
XMPP Working Group K. Hartke
Internet-Draft C. Bormann
Intended status: Informational Universitaet Bremen TZI
Expires: January 6, 2010 July 5, 2009

STUN/TURN using PHP in Despair
draft-hartke-xmpp-stupid-00

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on January 6, 2010.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hartke & Bormann Expires January 6, 2010 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft STuPiD July 2009

Abstract

 NAT (Network Address Translator) Traversal may require TURN
 (Traversal Using Relays around NAT) functionality in certain cases
 that are not unlikely to occur. There is little incentive to deploy
 TURN servers, except by those who need them -- who may not be in a
 position to deploy a new protocol on an Internet-connected node, in
 particular not one with deployment requirements as high as those of
 TURN.

 "STUN/TURN using PHP in Despair" is a highly deployable protocol for
 obtaining TURN-like functionality, while also providing the most
 important function of STUN.

Table of Contents

1. Introduction . 3
1.1. The Need for Standardization 3

2. Basic Protocol Operation 4
3. Protocol Definition . 6
3.1. Terminology . 6
3.2. Discovering External IP Address and Port 6
3.3. Storing Data . 6
3.4. Notification . 7
3.5. Retrieving Data . 7

4. Implementation Notes . 8
5. Security Considerations 9
6. References . 10
6.1. Normative References 10
6.2. Informative References 10

Appendix A. Examples . 11
Appendix B. Sample Implementation 14
Appendix C. Using XMPP as Out-Of-Band Channel 15

 Authors' Addresses . 17

Hartke & Bormann Expires January 6, 2010 [Page 2]

Internet-Draft STuPiD July 2009

1. Introduction

 NAT (Network Address Translator) Traversal may require TURN
 (Traversal Using Relays around NAT) [I-D.ietf-behave-turn]
 functionality in certain cases that are not unlikely to occur. There
 is little incentive to deploy TURN servers, except by those who need
 them -- who may not be in a position to deploy a new protocol on an
 Internet-connected node, in particular not one with deployment
 requirements as high as those of TURN.

 "STUN/TURN using PHP in Despair" is a highly deployable protocol for
 obtaining TURN-like functionality, while also providing the most
 important function of STUN [RFC5389].

 The high degree of deployability is achieved by making STuPiD a Web
 service, implementable in any Web application deployment scheme. As
 PHP appears to be the solution of choice for avoiding deployment
 problems in the Web world, a PHP-based sample implementation of
 STuPiD is presented in Figure 5 in Appendix B. (This single-page
 script has been tested with a free-of-charge web hoster, so it should
 be deployable by literally everyone.)

1.1. The Need for Standardization

 If STuPiD is so easy to deploy, why standardize on it? First of all,
 STuPiD server implementations will be done by other people than the
 clients making use of the service. Clearly communicating between
 these communities is a good idea, in particular if there are security
 considerations.

 Having one standard form of STuPiD service instead of one specific to
 each kind of client also creates an incentive for optimized
 implementations.

 Finally, where STuPiD becomes part of a client standard (such as a
 potential extension to XMPP's in-band byte-stream protocol as hinted
 in Appendix C), it is a good thing if STuPiD is already defined.

 Hence, this document focuses on the definition of the STuPiD service
 itself, tries to make this as general as possible without increasing
 complexity or cost and leaves the details of any client standards to
 future documents.

https://datatracker.ietf.org/doc/html/rfc5389

Hartke & Bormann Expires January 6, 2010 [Page 3]

Internet-Draft STuPiD July 2009

2. Basic Protocol Operation

 The STuPiD protocol will typically be used with application instances
 that first attempt to obtain connectivity using mechanisms similar to
 those described in the STUN specification [RFC5389]. However, with
 STuPiD, STUN is not really needed for TCP, as was demonstrated in
 previous STUN-like implementations [STUNT]. Instead, STuPiD (like
 [STUNT]) provides a simple Web service that echoes the remote address
 and port of an incoming HTTP request; in most cases, this is enough
 to get the job done.

 In case no connection can be established with this simple STUN(T)-
 like mechanism, a TURN-like relay is needed as a final fall-back.
 The STuPiD protocol supports this, but solely provides a way for the
 data to be relayed. STuPiD relies on an out-of-band channel to
 notify the peer whenever new data is available (synchronization
 signal). See Appendix C for one likely example of such an out-of-
 band channel. (Note that the out-of-band channel may have a much
 lower throughput than the STuPiD relay channel -- this is exactly the
 case in the example provided in Appendix C, where the out-of-band
 channel is typically throughput-limited to on the order of a few
 kilobits per second.)

 By designing the STuPiD web service in such a way that it can be
 implemented by a simple PHP script such as that presented in

Appendix B, it is easy to deploy by those who need the STuPiD
 services. The combination of the low-throughput out-of-band channel
 for synchronization and the STuPiD web service for bulk data relaying
 is somewhat silly but gets the job done.

 The STuPiD data relay is implemented as follows (see Figure 1):

 1. Peer A, the source of the data to be relayed, stores a chunk of
 data at the STuPiD server using an opaque identifier, the "chunk
 identifier". How that chunk identifier is chosen is local to
 Peer A; it could be composed of a random session id and a
 sequence number.

 2. Peer A notifies the receiver of the data, Peer B, that a new data
 chunk is available, specifying the URI needed for retrieval.
 This notification is provided through an out-out-band channel.
 (As an optimization for multiple consecutive transfers, A might
 inform B once of a constant prefix of that URI and only send a
 varying part such as a sequence number in each notification --
 this is something to be decided in the client-client notification
 protocol.)

https://datatracker.ietf.org/doc/html/rfc5389

Hartke & Bormann Expires January 6, 2010 [Page 4]

Internet-Draft STuPiD July 2009

 3. Peer B retrieves the data from the STuPiD server using the URI
 provided by Peer A.

 Note that the data transfer mechanism is one-way, i.e. to send data
 in the other direction as well, Peer B needs to perform the same
 steps using a STuPiD server at the same or a different location.

 STuPiD ```````````````````````````````,
 Script <----------------------------. ,
 | ,
 ^ , | ,
 | , | ,
 (1) | , | , (3)
 POST | , | , GET
 | , | ,
 | v | v

 Peer A -----------------------> Peer B
 (2)
 out-of-band
 Notification

 Figure 1: STuPiD Protocol Operation

Hartke & Bormann Expires January 6, 2010 [Page 5]

Internet-Draft STuPiD July 2009

3. Protocol Definition

3.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119] and indicate requirement levels for compliant STuPiD
 implementations.

3.2. Discovering External IP Address and Port

 A client may discover its external IP address and the port required
 for port prediction by performing a HTTP GET request to a STuPiD
 server. The STuPiD server MUST reply with the remote address and
 remote port in the following format:

 host ":" port

 where 'host' and 'port' are defined as in [RFC3986].

3.3. Storing Data

 Data chunks are stored using the POST request of HTTP. The STuPiD
 server MUST support one URI parameter which is passed as query-
 string:

 'chid': A unique ID identifying the data chunk to be stored. The ID
 SHOULD be chosen from the characters of the base64url set [RFC4648].

 The payload of the POST request MUST be the data to be stored. The
 'Content-Type' SHOULD be 'application/octet-stream', although a
 STuPiD server implementation SHOULD simply ignore the 'Content-Type'
 as a client implementation may be restricted and may not able to
 specify a specific 'Content-Type'. (E.g., in certain cases, the peer
 may be limited to sending the data as multipart-form-encoded --
 still, the data is stored as a byte stream.)

 STuPiD servers may reject data chunks that are larger than some
 predefined limit. This maximum size in bytes of each data chunk is
 RECOMMENDED to be 65536 or more.

 As HTTP already provides data transparency, the data chunk SHOULD NOT
 be encoded using Base64 or any other data transparency mechanism; in
 any case, the STuPiD server will not attempt to decode the chunk.

 The sender MUST wait for the HTTP response before going on to notify
 the receiver.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4648

Hartke & Bormann Expires January 6, 2010 [Page 6]

Internet-Draft STuPiD July 2009

3.4. Notification

 The sender notifies the receiver of the data chunk by passing via an
 out-of-band channel (which is not part of the STuPiD protocol):

 The full URL from which the data chunk can be retrieved, i.e. the
 same URL that was used to store the data chunk, including the chunk
 ID parameter.

 The exact notification mechanism over the out-of-band channel and the
 definition of a session is dependent on the out-of-band channel. See

Appendix C for one example of such an out-of-band channel.

3.5. Retrieving Data

 The notified peer retrieves the data chunk using a GET request with
 the URL supplied by the sender. The STuPiD server MUST set the
 'Content-Type' of the returned body to 'application/octet-stream'.

Hartke & Bormann Expires January 6, 2010 [Page 7]

Internet-Draft STuPiD July 2009

4. Implementation Notes

 A STuPiD server implementation SHOULD delete stored data some time
 after it was stored. It is RECOMMENDED not to delete the data before
 five minutes have elapsed after it was stored. Different client
 protocols will have different reactions to data that have been
 deleted prematurely and cannot be retrieved by the notified peer;
 this may be as trivial as packet loss or it may cause a reliable
 byte-stream to fail (Appendix B). (TODO: It may be useful to provide
 some hints in the storing POST request.)

 STuPiD clients should aggregate data in order to minimize the number
 of requests to the STuPiD server per second. The specific
 aggregation method chosen depends on the data rate required (and the
 maximum chunk size), the latency requirements, and the application
 semantics.

 Clearly, it is up to the implementation to decide how the data chunks
 are actually stored. A sufficiently silly STuPiD server
 implementation might for instance use a MySQL database.

Hartke & Bormann Expires January 6, 2010 [Page 8]

Internet-Draft STuPiD July 2009

5. Security Considerations

 The security objectives of STuPiD are to be as secure as if NAT
 traversal had succeeded, i.e., an on-path attacker can overhear and
 fake messages, but an off-path attacker cannot. If a higher level of
 security is desired, it should be provided on top of the data relayed
 by STuPiD, e.g. by using XTLS [I-D.meyer-xmpp-e2e-encryption].

 Much of the security of STuPiD is based on the assumption that an
 off-path attacker cannot guess the chunk identifiers. A suitable
 source of randomness [RFC4086] should be used to generate at least a
 sufficiently large part of the chunk identifiers (e.g., the chunk
 identifier could be a hard to guess prefix followed by a serial
 number).

 To protect the STuPiD server against denial of service and possibly
 some forms of theft of service, it is RECOMMENDED that the POST side
 of the STuPiD server be protected by some form of authentication such
 as HTTP authentication. There is little need to protect the GET
 side.

https://datatracker.ietf.org/doc/html/rfc4086

Hartke & Bormann Expires January 6, 2010 [Page 9]

Internet-Draft STuPiD July 2009

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4086] Eastlake, D., Schiller, J., and S. Crocker, "Randomness
 Requirements for Security", BCP 106, RFC 4086, June 2005.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, October 2006.

6.2. Informative References

 [I-D.ietf-behave-turn]
 Rosenberg, J., Mahy, R., and P. Matthews, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)",

draft-ietf-behave-turn-16 (work in progress), July 2009.

 [I-D.ietf-xmpp-3920bis]
 Saint-Andre, P., "Extensible Messaging and Presence
 Protocol (XMPP): Core", draft-ietf-xmpp-3920bis-00 (work
 in progress), June 2009.

 [I-D.meyer-xmpp-e2e-encryption]
 Meyer, D. and P. Saint-Andre, "XTLS: End-to-End Encryption
 for the Extensible Messaging and Presence Protocol (XMPP)
 Using Transport Layer Security (TLS)",

draft-meyer-xmpp-e2e-encryption-02 (work in progress),
 June 2009.

 [RFC5389] Rosenberg, J., Mahy, R., Matthews, P., and D. Wing,
 "Session Traversal Utilities for NAT (STUN)", RFC 5389,
 October 2008.

 [STUNT] Hanson, R., "STUNT & out-of-band channels",
 September 2007, <http://deusty.blogspot.com/2007/09/

stunt-out-of-band-channels.html>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-16
https://datatracker.ietf.org/doc/html/draft-ietf-xmpp-3920bis-00
https://datatracker.ietf.org/doc/html/draft-meyer-xmpp-e2e-encryption-02
https://datatracker.ietf.org/doc/html/rfc5389
http://deusty.blogspot.com/2007/09/stunt-out-of-band-channels.html
http://deusty.blogspot.com/2007/09/stunt-out-of-band-channels.html

Hartke & Bormann Expires January 6, 2010 [Page 10]

Internet-Draft STuPiD July 2009

Appendix A. Examples

 This appendix provides some examples of the STuPiD protocol
 operation.

 Request:

 GET /stupid.php HTTP/1.0
 User-Agent: Example/1.11.4
 Accept: */*
 Host: example.org
 Connection: Keep-Alive

 Response:

 HTTP/1.1 200 OK
 Date: Sun, 05 Jul 2009 00:30:37 GMT
 Server: Apache/2.2
 Cache-Control: no-cache, must-revalidate
 Expires: Sat, 26 Jul 1997 05:00:00 GMT
 Vary: Accept-Encoding
 Content-Length: 17
 Keep-Alive: timeout=1, max=400
 Connection: Keep-Alive
 Content-Type: application/octet-stream

 192.0.2.239:36654

 Figure 2: Discovering External IP Address and Port

Hartke & Bormann Expires January 6, 2010 [Page 11]

Internet-Draft STuPiD July 2009

 Request:

 POST /stupid.php?chid=i781hf64-0 HTTP/1.0
 User-Agent: Example/1.11.4
 Accept: */*
 Host: example.org
 Connection: Keep-Alive
 Content-Type: application/octet-stream
 Content-Length: 11

 Hello World

 Response:

 HTTP/1.1 200 OK
 Date: Sun, 05 Jul 2009 00:20:34 GMT
 Server: Apache/2.2
 Cache-Control: no-cache, must-revalidate
 Expires: Sat, 26 Jul 1997 05:00:00 GMT
 Vary: Accept-Encoding
 Content-Length: 0
 Keep-Alive: timeout=1, max=400
 Connection: Keep-Alive
 Content-Type: application/octet-stream

 Figure 3: Storing Data

Hartke & Bormann Expires January 6, 2010 [Page 12]

Internet-Draft STuPiD July 2009

 Request:

 GET /stupid.php?chid=i781hf64-0 HTTP/1.0
 User-Agent: Example/1.11.4
 Accept: */*
 Host: example.org
 Connection: Keep-Alive

 Response:

 HTTP/1.1 200 OK
 Date: Sun, 05 Jul 2009 00:21:29 GMT
 Server: Apache/2.2
 Cache-Control: no-cache, must-revalidate
 Expires: Sat, 26 Jul 1997 05:00:00 GMT
 Vary: Accept-Encoding
 Content-Length: 11
 Keep-Alive: timeout=1, max=400
 Connection: Keep-Alive
 Content-Type: application/octet-stream

 Hello World

 Figure 4: Retrieving Data

Hartke & Bormann Expires January 6, 2010 [Page 13]

Internet-Draft STuPiD July 2009

Appendix B. Sample Implementation

<?php
header("Cache-Control: no-cache, must-revalidate");
header("Expires: Sat, 26 Jul 1997 05:00:00 GMT");
header("Content-Type: application/octet-stream");

mysql_connect(localhost, "username", "password");
mysql_select_db("stupid");

$chid = mysql_real_escape_string($_GET["chid"]);

if ($_SERVER["REQUEST_METHOD"] == "GET") {
 if (empty($chid)) {
 echo $_SERVER["REMOTE_ADDR"] . ":" . $_SERVER["REMOTE_PORT"];
 } elseif ($result = mysql_query("SELECT `data` FROM `Data` " .
 "WHERE `chid` = '$chid'")) {
 if ($row = mysql_fetch_array($result, MYSQL_ASSOC)) {
 echo base64_decode($row["data"]);
 } else {
 header("HTTP/1.0 404 Not Found");
 }
 mysql_free_result($result);
 } else {
 header("HTTP/1.0 404 Not Found");
 }
} elseif ($_SERVER["REQUEST_METHOD"] == "POST") {
 if (empty($chid)) {
 header("HTTP/1.0 404 Not Found");
 } else {
 mysql_query("DELETE FROM `Data` " .
 "WHERE `timestamp` < DATE_SUB(NOW(), INTERVAL 5 MINUTE)");
 $data = base64_encode(file_get_contents("php://input"));
 if (!mysql_query("INSERT INTO `Data` (`chid`, `data`) " .
 "VALUES ('$chid', '$data')")) {
 header("HTTP/1.0 403 Bad Request");
 }
 }
} else {
 header("HTTP/1.0 405 Method Not Allowed");
 header("Allow: GET, HEAD, POST");
}
mysql_close();
?>

 Figure 5: STuPiD Sample Implementation

Hartke & Bormann Expires January 6, 2010 [Page 14]

Internet-Draft STuPiD July 2009

Appendix C. Using XMPP as Out-Of-Band Channel

 XMPP [I-D.ietf-xmpp-3920bis] is a good choice for an out-of-band
 channel.

 The notification protocol is closely modeled after XMPP's In-Band
 Bytestreams (IBB, see http://xmpp.org/extensions/xep-0047.html).
 Just replace the namespace and insert the STuPiD Retrieval URI
 instead of the actual Base64 encoded data, see Figure 8. (Note that
 the current proposal redundantly sends a sid and a seq as well as the
 chid composed of these two; it may be possible to optimize this,
 possibly sending the constant prefix of the URI once at bytestream
 creation time.)

 Notifications MUST be processed in the order they are received. If
 an out-of-sequence notification is received for a particular session
 (determined by checking the 'seq' attribute), then this indicates
 that a notification has been lost. The recipient MUST NOT process
 such an out-of-sequence notification, nor any that follow it within
 the same session; instead, the recipient MUST consider the session
 invalid. (Adapted from

http://xmpp.org/extensions/xep-0047.html#send)

 Of course, other methods can be used for setup and teardown, such as
 Jingle (see http://xmpp.org/extensions/xep-0261.html).

 <iq from='romeo@montague.net/orchard'
 id='jn3h8g65'
 to='juliet@capulet.com/balcony'
 type='set'>
 <open xmlns='urn:xmpp:tmp:stupid'
 block-size='65536'
 sid='i781hf64'
 stanza='iq'/>
 </iq>

 Figure 6: Creating a Bytestream: Initiator requests session

 <iq from='juliet@capulet.com/balcony'
 id='jn3h8g65'
 to='romeo@montague.net/orchard'
 type='result'/>

 Figure 7: Creating a Bytestream: Responder accepts session

http://xmpp.org/extensions/xep-0047.html
http://xmpp.org/extensions/xep-0047.html#send
http://xmpp.org/extensions/xep-0261.html

Hartke & Bormann Expires January 6, 2010 [Page 15]

Internet-Draft STuPiD July 2009

 <iq from='romeo@montague.net/orchard'
 id='kr91n475'
 to='juliet@capulet.com/balcony'
 type='set'>
 <data xmlns='urn:xmpp:tmp:stupid'
 seq='0'
 sid='i781hf64'
 url='http://example.org/stupid.php?chid=i781hf64-0'/>
 </iq>

 Figure 8: Sending Notifications: Notification in an IQ stanza

 <iq from='juliet@capulet.com/balcony'
 id='kr91n475'
 to='romeo@montague.net/orchard'
 type='result'/>

 Figure 9: Sending Notifications: Acknowledging notification using IQ

 <iq from='romeo@montague.net/orchard'
 id='us71g45j'
 to='juliet@capulet.com/balcony'
 type='set'>
 <close xmlns='urn:xmpp:tmp:stupid'
 sid='i781hf64'/>
 </iq>

 Figure 10: Closing the Bytestream: Request

 <iq from='juliet@capulet.com/balcony'
 id='us71g45j'
 to='romeo@montague.net/orchard'
 type='result'/>

 Figure 11: Closing the Bytestream: Success response

Hartke & Bormann Expires January 6, 2010 [Page 16]

Internet-Draft STuPiD July 2009

Authors' Addresses

 Klaus Hartke
 Universitaet Bremen TZI

 Email: hartke@tzi.org

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 Bremen D-28359
 Germany

 Phone: +49-421-218-63921
 Fax: +49-421-218-7000
 Email: cabo@tzi.org

Hartke & Bormann Expires January 6, 2010 [Page 17]

