format;

 o use of only either HTTP content types or CoAP content formats;

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc7320
https://datatracker.ietf.org/doc/html/bcp190
https://datatracker.ietf.org/doc/html/rfc7320

Hartke Expires April 25, 2019 [Page 26]

Internet-Draft Constrained RESTful Application Language October 2018

 o use of IRI references only up to a specific length;

 o use of CBOR in a canonical format (Section 3.9 of RFC 7049
 [RFC7049]).

6.2. Minting New Relation Types

 New link relation types, form relation types, and form field names
 can be minted by defining an IRI [RFC3987] that uniquely identifies
 the item. Although the IRI can point to a resource that contains a
 definition of the semantics of the relation type, clients SHOULD NOT
 automatically access that resource to avoid overburdening its server.
 The IRI SHOULD be under the control of the person or party defining
 it, or be delegated to them.

 Link relation types registered in the IANA Link Relations Registry,
 such as "collection" [RFC6573] or "icon" [W3C.REC-html52-20171214],
 can be used in CoRAL by appending the registered name to the IRI
 <http://www.iana.org/assignments/relation/>:

 #using iana = <http://www.iana.org/assignments/relation/>

 iana:collection </items>
 iana:icon </favicon.png>

 A good source for link relation types for resource metadata are RDF
 predicates [W3C.REC-rdf11-concepts-20140225]. An RDF statement says
 that some relationship, indicated by a predicate, holds between two
 resources. RDF predicates and link relation types can therefore
 often be used interchangeably. For example, a CoRAL document could
 describe its creator by using the FOAF vocabulary [FOAF]:

 #using iana = <http://www.iana.org/assignments/relation/>
 #using foaf = <http://xmlns.com/foaf/0.1/>

 foaf:maker _ {
 iana:type <http://xmlns.com/foaf/0.1/Person>
 foaf:familyName "Hartke"
 foaf:givenName "Klaus"
 foaf:mbox <mailto:klaus.hartke@ericsson.com>
 }

6.3. Registering Relation Types

 IRIs that identify link relation types, form relation types, and form
 field names do not need to be registered. The inclusion of DNS names
 in IRIs allows for the decentralized creation of new IRIs without the
 risk of collisions.

https://datatracker.ietf.org/doc/html/rfc7049#section-3.9
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc6573
http://www.iana.org/assignments/relation/
http://www.iana.org/assignments/relation/
http://www.iana.org/assignments/relation/
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/Person

Hartke Expires April 25, 2019 [Page 27]

Internet-Draft Constrained RESTful Application Language October 2018

 However, IRIs can be relatively verbose and impose a high overhead on
 representations. This can be a problem in constrained environments
 [RFC7228]. Therefore, CoRAL alternatively allows the use of unsigned
 integers to identify link relation types, form relation types, and
 form field names. These impose a much smaller overhead but instead
 need to be assigned by a registry to avoid collisions.

 This document does not create a registry for such integers. Instead,
 the media types for CoRAL documents in the binary and textual format
 are defined to have a "profile" parameter [RFC6906] that determines
 the registry in use. The registry is identified by a URI [RFC3986].
 For example, a CoRAL document that uses the registry identified by
 the URI <http://example.com/registry> can use the following media
 type:

 application/coral+cbor; profile="http://example.com/registry"

 The URI serves only as an identifier; it does not necessarily have to
 be dereferencable (or even use a dereferencable URI scheme). It is
 permissible, though, to use a dereferencable URI and to serve a
 representation that provides information about the registry in a
 human- or machine-readable way. (The format of such a representation
 is outside the scope of this document.)

 For simplicity, a CoRAL document can use unsigned integers from only
 one registry. The "profile" parameter of the CoRAL media types MUST
 contain a single URI, not a white space separated list of URIs as
 recommended by RFC 6906 [RFC6906]. If the "profile" parameter is
 absent, the default profile specified in Appendix B of this document
 is assumed.

 A CoRAL registry SHOULD map each unsigned integer to a full IRI that
 identifies a link relation type, form relation type, or form field
 name. Once an integer has been assigned, the assignment MUST NOT be
 changed or removed. A registry MAY provide additional information
 about an assignment that MAY change over time.

 In CoAP [RFC7252], media types (including specific values for their
 parameters) are encoded as an unsigned integer called the _content
 format_. For use with CoAP, each CoRAL registry needs to register a
 new content format in the IANA CoAP Content-Formats Registry. Each
 such registered content format MUST specify a CoRAL media type with a
 "profile" parameter that contains the registry URI.

https://datatracker.ietf.org/doc/html/rfc7228
https://datatracker.ietf.org/doc/html/rfc6906
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6906
https://datatracker.ietf.org/doc/html/rfc6906
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires April 25, 2019 [Page 28]

Internet-Draft Constrained RESTful Application Language October 2018

6.4. Expressing Link Target Attributes

 Link target attributes defined for use with CoRE Link Format
 [RFC6690] (such as "type", "hreflang", "media", "ct", "rt", "if",
 "sz", and "obs") can be expressed in CoRAL by nesting links under the
 respective link and specifying the attribute name appended to the IRI
 <http://TBD/> as the link relation type.

 If the expressed link target attribute has a value, the target of the
 nested link MUST be a text string; otherwise, the target MUST be the
 Boolean value "true":

 #using iana = <http://www.iana.org/assignments/relation/>
 #using attr = <http://TBD/>

 iana:item </patches/1> {
 attr:type "application/json-patch+json"
 attr:ct "51"
 attr:sz "247"
 attr:obs true
 }

 [[NOTE TO RFC EDITOR: Please replace all occurrences of "http://TBD/"
 in this document with an IETF-controlled IRI, such as "urn:ietf:..."
 or "http://...ietf.org/...".]]

 Link target attributes that do not actually describe the link target
 but the link itself (such as "rel", "anchor", "rev", "title", and
 "title*") are excluded from this provision and MUST NOT occur in a
 CoRAL document.

6.5. Embedding CoRAL in CBOR Structures

 Data items in the CoRAL binary format (Section 4) MAY be embedded in
 other CBOR [RFC7049] data structures. Specifications using CDDL
 [I-D.ietf-cbor-cddl] SHOULD reference the following CDDL definitions
 for this purpose:

 CoRAL-Body = body

 CoRAL-Link = link

 CoRAL-Form = form

https://datatracker.ietf.org/doc/html/rfc6690
http://TBD/
http://www.iana.org/assignments/relation/
http://TBD/
https://datatracker.ietf.org/doc/html/rfc7049

Hartke Expires April 25, 2019 [Page 29]

Internet-Draft Constrained RESTful Application Language October 2018

7. Security Considerations

 Parsers of CoRAL documents must operate on input that is assumed to
 be untrusted. This means that parsers MUST fail gracefully in the
 face of malicious inputs. Additionally, parsers MUST be prepared to
 deal with resource exhaustion (e.g., resulting from the allocation of
 big data items) or exhaustion of the call stack (stack overflow).
 See Section 8 of RFC 7049 [RFC7049] for security considerations
 relating to parsing CBOR.

 Implementers of the CoRAL textual format need to consider the
 security aspects of handling Unicode input. See the Unicode Standard
 Annex #36 [UNICODE-UAX36] for security considerations relating to
 visual spoofing and misuse of character encodings. See Section 10 of
 RFC 3629 [RFC3629] for security considerations relating to UTF-8.

 CoRAL makes extensive use of IRIs and URIs. See Section 8 of RFC
3987 [RFC3987] for security considerations relating to IRIs. See
Section 7 of RFC 3986 [RFC3986] for security considerations relating

 to URIs.

 The security of applications using CoRAL can depend on the proper
 preparation and comparison of internationalized strings. For
 example, such strings can be used to make authentication and
 authorization decisions, and the security of an application could be
 compromised if an entity providing a given string is connected to the
 wrong account or online resource based on different interpretations
 of the string. See RFC 6943 [RFC6943] for security considerations
 relating to identifiers in IRIs and other locations.

 CoRAL is intended to be used in conjunction with a Web transfer
 protocol like HTTP or CoAP. See Section 9 of RFC 7320 [RFC7230],

Section 9 of RFC 7231 [RFC7231], etc., for security considerations
 relating to HTTP. See Section 11 of RFC 7252 [RFC7252] for security
 considerations relating to CoAP.

 CoRAL does not define any specific mechanisms for protecting the
 confidentiality and integrity of CoRAL documents. It relies on
 application layer or transport layer mechanisms for this, such as
 Transport Layer Security (TLS) [RFC8446].

 CoRAL documents and the structure of a web of resources revealed from
 automatically following links can disclose personal information and
 other sensitive information. Implementations need to prevent the
 unintentional disclosure of such information. See Section of 9 of

RFC 7231 [RFC7231] for additional considerations.

https://datatracker.ietf.org/doc/html/rfc7049#section-8
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc3629#section-10
https://datatracker.ietf.org/doc/html/rfc3629#section-10
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc3986#section-7
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6943
https://datatracker.ietf.org/doc/html/rfc6943
https://datatracker.ietf.org/doc/html/rfc7320#section-9
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231#section-9
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252#section-11
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231

Hartke Expires April 25, 2019 [Page 30]

Internet-Draft Constrained RESTful Application Language October 2018

 Applications using CoRAL ought to consider the attack vectors opened
 by automatically following, trusting, or otherwise using links and
 forms in CoRAL documents. In particular, a server that is
 authoritative for the CoRAL representation of a resource may not
 necessarily be authoritative for elements nested inside the top level
 links in the document.

8. IANA Considerations

8.1. Media Type "application/coral+cbor"

 This document registers the media type "application/coral+cbor"
 according to the procedures of BCP 13 [RFC6838].

 Type name:
 application

 Subtype name:
 coral+cbor

 Required parameters:
 N/A

 Optional parameters:
 profile - See Section 6.3 of [I-D.hartke-t2trg-coral].

 Encoding considerations:
 binary - See Section 4 of [I-D.hartke-t2trg-coral].

 Security considerations:
 See Section 7 of [I-D.hartke-t2trg-coral].

 Interoperability considerations:
 N/A

 Published specification:
 [I-D.hartke-t2trg-coral]

 Applications that use this media type:
 See Section 1 of [I-D.hartke-t2trg-coral].

 Fragment identifier considerations:
 As specified for "application/cbor".

 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): N/A

https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838

Hartke Expires April 25, 2019 [Page 31]

Internet-Draft Constrained RESTful Application Language October 2018

 Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Intended usage:
 COMMON

 Restrictions on usage:
 N/A

 Author:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Change controller:
 IESG

 Provisional registration?
 No

8.2. Media Type "text/coral"

 This document registers the media type "text/coral" according to the
 procedures of BCP 13 [RFC6838] and guidelines in RFC 6657 [RFC6657].

 Type name:
 text

 Subtype name:
 coral

 Required parameters:
 N/A

 Optional parameters:
 profile - See Section 6.3 of [I-D.hartke-t2trg-coral].

 Encoding considerations:
 binary - See Section 5 of [I-D.hartke-t2trg-coral].

 Security considerations:
 See Section 7 of [I-D.hartke-t2trg-coral].

 Interoperability considerations:
 N/A

 Published specification:
 [I-D.hartke-t2trg-coral]

https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc6657
https://datatracker.ietf.org/doc/html/rfc6657

Hartke Expires April 25, 2019 [Page 32]

Internet-Draft Constrained RESTful Application Language October 2018

 Applications that use this media type:
 See Section 1 of [I-D.hartke-t2trg-coral].

 Fragment identifier considerations:
 N/A

 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A
 File extension(s): .coral
 Macintosh file type code(s): TEXT

 Person & email address to contact for further information:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Intended usage:
 COMMON

 Restrictions on usage:
 N/A

 Author:
 See the Author's Address section of [I-D.hartke-t2trg-coral].

 Change controller:
 IESG

 Provisional registration?
 No

8.3. CoAP Content Formats

 This document registers CoAP content formats for the media types
 "application/coral+cbor" and "text/coral" according to the procedures
 of RFC 7252 [RFC7252].

 o Media Type: application/coral+cbor
 Content Coding: identity
 ID: TBD (maybe 63)
 Reference: [I-D.hartke-t2trg-coral]

 o Media Type: text/coral
 Content Coding: identity
 ID: TBD (maybe 10063)
 Reference: [I-D.hartke-t2trg-coral]

https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7252

Hartke Expires April 25, 2019 [Page 33]

Internet-Draft Constrained RESTful Application Language October 2018

9. References

9.1. Normative References

 [I-D.hartke-t2trg-ciri]
 Hartke, K., "Constrained Internationalized Resource
 Identifiers", draft-hartke-t2trg-ciri-00 (work in
 progress), October 2018.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-05 (work in progress), August 2018.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
 January 2005, <https://www.rfc-editor.org/info/rfc3987>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC6657] Melnikov, A. and J. Reschke, "Update to MIME regarding
 "charset" Parameter Handling in Textual Media Types",

RFC 6657, DOI 10.17487/RFC6657, July 2012,
 <https://www.rfc-editor.org/info/rfc6657>.

https://datatracker.ietf.org/doc/html/draft-hartke-t2trg-ciri-00
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-05
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-05
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc6657
https://www.rfc-editor.org/info/rfc6657

Hartke Expires April 25, 2019 [Page 34]

Internet-Draft Constrained RESTful Application Language October 2018

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/info/rfc6838>.

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <https://www.rfc-editor.org/info/rfc6943>.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049,
 October 2013, <https://www.rfc-editor.org/info/rfc7049>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/info/rfc8288>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard",
 <http://www.unicode.org/versions/latest/>.

 Note that this reference is to the latest version of
 Unicode, rather than to a specific release. It is not
 expected that future changes in the Unicode specification
 will have any impact on this document.

 [UNICODE-UAX15]
 The Unicode Consortium, "Unicode Standard Annex #15:
 Unicode Normalization Forms",
 <http://unicode.org/reports/tr15/>.

 [UNICODE-UAX31]
 The Unicode Consortium, "Unicode Standard Annex #31:
 Unicode Identifier and Pattern Syntax",
 <http://unicode.org/reports/tr31/>.

 [UNICODE-UAX36]
 The Unicode Consortium, "Unicode Standard Annex #36:
 Unicode Security Considerations",
 <http://unicode.org/reports/tr36/>.

https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
https://www.rfc-editor.org/info/rfc6838
https://datatracker.ietf.org/doc/html/rfc6943
https://www.rfc-editor.org/info/rfc6943
https://datatracker.ietf.org/doc/html/rfc7049
https://www.rfc-editor.org/info/rfc7049
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
http://www.unicode.org/versions/latest/
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr31/
http://unicode.org/reports/tr36/

Hartke Expires April 25, 2019 [Page 35]

Internet-Draft Constrained RESTful Application Language October 2018

9.2. Informative References

 [FOAF] Brickley, D. and L. Miller, "FOAF Vocabulary Specification
 0.99", January 2014,
 <http://xmlns.com/foaf/spec/20140114.html>.

 [I-D.ietf-core-links-json]
 Li, K., Rahman, A., and C. Bormann, "Representing
 Constrained RESTful Environments (CoRE) Link Format in
 JSON and CBOR", draft-ietf-core-links-json-10 (work in
 progress), February 2018.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, DOI 10.17487/RFC5789, March 2010,

 <https://www.rfc-editor.org/info/rfc5789>.

 [RFC6573] Amundsen, M., "The Item and Collection Link Relations",
RFC 6573, DOI 10.17487/RFC6573, April 2012,

 <https://www.rfc-editor.org/info/rfc6573>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/info/rfc6690>.

 [RFC6903] Snell, J., "Additional Link Relation Types", RFC 6903,
 DOI 10.17487/RFC6903, March 2013,
 <https://www.rfc-editor.org/info/rfc6903>.

 [RFC6906] Wilde, E., "The 'profile' Link Relation Type", RFC 6906,
 DOI 10.17487/RFC6906, March 2013,
 <https://www.rfc-editor.org/info/rfc6906>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/info/rfc7228>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

http://xmlns.com/foaf/spec/20140114.html
https://datatracker.ietf.org/doc/html/draft-ietf-core-links-json-10
https://datatracker.ietf.org/doc/html/rfc5789
https://www.rfc-editor.org/info/rfc5789
https://datatracker.ietf.org/doc/html/rfc6573
https://www.rfc-editor.org/info/rfc6573
https://datatracker.ietf.org/doc/html/rfc6690
https://www.rfc-editor.org/info/rfc6690
https://datatracker.ietf.org/doc/html/rfc6903
https://www.rfc-editor.org/info/rfc6903
https://datatracker.ietf.org/doc/html/rfc6906
https://www.rfc-editor.org/info/rfc6906
https://datatracker.ietf.org/doc/html/rfc7228
https://www.rfc-editor.org/info/rfc7228
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231

Hartke Expires April 25, 2019 [Page 36]

Internet-Draft Constrained RESTful Application Language October 2018

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/info/rfc7252>.

 [RFC7320] Nottingham, M., "URI Design and Ownership", BCP 190,
RFC 7320, DOI 10.17487/RFC7320, July 2014,

 <https://www.rfc-editor.org/info/rfc7320>.

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <https://www.rfc-editor.org/info/rfc8132>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [W3C.REC-html52-20171214]
 Faulkner, S., Eicholz, A., Leithead, T., Danilo, A., and
 S. Moon, "HTML 5.2", World Wide Web Consortium
 Recommendation REC-html52-20171214, December 2017,
 <https://www.w3.org/TR/2017/REC-html52-20171214>.

 [W3C.REC-rdf11-concepts-20140225]
 Cyganiak, R., Wood, D., and M. Lanthaler, "RDF 1.1
 Concepts and Abstract Syntax", World Wide Web Consortium
 Recommendation REC-rdf11-concepts-20140225, February 2014,
 <http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225>.

 [W3C.REC-turtle-20140225]
 Prud'hommeaux, E. and G. Carothers, "RDF 1.1 Turtle",
 World Wide Web Consortium Recommendation REC-turtle-
 20140225, February 2014,
 <http://www.w3.org/TR/2014/REC-turtle-20140225>.

 [W3C.REC-webarch-20041215]
 Jacobs, I. and N. Walsh, "Architecture of the World Wide
 Web, Volume One", World Wide Web Consortium
 Recommendation REC-webarch-20041215, December 2004,
 <http://www.w3.org/TR/2004/REC-webarch-20041215>.

Appendix A. Core Vocabulary

 This section defines the core vocabulary for CoRAL. It is
 RECOMMENDED that all CoRAL registries assign an unsigned integer to
 each of these link relation types, form relation types, and form
 field names.

https://datatracker.ietf.org/doc/html/rfc7252
https://www.rfc-editor.org/info/rfc7252
https://datatracker.ietf.org/doc/html/bcp190
https://datatracker.ietf.org/doc/html/rfc7320
https://www.rfc-editor.org/info/rfc7320
https://datatracker.ietf.org/doc/html/rfc8132
https://www.rfc-editor.org/info/rfc8132
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://www.w3.org/TR/2017/REC-html52-20171214
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225
http://www.w3.org/TR/2014/REC-turtle-20140225
http://www.w3.org/TR/2004/REC-webarch-20041215

Hartke Expires April 25, 2019 [Page 37]

Internet-Draft Constrained RESTful Application Language October 2018

 [[NOTE TO RFC EDITOR: Please replace all occurrences of "urn:TBD" in
 this document with an IETF-controlled IRI, such as "urn:ietf:..." or
 "http://...ietf.org/...".]]

A.1. Link Relation Types

 <http://www.iana.org/assignments/relation/type>
 Indicates that the link's context is an instance of the type
 specified as the link's target; see Section 6 of RFC 6903
 [RFC6903].

 This link relation type serves in CoRAL the same purpose as the
 RDF predicate identified by the IRI <http://www.w3.org/1999/02/22-

rdf-syntax-ns#type>.

 <http://www.iana.org/assignments/relation/item>
 Indicates that the link's context is a collection and that the
 link's target is a member of that collection; see Section 2.1 of
 RFC 6573 [RFC6573].

 <http://www.iana.org/assignments/relation/collection>
 Indicates that the link's target is a collection and that the
 link's context is a member of that collection; see Section 2.2 of
 RFC 6573 [RFC6573].

A.2. Form Relation Types

 <urn:TBD#create>
 Indicates that the form's context is a collection and that a new
 item can be created in that collection by submitting a suitable
 representation. This form relation type is typically used with
 the POST method [RFC7231] [RFC7252].

 <urn:TBD#update>
 Indicates that the form's context can be updated by submitting a
 suitable representation. This form relation type is typically
 used with the PUT method [RFC7231] [RFC7252], PATCH method
 [RFC5789] [RFC8132], or iPATCH method [RFC8132].

 <urn:TBD#delete>
 Indicates that the form's context can be deleted. This form
 relation type is typically used with the DELETE method [RFC7231]
 [RFC7252].

 <urn:TBD#search>
 Indicates that the form's context can be searched by submitting a
 search query. This form relation type is typically used with the
 POST method [RFC7231] [RFC7252] or FETCH method [RFC8132].

http://www.iana.org/assignments/relation/type
https://datatracker.ietf.org/doc/html/rfc6903#section-6
https://datatracker.ietf.org/doc/html/rfc6903
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
http://www.iana.org/assignments/relation/item
https://datatracker.ietf.org/doc/html/rfc6573#section-2.1
https://datatracker.ietf.org/doc/html/rfc6573#section-2.1
https://datatracker.ietf.org/doc/html/rfc6573
http://www.iana.org/assignments/relation/collection
https://datatracker.ietf.org/doc/html/rfc6573#section-2.2
https://datatracker.ietf.org/doc/html/rfc6573#section-2.2
https://datatracker.ietf.org/doc/html/rfc6573
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc8132
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7252
https://datatracker.ietf.org/doc/html/rfc8132

Hartke Expires April 25, 2019 [Page 38]

Internet-Draft Constrained RESTful Application Language October 2018

A.3. Form Field Names

 <urn:TBD#accept>
 Specifies an acceptable HTTP content type or CoAP content format
 for the request payload. There MAY be multiple form fields with
 this name. If a form does not include a form field with this
 name, the server accepts any or no request payload, depending on
 the form relation type.

 For HTTP, the content type MUST be specified as a text string in
 the format defined in Section 3.1.1.1 of RFC 7231 [RFC7231]; the
 set of possible values is maintained in the IANA Media Types
 Registry. For CoAP, the content format MUST be specified as an
 unsigned integer; the set of possible values is maintained in the
 IANA CoAP Content-Formats Registry.

Appendix B. Default Profile

 This section defines a default registry that is assumed when a CoRAL
 media type without a "profile" parameter is used.

 0 = <http://www.iana.org/assignments/relation/type>

 1 = <http://www.iana.org/assignments/relation/item>

 2 = <http://www.iana.org/assignments/relation/collection>

 3 = <urn:TBD#create>

 4 = <urn:TBD#update>

 5 = <urn:TBD#delete>

 6 = <urn:TBD#search>

 7 = <urn:TBD#accept>

Author's Address

 Klaus Hartke
 Ericsson
 Torshamnsgatan 23
 Stockholm SE-16483
 Sweden

 Email: klaus.hartke@ericsson.com

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.1.1
https://datatracker.ietf.org/doc/html/rfc7231
http://www.iana.org/assignments/relation/type
http://www.iana.org/assignments/relation/item
http://www.iana.org/assignments/relation/collection

Hartke Expires April 25, 2019 [Page 39]

