
DNS Extensions S. Krishnaswamy
Internet-Draft R. Story
Intended status: Standards Track SPARTA, Inc.
Expires: September 13, 2012 A. Hayatnagarkar
 March 12, 2012

DNSSEC Validator API
draft-hayatnagarkar-dnsext-validator-api-09

Abstract

 The DNS Security Extensions (DNSSEC) provide origin authentication
 and integrity of DNS data. However, the current resolver Application
 Programming Interface (API) does not specify how a validating stub
 resolver should communicate results of DNSSEC processing back to the
 application. This document describes an API between applications and
 a validating stub resolver that allows applications to control the
 DNSSEC validation process and obtain results of DNSSEC processing.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 13, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Krishnaswamy, et al. Expires September 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DNSSEC Validator API March 2012

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. High-level DNSSEC Validator API 4
3.1. val_gethostbyname, val_gethostbyaddr 5
3.2. val_getaddrinfo, val_freeaddrinfo, val_getnameinfo 6
3.3. val_res_query . 8
3.4. val_get_rrset . 9

4. Low-level DNSSEC Validator API 10
4.1. val_resolve_and_check, val_free_result_chain 11
4.2. Authentication Chain Status Codes and p_ac_status() . . . 15

5. Low-level Asynchronous DNSSEC Validator API 18
5.1. Asynchronous Requests 18
5.1.1. val_async_submit 18
5.1.2. val_async_select_info 19
5.1.3. val_async_check_wait 20

5.2. Asynchronous Callbacks 21
5.3. Asynchronous Status 22
5.3.1. Operations on asynchronous status objects 22

6. DNSSEC Validator Context API 23
6.1. val_create_context, val_free_context 23
6.2. val_context_setqflags 24

7. Function Return Codes and p_val_err() 24
8. Evaluating Response Validity 25
8.1. DNSSEC Validation Status Codes and p_val_status() 25
8.2. High-Level Routines for Evaluating Validity 27

9. Notes On DNS Data Caching By Appplications 28
10. IANA Considerations . 29
11. Security Considerations 29
12. Acknowledgements . 30
13. References . 30
13.1. Normative References 30
13.2. Informative References 31

Appendix A. Zone-Specific Validator Policy Settings 31
Appendix B. Global Validator Policy 33
Appendix C. Asynchronous API Example Code 33

 Authors' Addresses . 35

Krishnaswamy, et al. Expires September 13, 2012 [Page 2]

Internet-Draft DNSSEC Validator API March 2012

1. Introduction

 The DNS Security Extensions ([refs.RFC4033], [refs.RFC4034],
 [refs.RFC4035]) enable DNS resolvers to test the origin authenticity
 and integrity of data returned by the DNS. A DNSSEC validator, or
 more formally, a validating stub resolver, is a piece of software
 that performs these tests by constructing an authentication chain
 [refs.RFC4033] from a locally configured DNSSEC trust anchor
 [refs.RFC4033] to a cryptographic signature that covers the DNS
 information in question. This document presents an API between an
 application and a DNSSEC validator, which enables applications to
 control the DNSSEC validation process and enables applications to
 obtain DNSSEC validation results upon which to base program behavior.

 The API can be broadly divided into three groups: the high-level
 DNSSEC validator API, the low-level DNSSEC validator API and the
 DNSSEC validator-context API. Section 3, Section 4, and Section 6
 describe these groups in greater detail.

 The high-level DNSSEC validator API is designed for ease of use and
 mirrors existing DNS-related functions. This API is best suited for
 existing applications that use legacy DNS functions such as
 gethostbyname() and getaddrinfo() [refs.IEEE.1003.1-2004] and have no
 requirement for detailed DNSSEC validation status information.

 The low-level DNSSEC validator API enables applications to examine
 the DNSSEC validation details for each element of the DNSSEC
 authentication chain.

 The DNSSEC validator-context API enables applications to control the
 DNSSEC policies that are used for validating DNS responses.

 The range of functions provided in this API supports different
 classes of applications, ranging from those that are only interested
 in basic DNSSEC results to more sophisticated applications that can
 look for specific errors in an authentication chain as a sign of some
 abnormality or attack.

2. Terminology

 Some of the terms used in this specification are defined below:

 Legacy DNS Functions: existing functions, such as gethostbyname()
 and getaddrinfo(), which are not capable of returning DNSSEC
 validation status codes for DNS responses.

https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4033

Krishnaswamy, et al. Expires September 13, 2012 [Page 3]

Internet-Draft DNSSEC Validator API March 2012

 DNSSEC Validator Policy: a set of configuration parameters for the
 DNSSEC validator, which can influence the eventual outcome of the
 DNSSEC validation process.

 DNSSEC Validator Context: the application's run-time handle to the
 DNSSEC validator policy.

3. High-level DNSSEC Validator API

 The high-level DNSSEC validator API defines DNSSEC-aware substitutes
 for commonly used legacy DNS functions. It provides an easy path for
 applications already using legacy DNS functions to transition towards
 becoming DNSSEC-aware. This API also defines the val_get_rrset()
 function, which enables applications to obtain data for an arbitrary
 DNS name, class and type, and inspect the corresponding DNSSEC
 validation status value(s).

 A number of legacy DNS functions exist; however, some of these
 functions (such as gethostbyname_r and gethostbyname2) are only
 available on a subset of Operating Systems and are not part of any
 official standard. Also, some functions are defined as minor
 extensions of other well-known legacy DNS functions. For example,
 gethostbyname2 differs from gethostbyname_r only by virtue of having
 the extra argument to explictly specify the address family. Further,
 some functions differ from others only by virtue of being able to
 support a re-entrant and thread-safe implementation. Instead of
 providing an exhaustive list of DNSSEC-capable replacement functions
 for all known resolver function calls, the high-level DNSSEC
 validator API in this document only describes DNSSEC extensions for
 the canonical set of function calls specified in
 [refs.IEEE.1003.1-2004]. DNSSEC replacement functions for other
 legacy DNS functions are expected to mirror, to a large extent, other
 functions described in this document.

 The ctx parameter in the functions described in this API points to a
 DNSSEC validator context object (see Section 6). Applications MUST
 either supply a reference to a valid DNSSEC validator context object
 created using the functions specified in Section 6 or supply a NULL
 value for this parameter. Libraries that implement the DNSSEC
 Validator API MUST internally use a default DNSSEC validator context
 when the application supplies a NULL value for ctx.

Krishnaswamy, et al. Expires September 13, 2012 [Page 4]

Internet-Draft DNSSEC Validator API March 2012

3.1. val_gethostbyname, val_gethostbyaddr

 #include <validator/validator.h>

 struct hostent *val_gethostbyname(val_context_t *ctx,
 const char *name,
 val_status_t *val_status);

 struct hostent *val_gethostbyaddr(val_context_t *ctx,
 const char *addr,
 int len,
 int type,
 val_status_t *val_status);

 The val_gethostbyname() and val_gethostbyaddr() functions are DNSSEC-
 aware versions of the gethostbyname() and gethostbyaddr() legacy DNS
 functions.

 The new functions have an additional parameter, val_status, which
 enables applications to check the DNSSEC validation status codes for
 the address-to-name and name-to-address translations. The other
 arguments to these functions and their return values have identical
 semantics to the corresponding legacy DNS functions as described in
 [refs.IEEE.1003.1-2004]. The val_gethostbyname() and
 val_gethostbyaddr() functions SHOULD only be used when retrofitting
 DNSSEC in existing applications that use the gethostbyname() and
 gethostbyaddr() functions. For new applications that need to perform
 these translations, the functions described in Section 3.2 and

Section 3.4 SHOULD be used instead.

 The DNSSEC validation status is returned in the val_status parameter.
 When evaluating the validity of a DNS response, applications SHOULD
 use the functions described in Section 8.2 instead of directly
 inspecting the DNSSEC validation status code returned in val_status.

 The status code returned in val_status is determined by the following
 rules.
 o A DNSSEC validation status of VAL_OOB_ANSWER MUST be returned if
 the complete answer is returned using some out-of-band mechanism
 (for example, from a local configuration store such as /etc/hosts
 or its equivalent) without any DNSSEC validation being performed.
 However, if local DNSSEC validator policy defines out-of-band
 answers to be trustworthy, a DNSSEC validation status of
 VAL_TRUSTED_ANSWER SHOULD be returned instead.
 o A DNSSEC validation status of VAL_VALIDATED_ANSWER MUST be
 returned if all addresses and canonical names within the hostent
 structure are validated successfully.

Krishnaswamy, et al. Expires September 13, 2012 [Page 5]

Internet-Draft DNSSEC Validator API March 2012

 o A DNSSEC validation status of VAL_TRUSTED_ANSWER MUST be returned
 if at least one address or canonical name within the hostent
 structure is not validated by the DNSSEC validation process, but
 all answers are still considered trustworthy (see Section 6) by
 way of the configured local DNSSEC validator policy.
 o A DNSSEC validation status of VAL_UNTRUSTED_ANSWER MUST be
 returned if at least one address or canonical name within the
 hostent structure is neither validated through the DNSSEC
 validation process nor considered to be trusted according to the
 configured local DNSSEC validator policy.
 o A DNSSEC validation status of VAL_NONEXISTENT_NAME or
 VAL_NONEXISTENT_TYPE MUST be returned if the DNSSEC validation
 process is able to prove non-existence for the name or type being
 queried for. A DNSSEC validation status of
 VAL_NONEXISTENT_NAME_NOCHAIN or VAL_NONEXISTENT_TYPE_NOCHAIN MUST
 be returned if a DNS response with an RCODE reflecting type or
 name non-existence is returned, and local DNSSEC validator policy
 is configured to treat such answers as trustworthy. If the
 previous two conditions for non-existence are not satisfied,
 val_status MUST be set to VAL_UNTRUSTED_ANSWER.

3.2. val_getaddrinfo, val_freeaddrinfo, val_getnameinfo

 #include <validator/validator.h>

 int val_getaddrinfo(val_context_t *ctx,
 const char *nodename,
 const char *servname,
 const struct addrinfo *hints,
 struct addrinfo **res ,
 val_status_t *val_status);

 void val_freeaddrinfo(struct addrinfo *res);

 int val_getnameinfo(val_context_t *ctx,
 const struct sockaddr *sa,
 socklen_t salen,
 char *host,
 size_t hostlen,
 char *serv,
 size_t servlen,
 int flags,
 val_status_t *val_status);

 These functions are DNSSEC-aware versions of the getaddrinfo(),
 freeaddrinfo() and getnameinfo() legacy DNS functions
 ([refs.RFC3493]) respectively.

https://datatracker.ietf.org/doc/html/rfc3493

Krishnaswamy, et al. Expires September 13, 2012 [Page 6]

Internet-Draft DNSSEC Validator API March 2012

 The val_getaddrinfo() function returns the address and service
 information for the specified domain name and service. The
 val_freaddrinfo() function releases the memory used by the struct
 addrinfo returned in the res parameter when calling val_getaddrinfo.
 The val_getnameinfo() function performs an address-to-name
 translation in a protocol independent manner.

 The value of res MUST point to a valid addrinfo structure
 ([refs.RFC3493]) on a successful return from the val_getaddrinfo()
 function or NULL in case of error. Sufficient memory MUST be
 internally allocated to hold the linked list pointed to by res. This
 memory MUST be released when applications invoke the freeaddrinfo()
 function. ([refs.RFC3493]).

 The DNSSEC validation status is returned in the val_status parameter.
 When evaluating the validity of a DNS response, applications SHOULD
 use the functions described in Section 8.2 instead of directly
 inspecting the DNSSEC validation status code returned in val_status.
 The syntax and semantics of other parameters in val_getaddrinfo() and
 val_getnameinfo() and their return values are identical to those
 specified for getaddrinfo() and getnameinfo() in [refs.RFC3493].

 The status code returned in val_status is determined by the following
 rules.
 o A DNSSEC validation status of VAL_OOB_ANSWER MUST be returned in
 val_status if the complete answer is returned using some out-of-
 band mechanism (for example, from a local configuration store such
 as /etc/hosts or its equivalent) without any DNSSEC validation
 being performed. However, if local DNSSEC validator policy
 defines out-of-band answers to be trustworthy, a DNSSEC validation
 status of VAL_TRUSTED_ANSWER SHOULD be returned instead.
 o A DNSSEC validation status of VAL_VALIDATED_ANSWER MUST be
 returned in val_status if the hostname returned by
 val_getnameinfo(), or all addresses and canonical names returned
 by val_getaddrinfo(), are validated through the DNSSEC process.
 o A DNSSEC validation status of VAL_TRUSTED_ANSWER MUST be returned
 in val_status if the hostname returned by val_getnameinfo(), or at
 least one address or canonical name returned by val_getaddrinfo(),
 is not validated by the DNSSEC validation process but all answers
 are still considered to be trustworthy through the local DNSSEC
 validator policy (see Section 6).
 o A DNSSEC validation status of VAL_UNTRUSTED_ANSWER MUST be
 returned if at least one address or canonical name returned by
 val_getaddrinfo() within the addrinfo structure, or the returned
 hostname in val_getnameinfo(), is neither validated through the
 DNSSEC process nor considered to be trustworthy according to the
 local DNSSEC validator policy.

https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493

Krishnaswamy, et al. Expires September 13, 2012 [Page 7]

Internet-Draft DNSSEC Validator API March 2012

 o A DNSSEC validation status of VAL_NONEXISTENT_NAME or
 VAL_NONEXISTENT_TYPE MUST be returned in val_status if the DNSSEC
 validation process is able to prove non-existence for the name or
 type being queried for. A DNSSEC validation status of
 VAL_NONEXISTENT_NAME_NOCHAIN or VAL_NONEXISTENT_TYPE_NOCHAIN MUST
 be returned if a DNS response with an RCODE reflecting type or
 name non-existence is returned, and local DNSSEC validator policy
 is configured to treat such answers as trustworthy (Section 6).
 If the previous two conditions for non-existence are not
 satisfied, val_status MUST be set to VAL_UNTRUSTED_ANSWER.

3.3. val_res_query

 #include <validator/validator.h>

 int val_res_query(val_context_t *ctx,
 const char *domain_name,
 int class,
 int type,
 unsigned char *answer,
 int anslen,
 val_status_t *val_status);

 The val_res_query() function is a DNSSEC-aware replacement for the
 res_query() function (currently not documented in any standard
 reference).

 The val_res_query() function queries the DNS for the data associated
 with the given domain name, class and type, and returns the resulting
 resource record sets in a DNS-style response.

 The val_res_query() function MUST return the actual size of the
 response packet on success and -1 on failure. On success, the
 response from the DNS MUST be copied to the user-allocated buffer in
 answer and MUST NOT exceed the buffer size specified in anslen.

 The DNSSEC validation status is returned in the val_status parameter.
 When evaluating the validity of a DNS response, applications SHOULD
 use the functions described in Section 8.2 instead of directly
 inspecting the DNSSEC validation status code returned in val_status.

 The status code returned in val_status is determined by the following
 rules.
 o A DNSSEC validation status of VAL_VALIDATED_ANSWER MUST be
 returned if all resource record sets returned in the answer are
 validated by the DNSSEC validation process.

Krishnaswamy, et al. Expires September 13, 2012 [Page 8]

Internet-Draft DNSSEC Validator API March 2012

 o A DNSSEC validation status of VAL_TRUSTED_ANSWER MUST be returned
 if at least one resource record set returned in the answer is not
 validated by the DNSSEC validation process, but all resource
 record sets are still considered to be trustworthy according to
 the configured local DNSSEC validator policy (see Section 6).
 o A DNSSEC validation status of VAL_UNTRUSTED_ANSWER MUST be
 returned if at least one resource record set in the answer is
 neither validated through the DNSSEC validation process nor
 considered to be trustworthy according to the local DNSSEC
 validator policy.
 o A DNSSEC validation status of VAL_NONEXISTENT_NAME or
 VAL_NONEXISTENT_TYPE MUST be returned if the DNSSEC validation
 process is able to prove non-existence for the name or type being
 queried for. A DNSSEC validation status of
 VAL_NONEXISTENT_NAME_NOCHAIN or VAL_NONEXISTENT_TYPE_NOCHAIN MUST
 be returned if a DNS response with an RCODE reflecting type or
 name non-existence is returned, and local DNSSEC validator policy
 is configured to treat such answers as trustworthy. If the
 previous two conditions for non-existence are not satisfied,
 val_status MUST be set to VAL_UNTRUSTED_ANSWER.

3.4. val_get_rrset

 #include <validator/validator.h>

 int val_get_rrset(val_context_t *ctx,
 const char *name,
 int class,
 int type,
 unsigned int flags,
 struct val_answer_chain **answers);

 void val_free_answer_chain(struct val_answer_chain *answers);

 The val_get_rrset() function queries the DNS for the data associated
 with the given domain name, class and type. The flags argument
 specifies a list of options to the validation process, logically OR'd
 to each other. This possible flags are defined in Section 4.1.
 val_get_rrset() MUST return 0 on success and an error code from

Section 7 on failure.

 val_get_rrset() MUST return its results in the val_answer_chain
 structure after allocating sufficient memory for this structure.
 Applications MUST release this memory after use by invoking the
 val_free_answer_chain() function.

 The val_answer_chain structure is defined below.

Krishnaswamy, et al. Expires September 13, 2012 [Page 9]

Internet-Draft DNSSEC Validator API March 2012

 struct val_answer_chain {
 val_status_t val_ans_status;
 char *val_ans_name;
 int val_ans_class;
 int val_ans_type;
 struct rr_rec *val_ans;
 struct val_answer_chain *val_ans_next;
 };

 struct rr_rec {
 size_t rr_length;
 unsigned char *rr_data;
 struct rr_rec *rr_next;
 };

 val_ans_name MUST be set to the DNS name of the actual resource
 record set returned. This value may differ from the name argument in
 val_get_rrset() if the resource record is returned after following a
 CNAME ([refs.RFC1034]) or DNAME ([refs.RFC2672]) alias. val_ans_class
 and val_ans_type MUST be set to the actual class and type for the
 returned resource record. These values may differ from the class and
 type arguments in val_get_rrset() if the query type or class has the
 value 255 (ANY). The resource record sets MUST be returned in
 val_ans as a linked list of rr_rec structures, with each element
 containing the rr_length and rr_data tuple for a resource record in
 the resource record set. val_ans MUST be set to NULL if no answer was
 returned for the given query or if a proof of non-existence was
 returned.

 The DNSSEC validation status code is returned in the val_ans_status
 field. Since validation status codes returned by val_get_rrset() are
 available per resource record set, the set of possible values for
 val_ans_status is more granular than that possible for the val_status
 field in other high-level API functions. The list of possible codes
 for val_ans_status are listed in Section 8.1. When evaluating the
 validity of a DNS response, applications SHOULD use the functions
 described in Section 8.2 instead of directly inspecting the DNSSEC
 validation status code returned in val_ans_status.

4. Low-level DNSSEC Validator API

 The low-level DNSSEC validator API provides applications with greater
 control and visibility into the DNSSEC validation process. The
 functions and data structures defined in the low-level DNSSEC
 validator API are summarized below.

https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2672

Krishnaswamy, et al. Expires September 13, 2012 [Page 10]

Internet-Draft DNSSEC Validator API March 2012

4.1. val_resolve_and_check, val_free_result_chain

 #include <validator/validator.h>

 int val_resolve_and_check(val_context_t *ctx,
 const char *domain_name,
 int class,
 int type,
 unsigned int flags,
 struct val_result_chain **results);

 void val_free_result_chain(struct val_result_chain *results);

 The val_resolve_and_check() function queries the DNS for the
 <domain_name, class, type> tuple and then performs the DNSSEC
 validation operation for the responses received. The
 val_free_result_chain() function releases the resources allocated for
 the returned result.

 The flags argument specifies a list of options to the validation
 process, logically OR'd to each other. The following flags are
 defined; their values are implementation-specific:

 VAL_QUERY_AC_DETAIL: If this flag is specified, the complete
 authentication chain MUST be returned for each answer within the
 val_result_chain structure. If this flag is not set then only the
 rrset information corresponding to the answer or proof of non-
 existence for the queried name, domain_name SHOULD be returned
 within the val_result_chain structure.
 VAL_QUERY_DONT_VALIDATE: If this flag is specified, validation
 processing MUST be ignored for the given name. Any resulting
 answer will have a validation status value of
 VAL_IGNORE_VALIDATION.
 VAL_QUERY_IGNORE_SKEW: If this flag is specified, signature
 inception and expiration times MUST be ignored for RRSIGs in the
 authentication chain.
 VAL_QUERY_NO_DLV: If this flag is specified, Dynamic Look-aside
 Validation (DLV) [refs.DLV] processing for this name MUST NOT be
 performed.
 VAL_QUERY_ASYNC: If this flag is specified, this name MUST be
 resolved through the asynchronous lookup process (see Section 5).
 VAL_QUERY_RECURSE: If this flag is specified, the name MUST be
 looked up by directly querying the authoritative name server for
 that name (which may involve iteratively querying various name
 servers in the delegation hierarchy) instead of requesting this
 information from any caching name server that may be specified as
 configuration data.

Krishnaswamy, et al. Expires September 13, 2012 [Page 11]

Internet-Draft DNSSEC Validator API March 2012

 VAL_QUERY_NO_EDNS0_FALLBACK: If this flag is specified, re-trying
 the query with smaller EDNS0 advertised window sizes MUST NOT be
 attempted as a fallback strategy.
 VAL_QUERY_SKIP_RESOLVER: If this flag is specified, only the cache
 should be consulted while looking up a name. New queries MUST NOT
 be sent on the wire as part of looking up and validating the
 cached answer.
 VAL_QUERY_SKIP_CACHE: If this flag is specified, any locally cached
 information for the name being looked up MUST be ignored.

 val_resolve_and_check() MUST return 0 on success and an error code
 from Section 7 on failure. Answers to the query MUST be returned in
 results, which is a linked list of val_result_chain structures, as
 defined below. val_resolve_and_check() MUST allocate sufficient
 memory to hold the contents of results. This memory MUST be released
 when applications invoke the val_free_result_chain() function.

 #define MAX_PROOFS 4
 struct val_result_chain {
 val_status_t val_rc_status;
 char *val_rc_alias;
 struct val_rrset_rec *val_rc_rrset;
 struct val_authentication_chain *val_rc_answer;
 int val_rc_proof_count;
 struct val_authentication_chain *val_rc_proofs[MAX_PROOFS];
 struct val_result_chain *val_rc_next;
 };

 Each element in the val_result_chain linked list MUST point to a
 distinct resource record set returned in the response. Multiple
 resource record sets can be returned in a response when the query is
 for the type code of 255 (ANY) or 46 (RRSIG). The val_rc_next field
 enables an application to iterate through the list of all results
 returned by the DNSSEC validator. For all val_result_chain elements
 that represent a name alias, val_rc_alias MUST point to the target
 name referenced by that alias.

 val_rc_answer SHOULD point to a resource record in the answer
 portion; all associated proofs of non-existence (either in support of
 the answer in val_rc_answer or to prove the non-existence of a
 record) SHOULD be returned in val_rc_proofs. val_rc_proof_count MUST
 be set to the number of proof elements that are available.
 val_rc_answer and val_rc_proofs SHOULD be NULL if the
 VAL_QUERY_AC_DETAIL flag is not specified in the flags argument for
 val_resolve_and_check().

Krishnaswamy, et al. Expires September 13, 2012 [Page 12]

Internet-Draft DNSSEC Validator API March 2012

 val_rc_rrset MUST point to resource record set information for the
 current element in the val_result_chain linked list. If no answers
 are returned (or a proof of non-existence is returned) in response to
 the query, val_rc_rrset MUST be set to NULL.

 The DNSSEC validation status code is returned in the val_rc_status
 field. Since validation status codes are available per resource
 record set, it is possible to have a highly granular set of values
 for val_rc_status. Possible codes for val_rc_status are listed in

Section 8.1. When evaluating the validity of a DNS response,
 applications SHOULD use the functions described in Section 8.2
 instead of directly inspecting the DNSSEC validation status code
 returned in val_rc_status.

 The val_authentication_chain structure represents a linked list whose
 elements comprise the DNSSEC authentication chain for an answer or
 proof of non-existence resource record set.

 struct val_authentication_chain {
 val_astatus_t val_ac_status;
 struct val_rrset_rec *val_ac_rrset;
 struct val_authentication_chain *val_ac_trust;
 };

 The DNSSEC validation status for the specified resource record set
 MUST be set in the val_ac_status field. Possible codes for this
 field are defined in Section 4.2. The val_ac_trust field MUST point
 to the next element in the authentication chain proceeding from the
 signed record towards a DNSSEC trust anchor. For an element with
 type DNSKEY, the next element MUST correspond to a DS record in the
 parent zone and for a DS record the next element MUST correspond to
 the DNSKEY in the same zone as the DS record. The value of
 val_ac_trust MUST be set to NULL if either the current element in the
 linked list points to a valid DNSSEC trust anchor or if an error
 condition is encountered. The validation status code stored in the
 val_ac_status field can be used to differentiate between different
 error conditions.

 The val_ac_rrset field in the val_authentication_chain structure MUST
 point to a val_rrset_rec structure holding the actual resource record
 set fields ([refs.RFC1034]) as described below.

https://datatracker.ietf.org/doc/html/rfc1034

Krishnaswamy, et al. Expires September 13, 2012 [Page 13]

Internet-Draft DNSSEC Validator API March 2012

 struct val_rrset_rec {
 int val_rrset_rcode;
 char *val_rrset_name;
 int val_rrset_class;
 int val_rrset_type;
 long val_rrset_ttl;
 int val_rrset_section;
 struct sockaddr *val_rrset_server;
 struct val_rr_rec *val_rrset_data;
 struct val_rr_rec *val_rrset_sig;
 };

 The information stored in the val_rrset_rec structure includes the
 DNS response error code in the val_rrset_rcode field, and the DNS
 response "envelope" comprising of the name, class, type and time-to-
 live tuple in the val_rrset_name, val_rrset_class, val_rrset_type and
 val_rrset_ttl fields respectively. Additionally, the name server
 from where this resource record set was received MUST be stored in
 the sockaddr data structure ([refs.IEEE.1003.1-2004]) pointed to by
 the val_rrset_server field. The section where the resource record
 set appeared in the DNS response MUST be saved in the
 val_rrset_section field within the val_rrset_rec structure, and MUST
 be set to one of the following values:

 #define VAL_FROM_ANSWER 1 /* if the resource record set was present
 in the answer section of the DNS response. */

 #define VAL_FROM_AUTHORITY 2 /* if the resource record set was
 present in the authority section of the DNS response. */

 #define VAL_FROM_ADDITIONAL 3 /* if the resource record set was
 present in the additional section of the DNS response. */

 The data returned for the resource record set MUST be queued to
 val_rrset_data. Any associated RRSIGs MUST be queued to
 val_rrset_sig. Both of these variables MUST point to lists of struct
 val_rr_rec elements, which specify the resource record data and the
 DNSSEC validation status for each resource-record within the resource
 record set as defined below.

 struct val_rr_rec {
 size_t rr_rdata_length;
 unsigned char *rr_rdata;
 struct val_rr_rec *rr_next;
 val_astatus_t rr_status;
 };

 The rr_status member in val_rr_rec is only relevant for the

Krishnaswamy, et al. Expires September 13, 2012 [Page 14]

Internet-Draft DNSSEC Validator API March 2012

 signatures present in val_rrset_sig or when val_rrset_data points to
 DNSKEY or DS resource records. In other cases the value of this
 field MUST be set to VAL_AC_UNSET. The rr_status field takes on a
 subset of all status codes possible for the val_astatus_t type and is
 further described in Section 4.2.

4.2. Authentication Chain Status Codes and p_ac_status()

 For each authentication chain element in the val_authentication_chain
 structure, the val_ac_status field MUST contain one of the following
 codes:

 VAL_AC_UNSET: The DNSSEC validation status for the resource record
 set could not be determined.

 VAL_AC_IGNORE_VALIDATION: DNSSEC validation for the given resource
 record set was ignored on the basis of some configured DNSSEC
 validator policy.

 VAL_AC_UNTRUSTED_ZONE: The resource record set belonged to a zone
 that the DNSSEC validator considered to be un-trusted, with no
 further DNSSEC validation being deemed necessary.

 VAL_AC_PINSECURE: The resource record set belonged to a zone for
 which the DS record was provably absent.

 VAL_AC_BARE_RRSIG: The resource record set contained only RRSIGs (in
 response to a query of type RRSIG). RRSIGs contain the
 cryptographic signatures for other DNS data and cannot themselves
 be validated.

 VAL_AC_NO_LINK: No DNSSEC trust anchor was configured at or above
 the level of the authentication chain could be found above this
 point, therefore no validation could be performed.

 VAL_AC_TRUST: At least one of the signatures covering the given
 resource record set was directly verified using a key that was
 configured as a DNSSEC trust anchor.

 VAL_AC_RRSIG_MISSING: RRSIG data for the given resource record set
 could not be located.

 VAL_AC_DNSKEY_MISSING: The DNSKEY data that generated signatures for
 the given resource record set could not be located.

Krishnaswamy, et al. Expires September 13, 2012 [Page 15]

Internet-Draft DNSSEC Validator API March 2012

 VAL_AC_DS_MISSING: The DS data for the DNSKEY resource record set in
 question could not be located.

 VAL_AC_DATA_MISSING: The returned resource record set was empty.

 VAL_AC_DNS_ERROR: A DNS error was encountered during the query
 resolution process.

 VAL_AC_NOT_VERIFIED: None of the RRSIGs covering the given resource
 record set could be verified.

 VAL_AC_VERIFIED: At least one RRSIG covering the resource record set
 verified successfully.

 For each signature val_rr_rec member within an authentication chain
 pointed to by val_ac_rrset, the DNSSEC validation status stored in
 the variable rr_status MUST be set to one of the following codes:

 VAL_AC_UNSET: No DNSSEC validation status information could be
 obtained for the given signature.

 VAL_AC_RRSIG_VERIFIED: The RRSIG verified successfully.

 VAL_AC_WCARD_VERIFIED: The RRSIG covering a resource record proved
 that the record was wildcard expanded.

 VAL_AC_RRSIG_VERIFIED_SKEW: The RRSIG verified successfully only
 after clock skew was taken into consideration.

 VAL_AC_WCARD_VERIFIED_SKEW: The RRSIG covering a resource record
 proved that the record was wildcard expanded, but only after clock
 skew was taken into consideration.

 VAL_AC_WRONG_LABEL_COUNT: The number of labels on the signature was
 greater than the count given in the RRSIG resource record data.

 VAL_AC_INVALID_RRSIG: The RRSIG could not be parsed.

 VAL_AC_RRSIG_NOTYETACTIVE: The RRSIG's inception time was in the
 future.

 VAL_AC_RRSIG_EXPIRED: The RRSIG's expiration time was in the past.

Krishnaswamy, et al. Expires September 13, 2012 [Page 16]

Internet-Draft DNSSEC Validator API March 2012

 VAL_AC_ALGORITHM_NOT_SUPPORTED: The RRSIG algorithm was not
 supported.

 VAL_AC_RRSIG_VERIFY_FAILED: The RRSIG could not be verified.

 VAL_AC_RRSIG_ALGORITHM_MISMATCH: The keytag referenced in the RRSIG
 matched a DNSKEY but the algorithms were different.

 VAL_AC_DNSKEY_NOMATCH: The DNSKEY that created the given signature
 could not be found in the zone DNSKEY resource record set.

 For each val_rr_rec member of type DNSKEY (or DS where indicated)
 within an authentication chain structure pointed to by val_ac_rrset,
 the DNSSEC validation status stored in the variable rr_status MUST be
 set to one of the following codes:

 VAL_AC_UNSET: No DNSSEC validation status information could be
 obtained for the given DNSKEY or DS record.

 VAL_AC_TRUST_POINT: The given DNSKEY or DS record was configured as
 a DNSSEC trust anchor.

 VAL_AC_SIGNING_KEY: The given DNSKEY was used for generating an
 RRSIG for a resource record in the authentication chain.

 VAL_AC_VERIFIED_LINK: The given DNSKEY or DS resource record
 provided the link in the authentication chain from a DNSSEC trust
 anchor to the signed record.

 VAL_AC_UNKNOWN_ALGORITHM_LINK: The DNSKEY chained up to a DS record
 but the DNSKEY algorithm was unknown.

 VAL_AC_UNKNOWN_DNSKEY_PROTOCOL: The DNSKEY protocol number was
 unknown.

 VAL_AC_ALGORITHM_NOT_SUPPORTED: The DNSKEY or DS algorithm was not
 supported.

 VAL_AC_DS_NOMATCH: The given DNSKEY did not chain up to any DS
 record in the parent zone.

 VAL_AC_INVALID_KEY: The given DNSKEY was invalid.

 VAL_AC_INVALID_DS: The given DS was invalid.

 The numerical values for the codes listed above are implementation-
 specific. The p_ac_status() function is used to convert the DNSSEC
 validation status code stored in struct val_authentication_chain to a

Krishnaswamy, et al. Expires September 13, 2012 [Page 17]

Internet-Draft DNSSEC Validator API March 2012

 string representation.

 #include <validator/validator.h>

 const char *p_ac_status(val_astatus_t status);

 The value returned MAY be the string conversion for the corresponding
 val_astatus_t identifier. For example, the return value from
 p_ac_status(VAL_AC_VERIFIED) MAY be "VAL_AC_VERIFIED".

5. Low-level Asynchronous DNSSEC Validator API

 The low-level Asynchronous DNSSEC validator API allows an application
 to submit multiple requests which can be processed in parallel. In
 most cases, this will result in validation completing much sooner
 than a series of synchronous requests.

 When submitting an asynchronous request, an application may specify a
 callback function to be called when the request completes.

 Since DNSSEC validation of a domain name involves multiple queries,
 applications must periodically give time to the API for processing
 responses and sending additional queries. (See
 val_async_check_wait() in Section 5.1.3.)

 The functions and data structures defined in the low-level
 Asynchronous DNSSEC validator API are summarized below.

5.1. Asynchronous Requests

5.1.1. val_async_submit

 #include <validator/validator.h>

 int val_async_submit(val_context_t *ctx, const char *domain_name,
 int class, int type, unsigned int flags,
 val_async_event_cb *callback,
 void *user_context,
 val_async_status **async_status);

 The val_async_submit() function submits a request for asynchronous
 processing of DNS queries for the data associated with the given
 domain name, class and type.

 If specified, the given callback function will be called when results
 become available. Some flags, defined below, can affect when and how
 often the callback is called.

Krishnaswamy, et al. Expires September 13, 2012 [Page 18]

Internet-Draft DNSSEC Validator API March 2012

 The specified user context will also be passed to the callback
 function. More information on the callback function and user_context
 can be found in Section 5.2.

 The val_async_submit() function MUST return VAL_NO_ERROR on success
 and return a pointer to a newly allocated async_status object via the
 async_status parameter. More information on async_status objects can
 be found in Section 5.3.

 On failure, the return code will be one of VAL_RESOURCE_UNAVAILABLE,
 VAL_BAD_ARGUMENT or VAL_INTERNAL_ERROR. The function MUST release
 any allocated data, and MUST NOT return a value via the async_status
 parameter. An implementation MAY set async_status to NULL.

 The following flags may be set for the request. The numerical values
 for the flags are implementation-specific.

 VAL_AS_IGNORE_CACHE: Don't use any internal cache for answers to
 this query. Answers MUST be from fresh responses to all queries.
 These new answers MAY be stored in the internal cache for use with
 future queries.

 VAL_AS_NO_NEW_QUERIES: Don't send any new queries. Answers MUST
 come from the internal cache.

 VAL_AS_NO_ANSWERS: Caller doesn't care about the answer results.
 This can be used for priming the cache.

 VAL_AS_NO_CALLBACKS: Don't call any callbacks.

 VAL_AS_NO_CANCEL_CALLBACKS: Call callbacks with results, but don't
 call any callbacks when the reques is canceled.

 VAL_AS_INTERIM_CALLBACKS: Call the callback function with interim
 results. If this flag is not specified, the callback function
 will only be called when all validation results are ready.

5.1.2. val_async_select_info

 #include <validator/validator.h>

 int val_async_select_info(val_context_t *context,
 fd_set *fds, int *max_fd,
 struct timeval *timeout);

 The val_async_select_info() function examines all outstanding
 asynchronous requests for the given context and sets the appropriate

Krishnaswamy, et al. Expires September 13, 2012 [Page 19]

Internet-Draft DNSSEC Validator API March 2012

 file descriptors, timeout value and maximum file descriptor value in
 preparation for a call to select().

 The file descriptor for each socket awating a response MUST be set in
 the fds parameter. The function MUST NOT initialize the fd_set, as
 the application may have already set its own file descriptors.

 The integer value pointed to by max_fd MUST be set to the highest
 file descriptor number of any pending asynchronous request, unless
 that value is less than the current vaule of max_fd. In that case,
 the max_fd value MUST NOT be changed.

 The timeout structure MUST be set to the lowest timeout value of any
 pending asynchronous query timeout which is less than the current
 value in timeout.

 After the application call select, val_async_check_wait() (see
Section 5.1.3) should be called with the fd_set and number of ready

 file descriptors returned by select. Example code is provided in
Appendix C.

5.1.3. val_async_check_wait

 #include <validator/validator.h>

 int val_async_check_wait(val_context_t *ctx, fd_set *fds,
 int *nfds, struct timeval *timeout,
 unsigned int flags);

 The val_async_check_wait() function handles timeouts or processes DNS
 responses to outstanding queries. It may also call callbacks for
 completed requests.

 The function provides two modes of operation. The first is for use
 with an application that has its own select() loop. The applications
 sets its own file descriptors, calls val_async_select_info() to set
 file descriptors for pending queries and calls select(). The fds and
 nfds parameters from select are passed in to val_async_check_wait and
 the timeout value is ignored. If the implementation processes
 responses for a file descriptor, the implementation SHOULD clear the
 appropriate file descriptor in fds and decrement nfds.

 In the second mode of operation, the fds and nfds parameters are set
 to NULL and a timeout value is specified. The function will call
 val_async_select_info() and select() internally, and process any
 responses received before the timeout value expires.

 Example code is provided in Appendix C.

Krishnaswamy, et al. Expires September 13, 2012 [Page 20]

Internet-Draft DNSSEC Validator API March 2012

5.2. Asynchronous Callbacks

 #include <validator/validator.h>

 typedef struct val_cb_params_s {
 val_status_t val_status;
 char *name;
 int class_h;
 int type_h;
 int retval;
 struct val_result_chain *results;
 struct val_answer_chain *answers;
 } val_cb_params_t;

 typedef int (*val_async_event_cb)(val_async_status *as, int event,
 val_context_t *ctx, void *user_ctx,
 val_cb_params_t *callback_params);

 When an asynchronous request is submitted, a callback function and
 user context may be provided by the caller. This callback function
 is called when validation results are available. The user_ctx
 parameter MUST be the value given by the caller when the request was
 submitted.

 The callback params structure contains the orginal query parameters
 (name, class and type), the 'return value' for the operation,
 pointers to the result and answer chains, and the final validation
 status. This structure will be released when the callback is
 completed. The application can assume responsibility for any of the
 pointer values by copying them and setting the pointers in the
 callback param structure to NULL. The application then becomes
 responsible for releasing the memory with val_free_result_chain (see

Section 4.1) and/or val_free_answer_chain (see Section 3.4), as
 appropriate.

 The following event types are defined:

 VAL_AS_EVENT_COMPLETED: The request completed.

 VAL_AS_EVENT_INTERIM: The request is still being processed, but some
 interim results are available.

 VAL_AS_EVENT_CANCELED: The request was canceled. The val_status,
 results and answers members of the callback parameter structure
 are undefined.

Krishnaswamy, et al. Expires September 13, 2012 [Page 21]

Internet-Draft DNSSEC Validator API March 2012

 Possible codes for val_status are listed in Section 8.1. When
 evaluating the validity of a DNS response, applications SHOULD use
 the functions described in Section 8.2 instead of directly inspecting
 the DNSSEC validation status code returned in val_status.

 After the callback function has completed, the implementation SHOULD
 release all resources allocated for the request.

5.3. Asynchronous Status

 An application which submits asynchronous requests needs a way to
 refer to each request for future operations. This asynchronous
 status object is an implementation specific opaque object which an
 uniquely identifies a particular request.

 When an asynchronous request is submitted, the implementation MUST
 create an asynchronous status object to return to the caller. The
 size of the object SHOULD be at least as large as the native pointer
 type.

5.3.1. Operations on asynchronous status objects

 The API supports the following operations to manipulate asynchronous
 requests:

5.3.1.1. val_async_cancel

 #include <validator/validator.h>

 int val_async_cancel(val_context_t *context,
 val_async_status *async_status,
 unsigned int flags);

 This function will cancel an outstanding asynchronous request. All
 resources used for the request SHOULD be released.

 The following flags may be set for the request. The numerical values
 for the flags are implementation-specific.

 VAL_AS_CANCEL_NO_CALLBACKS: Do not call completed or cancelled
 callbacks.

Krishnaswamy, et al. Expires September 13, 2012 [Page 22]

Internet-Draft DNSSEC Validator API March 2012

6. DNSSEC Validator Context API

 DNSSEC validator policy can be used to influence the DNSSEC
 validation outcome. Examples of DNSSEC validator policy include
 DNSSEC trust anchors for different zones and acceptable clock-skew
 values for checking inception and expiration times on signatures from
 different zones.

 DNSSEC validator policy is stored in the local system configuration
 (for example, the configuration file /etc/dnsval.conf) and could be
 configured differently for different applications and operating
 scenarios. Policies are identified by simple text strings called
 labels, which MUST be unique within the system configuration. As an
 example, "browser" could be used as the label that defines the DNSSEC
 validator policy for all web-browsers in a system. The manner of
 supplying the validation policy label to an application is
 implementation-specific, but the label MAY also be supplied during
 application-startup through the environment variable,
 VAL_CONTEXT_LABEL.

 All DNSSEC validator policy definitions in the system configuration
 are implementation-specific.

6.1. val_create_context, val_free_context

 #include <validator/validator.h>

 int val_create_context(char *label,
 val_context_t **newctx);

 void val_free_context(val_context_t *ctx);

 These function create and release, respectively, validator context
 objects.

 An application maintains a run-time handle to its validator policy
 through the validator context. val_create_context() creates a new
 DNSSEC validator context. The label parameter identifies the DNSSEC
 validator policy to be used by the application for DNSSEC validation.
 The manner in which the label argument is used within the system
 configuration to identify specific validator policy settings is
 implementation-specific. However, all libraries that implement this
 API MUST internally create a DNSSEC validator context with a (system-
 defined) default DNSSEC validator policy if label is NULL.

Krishnaswamy, et al. Expires September 13, 2012 [Page 23]

Internet-Draft DNSSEC Validator API March 2012

 The val_create_context() function MUST return 0 on success, and an
 error code from Section 7 on failure. Memory for the newly created
 DNSSEC validator context MUST be returned in the newctx field. This
 memory MUST be released when applications invoke the
 val_free_context() function. newctx MUST be set to NULL if an error
 is encountered.

6.2. val_context_setqflags

 #include <validator/validator.h>

 int val_context_setqflags(val_context_t *context,
 unsigned char action,
 unsigned int flags);

 This function allows an application to set or reset default query
 flags for a given context. This enables the application to alter the
 DNSSEC validator processing, while still having most of the granular
 default configuration specified in its configuration file.

 The application may specify one of the following action types, where
 their numeric values are implementation-specific.

 VAL_CTX_FLAG_SET: Set the given flag as one of the default query
 flags for the context.

 VAL_CTX_FLAG_RESET: Reset the given flag if it was set as one of the
 default query flags for the context.

7. Function Return Codes and p_val_err()

 The return values from functions defined in the low-level API, the
 DNSSEC validator-context API, and the val_get_rrset() function MUST
 be from the list below. Other high-level API functions mirror
 existing legacy DNS functions, so the return codes from these
 functions are identical to their predecessors. The numerical values
 for the return codes listed below are implementation-specific.

 VAL_NO_ERROR: The function call was successful.

 VAL_NOT_IMPLEMENTED: The implementation did not support a particular
 feature.

Krishnaswamy, et al. Expires September 13, 2012 [Page 24]

Internet-Draft DNSSEC Validator API March 2012

 VAL_RESOURCE_UNAVAILABLE: Some resource necessary for an operation
 (such as memory) was unavailable.

 VAL_BAD_ARGUMENT: An unexpected value was passed as an argument to a
 function.

 VAL_INTERNAL_ERROR: An internal error was encountered by the DNSSEC
 validator.

 VAL_CONF_PARSE_ERROR: The DNSSEC validator configuration was
 improperly specified in the system configuration.

 VAL_CONF_NOT_FOUND: The DNSSEC validator configuration could not be
 located in the system configuration.

 VAL_NO_POLICY: The DNSSEC validator policy identifier being
 referenced was invalid.

 The p_val_err() function is used to convert an error code from the
 list above to a string representation.

 #include <validator/validator.h>

 const char *p_val_err(int err);

 The returned value from p_val_err() MAY be the string conversion for
 the corresponding error code identifier. For example, the return
 value from p_val_err(VAL_NO_ERROR) MAY be "VAL_NO_ERROR".

8. Evaluating Response Validity

 The result of DNSSEC validation for a resource record set, based on
 the individual status code of each element in an authentication
 chain, is returned in a variable of type val_status_t. val_status_t
 can contain one of the possible codes listed in Section 8.1. The
 functions provided in Section 8.2 simplify the task of evaluating
 validity of an answer by wrapping around the different status codes
 possible for each type of answer.

8.1. DNSSEC Validation Status Codes and p_val_status()

 A variable of type val_status_t MUST contain one of the following
 codes (the numerical values for these codes are implementation-
 specific):

Krishnaswamy, et al. Expires September 13, 2012 [Page 25]

Internet-Draft DNSSEC Validator API March 2012

 VAL_VALIDATED_ANSWER: Returned if the combined DNSSEC validation
 status for a set of resource record set responses represents a
 validated state.

 VAL_TRUSTED_ANSWER: Returned if the combined DNSSEC validation
 status for a set of resource record set responses represents a
 trusted (but non-validated) state.

 VAL_UNTRUSTED_ANSWER: Returned if the combined DNSSEC validation
 status for a set of resource record set responses represents an
 untrusted state.

 VAL_SUCCESS: The response for the given resource record set was
 successfully validated through the DNSSEC validation process.

 VAL_NONEXISTENT_NAME: The proof for denial of existence for a domain
 name validated successfully.

 VAL_NONEXISTENT_TYPE: The proof for denial of existence for the
 resource record type for the given name was validated
 successfully.

 VAL_NONEXISTENT_NAME_NOCHAIN: The proof for non-existence of a
 domain name was considered valid through local DNSSEC validator
 configuration; the authentication chain(s) for the different
 components of the proof were not validated.

 VAL_NONEXISTENT_TYPE_NOCHAIN: The proof for non-existence of the
 resource record type for the name queried was considered valid
 through local DNSSEC validator configuration; the authentication
 chain(s) for the different components of the proof were not
 validated.

 VAL_PINSECURE: The record or some ancestor of the record in the
 authentication chain towards a DNSSEC trust anchor was known to be
 provably insecure and DNSSEC validator policy is configured to
 trust provably insecure answers.

 VAL_PINSECURE_UNTRUSTED: The record or some ancestor of the record
 in the authentication chain towards a DNSSEC trust anchor was
 known to be provably insecure, but DNSSEC validator policy is
 configured to not trust provably insecure answers.

 VAL_BARE_RRSIG: The response was for a query of type RRSIG. RRSIGs
 contain the cryptographic signatures for other DNS data and cannot
 themselves be validated.

Krishnaswamy, et al. Expires September 13, 2012 [Page 26]

Internet-Draft DNSSEC Validator API March 2012

 VAL_IGNORE_VALIDATION: DNSSEC validator policy was configured to
 ignore DNSSEC validation for the zone from where this data was
 received.

 VAL_UNTRUSTED_ZONE: DNSSEC validator policy was configured to not
 trust any response from the zone that this data was received from.

 VAL_OOB_ANSWER: The response was obtained using some out-of-band
 mechanism (for example, from a local configuration store such as
 /etc/hosts).

 VAL_BOGUS: The response could not be validated due to signature
 verification failures or the inability to verify proofs of non-
 existence for one or more components in the authentication chain.

 VAL_DNS_ERROR: Returned if a DNS error was encountered during the
 query resolution process.

 VAL_NOTRUST: The authentication chain does not lead up to a
 configured DNSSEC trust anchor.

 The p_val_status() function is used to convert the DNSSEC validation
 status code stored in a variable of type val_status_t to a string
 representation.

 #include <validator/validator.h>

 const char *p_val_status(val_status_t status);

 The value returned MAY be the string conversion for the corresponding
 val_status_t identifier. For example, the return value from
 p_val_status(VAL_SUCCESS) MAY be "VAL_SUCCESS".

8.2. High-Level Routines for Evaluating Validity

 #include <validator/validator.h>

 int val_istrusted(val_status_t status);

 int val_isvalidated(val_status_t status);

 int val_does_not_exist(val_status_t status);

 These functions return a boolean value indicating whether or not the
 given val_status_t object is trusted, validated or does not exist
 (respectively).

Krishnaswamy, et al. Expires September 13, 2012 [Page 27]

Internet-Draft DNSSEC Validator API March 2012

 Most applications will only be interested in a single value that
 represents the validity of DNS data. In some instances, an
 application may also need to distinguish between cases where the
 answer was cryptographically validated and cases where the answer was
 locally trusted. The val_istrusted() and val_isvalidated() functions
 allow an application to evaluate, at a high level, the validity of a
 response without having to inspect the exact status code returned.

 The val_istrusted() function returns a single integer value
 representing the validity of information returned by the DNSSEC
 validator. The return value MUST be greater than 0 if status is one
 of VAL_SUCCESS, VAL_NONEXISTENT_NAME, VAL_NONEXISTENT_TYPE,
 VAL_NONEXISTENT_NAME_NOCHAIN, VAL_NONEXISTENT_TYPE_NOCHAIN,
 VAL_PINSECURE, VAL_IGNORE_VALIDATION, VAL_TRUSTED_ANSWER, or
 VAL_VALIDATED_ANSWER and MUST be equal to 0 for other status codes.

 The val_isvalidated() function returns a single integer value that
 indicates if the answer cryptographically chains down from a
 configured DNSSEC trust anchor. The return value MUST be greater
 than 0 if status is one of VAL_SUCCESS, VAL_NONEXISTENT_NAME,
 VAL_NONEXISTENT_TYPE, or VAL_VALIDATED_ANSWER and MUST be equal to 0
 for other status codes.

 The val_does_not_exist() function allows an application to determine
 from the DNSSEC validation status value if the answer was provably
 non-existent. In combination with the val_istrusted() and
 val_isvalidated() functions, it can give an indication about the
 manner in which validity was determined (cryptographically verified
 or trusted through local DNSSEC validator policy). The return value
 from val_does_not_exist() MUST be greater than 0 if status is one of
 VAL_NONEXISTENT_TYPE, VAL_NONEXISTENT_NAME,
 VAL_NONEXISTENT_NAME_NOCHAIN, or VAL_NONEXISTENT_TYPE_NOCHAIN and
 MUST be equal to 0 for other status codes.

9. Notes On DNS Data Caching By Appplications

 Certain applications are known to cache DNS data for an application-
 specific length of time, independent of the TTL limits placed on the
 relevant DNS resource records. Since DNS data is ephemeral by
 design, any caching performed independently by applications may
 conflict with zone publishers' needs to change such DNS records
 frequently. An extension to this problem is the scenario where an
 application caches DNS data for an application-specific length of
 time during which period a zone operator may revoke a DNSSEC key,
 thus rendering that particular cached data as untrustworthy.

 It is recommended that applications MUST NOT cache DNS data in a

Krishnaswamy, et al. Expires September 13, 2012 [Page 28]

Internet-Draft DNSSEC Validator API March 2012

 manner that would violate the TTL limits placed on DNS records.
 Applications must, instead delegate the function of caching DNS data
 to a stub resolver or a local recursive resolver library, and to only
 use DNS API functions to request answers whenever necessary. The
 stub or recursive resolver libraries should, in turn, determine from
 the resource record TTLs if a cached answer is available or if a
 fresh DNS query needs to be issued.

10. IANA Considerations

 This document has no actions for IANA.

11. Security Considerations

 In certain cases DNS responses may be returned from the local system
 configuration (for example, from the /etc/hosts file on some
 systems). The application cannot assume that these answers are
 valid, unless the application is certain that the local configuration
 store contains valid data. If this information is modified during a
 DHCP lookup, for example, the client system should ensure that the
 DHCP server is a trusted source, and that the communication path
 between the DHCP server and the client system is secured. If these
 conditions are not satisfied and if the application chooses to trust
 a locally available answer, an attacker may be able to poison the
 system configuration and cause an application to use invalid answers.
 If applications are to treat out-of-band answers as trusted, this
 choice SHOULD be made explicit through a validator policy
 configuration knob.

 Applications can similarly choose to trust data from provably
 insecure zones. Not performing DNSSEC validation for a zone that has
 DNSSEC intentionally turned off is no worse than the current
 situation of DNSSEC-unaware applications not being able to detect the
 integrity of DNS data for such zones.

 The DNS search path may affect the result of DNSSEC validation,
 especially in the current Internet environment where not all DNS name
 servers are expected to be DNSSEC-aware. If the name server pointed
 to by the system configuration is not DNSSEC-aware (i.e. it does not
 return DNSSEC records), DNSSEC validation will not work as expected,
 unless the validator has certain fallback mechanims in place to try
 and route around such broken behavior.

 The DNSSEC validator configuration information needs to be protected
 so that it cannot be overwritten by unauthorized users or processes.
 The system administrator must ensure that the list of DNSSEC trust

Krishnaswamy, et al. Expires September 13, 2012 [Page 29]

Internet-Draft DNSSEC Validator API March 2012

 anchors is kept accurate and up-to-date. If the DNSSEC trust anchors
 are outdated (in the event of key-rollovers), the DNSSEC validator
 may either falsely mark zones as bogus or may operate with the false
 belief of having validated a response when the response should really
 have been flagged as bogus. Any subversion of the DNSSEC policy
 configuration (including definition of new trust anchors) can
 similarly completely undermine the value provided by DNSSEC.

12. Acknowledgements

 A number of individuals have provided valuable feedback and
 suggestions for improving this document including the following:
 Lindy Foster, Wayne Morrison, Russ Mundy, Bill Sommerfeld, Wes
 Hardaker, Giovanni Marzot and Alfred Hoenes. The list of
 authentication status codes in Section 4.2 was generated through
 multiple brainstorming sessions at various IETF meetings; this draft
 draws on the results from that effort.

13. References

13.1. Normative References

 [refs.DLV]
 Weiler, S., "DNSSEC Lookaside Validation (DLV)", RFC 5074,
 November 2007.

 [refs.IEEE.1003.1-2004]
 IEEE and The Open Group, http://www.opengroup.org, "IEEE
 Std 1003.1-2004 Standard for Information Technology --
 Portable Operating System Interface (POSIX). Open Group
 Technical Standard: Base Specifications, Issue 6", ISO/
 IEC 9945:2003, February 2004.

 [refs.RFC3493]
 Gilligan, R., Thomson, S., Bound, J., McCann, J., and W.
 Stevens, "Basic Socket Interface Extensions for IPv6",

RFC 3493, February 2003.

 [refs.RFC4034]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, March 2005.

 [refs.RFC4035]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security

https://datatracker.ietf.org/doc/html/rfc5074
http://www.opengroup.org
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc3493
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035

Krishnaswamy, et al. Expires September 13, 2012 [Page 30]

Internet-Draft DNSSEC Validator API March 2012

 Extensions", RFC 4035, March 2005.

13.2. Informative References

 [refs.RFC1034]
 Mockapetris, P., "Domain Names - Concepts and Facilities",

RFC 1034, November 1987.

 [refs.RFC2672]
 Crawford, M., "Non-Terminal DNS Name Redirection",

RFC 2672, August 1999.

 [refs.RFC4033]
 Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, March 2005.

Appendix A. Zone-Specific Validator Policy Settings

 Zone-specific validator policy settings may have the following
 structure.

 <label> <attribute> <additional-data>;

 Sample values for <attribute> are "trust-anchor", "zone-security-
 expectation", "provably-insecure-status", "clock-skew". The value
 for <additional-data> would depend on the type of attribute
 specified.

 o For the "trust-anchor" attribute additional-data could be a
 sequence of ordered pairs, each consisting of the zone name and a
 string containing the resource record data for the trust anchor's
 DNSKEY or DS record. An example is given below.

 browser trust-anchor
 . DS 19036 8 2 \
 49AAC11D7B6F6446702E54A1607371607A1A41855200FD2CE\
 1CDDE32F24E8FB5
 example.org DNSKEY 257 3 5 AQO8XS4y9r77X 9SHBmrx MoJf\
 1Pf9AT9Mr/L5BBGtO9/e9f/zl4FFgM2l B6M2 XEm6mp6 mit\
 4tzpB/sAEQw1McYz6bJdKkTiqtuWTCfDmgQhI6 /Ha0 Ef GP\
 NSqnY 99FmbSeWNIRaa4fgSCVFhvbrYq1nXkNVy QPeEVHk o\
 DNCA lr qOA3lw==
 ;

https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc2672
https://datatracker.ietf.org/doc/html/rfc2672
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4033

Krishnaswamy, et al. Expires September 13, 2012 [Page 31]

Internet-Draft DNSSEC Validator API March 2012

 o For the "zone-security-expectation" attribute additional-data
 could be a sequence of <domain name,value> tuples representing the
 security expectation for names in that domain, where value could
 be one of the following:

 ignore: Ignore DNSSEC validation for names under this domain.
 validate: Perform DNSSEC validation of answers received for names
 under this domain.
 untrusted: Reject all answers received for names under this
 domain.

 This zone-security-expectation DNSSEC validator policy construct
 makes it possible to define various islands of trust for DNSSEC-
 enabled zones and to ignore or trust data from selected zones.
 The default zone security expectation for a domain should be
 "validate". In the following example, for DNSSEC validator
 contexts created with a DNSSEC validator policy label of
 "browser", DNSSEC validation would only be performed for names
 under the example.com domain; names under the somebogusdomain.org
 domain would always considered to be untrusted and DNSSEC
 validation for all other domain names would be ignored.

 browser zone-security-expectation
 example.com validate
 somebogusdomain.org untrusted
 . ignore
 ;

 o For the "provably-insecure-status" attribute additional-data could
 be a sequence of <domain name,value> tuples representing the
 validity of the provably insecure condition, where value could be
 one of the following:

 trusted: Treat the provably insecure condition as valid.
 untrusted: Treat the provably insecure condition as invalid.

 The default value for the provably insecure status for a domain
 should be "trusted". In the following example, for DNSSEC
 validator contexts created with the default label, the provably
 insecure condition would be treated as trustworthy for all domains
 except the net domain, where this condition would be treated as
 invalid.

 : provably-insecure-status
 . trusted
 net untrusted
 ;

Krishnaswamy, et al. Expires September 13, 2012 [Page 32]

Internet-Draft DNSSEC Validator API March 2012

 o For the "clock-skew" attribute additional-data could be a sequence
 of the domain name and the number of seconds of clock-skew
 acceptable for signatures on names in that domain. A clock skew
 value of -1 could have the effect of turning off inception and
 expiration time checks on signatures from that domain. The
 default clock skew should be 0. In the following example, for
 DNSSEC validator contexts created with the "mta" label, signature
 inception and expiration checks would be disabled for all names
 under the example.com domain.

 mta clock-skew
 example.com -1
 ;

Appendix B. Global Validator Policy

 Global policy options guide validator behavior across multiple zones.
 Global policy options for the DNSSEC validator could be defined under
 a separate section within the validator system configuration. Some
 of the possible configuration knobs for global validator policy
 include the following.

 o trust-oob-answers <yes/no>: policy on whether or not the validator
 should trust answers received out-of-band.
 o edns0-size <default-edns0-size>: the default EDNS0 size to be
 advertized in queries sent out by the validator.

Appendix C. Asynchronous API Example Code

 The general flow for asynchronous request processing can be described
 with the following pseudo-code:

 #include <validator/validator.h>

 int done = 0;

 int my_callback(val_async_status *async_status, int event,
 val_context_t *ctx, void *user_ctx,
 val_cb_params_t *cbp) {
 if (event == VAL_AS_EVENT_CANCELED) {
 fprint("canceled: %s", (char*)user_ctx);
 return;
 }

 fprintf("final status for %s: %d\n", (char*)user_ctx,
 val_async_status(async_status));

Krishnaswamy, et al. Expires September 13, 2012 [Page 33]

Internet-Draft DNSSEC Validator API March 2012

 done = 1;
 return 0;
 }

 main() {
 val_async_status *async_status;
 struct timeval tv;
 fd_set fds;
 int nfds, ready;
 val_context *ctx = NULL;
 char *domain = "www.example.com";

 /* submit request */
 rc = val_async_submit(ctx, domain, ns_c_in, ns_t_a, 0,
 my_callback, (void*)domain, &async_status);
 while (!done) {
 tv.usec = 0;
 tv.sec = 10; /* maximum timeout 10 sec */

 #ifdef NO_APPLICATION_FDS

 val_async_check_wait(ctx, NULL, NULL, &tv, 0);

 #else /* HAVE_OUR_OWN_FDS_TO_WATCH */

 FD_ZERO(&fds); /* clear fd_set */
 nfds = 0; /* no FDs yet */

 /* set FDs for pending requests. application should also set
 * its own FDs, if any, before calling select */
 val_async_select_info(&ctx, &fds, &numfds, &tv);
 ready = select(numfds+1, &fds, NULL, NULL, &tv);
 if (ready < 0) {
 break; /* or continue... */
 } else if (ready == 0) {
 /* application timeout processing */
 } else {
 /* application FD processing */
 }
 /* handle async FDs/timeouts */
 val_async_check(&ctx, &fds, &numfds, flags);

 #endif
 }
 }

Krishnaswamy, et al. Expires September 13, 2012 [Page 34]

Internet-Draft DNSSEC Validator API March 2012

Authors' Addresses

 Suresh Krishnaswamy
 SPARTA, Inc.
 7110 Samuel Morse Dr.
 Columbia, MD 21046
 US

 Email: suresh AT sparta.com

 Robert Story
 SPARTA, Inc.

 Email: rstory AT sparta.com

 Abhijit Hayatnagarkar

Krishnaswamy, et al. Expires September 13, 2012 [Page 35]

