
Workgroup: Network File System Version 4

Internet-Draft:

draft-haynes-nfsv4-layoutwcc-01

Updates: 8435 (if approved)

Published: 20 February 2023

Intended Status: Standards Track

Expires: 24 August 2023

Authors: T. Haynes

Hammerspace

T. Myklebust

Hammerspace

Add LAYOUT_WCC to NFSv4.2

Abstract

The Parallel Network File System (pNFS) Flexible File Layout allows

for a file's metadata (MDS) and data (DS) to be on different

servers. It does not provide a mechanism for the data server to

update the metadata server of changes to the data part of the file.

The client has knowledge of such updates, but lacks the ability to

update the metadata server. This document presents a refinement to

RFC8434 to allow the client to update the metadata server to changes

on the data server.

This note is to be removed before publishing as an RFC.

Discussion of this draft takes place on the NFSv4 working group

mailing list (nfsv4@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/nfsv4/. Working Group information

can be found at https://datatracker.ietf.org/wg/nfsv4/about/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 24 August 2023.

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc8435
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://mailarchive.ietf.org/arch/browse/nfsv4/
https://datatracker.ietf.org/wg/nfsv4/about/
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Definitions

1.2. Requirements Language

2. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

2.4. Allowed Errors

2.5. Extension of Existing Implementations

2.6. Flex Files Layout Type

3. Extraction of XDR

3.1. Code Components Licensing Notice

4. Security Considerations

5. IANA Considerations

6. References

6.1. Normative References

6.2. Informative References

Appendix A. Acknowledgments

Authors' Addresses

1. Introduction

In the Network File System version4 (NFSv4) with a Parallel NFS

(pNFS) Flexible File Layout ([RFC8435]) server, there is no

mechanism for the data servers to update the metadata servers for

when the data portion of the file is modified. The metadata server

needs this knowledge to correspondingly update the metadata portion

of the file. If the client is using NFSv3 as the protocol with the

data server, it can leverage weak cache consistency (WCC) to update

the metadata server of the attribute changes. In this document, we

introduce a new operation called LAYOUT_WCC which allows the client

to periodically report the attributes of the data files to the

metadata server.

¶

¶

¶

https://trustee.ietf.org/license-info

(file) data:

data server (DS):

(file) metadata:

metadata server (MDS):

weak cache consistency (WCC):

Using the process detailed in [RFC8178], the revisions in this

document become an extension of NFSv4.2 [RFC7862]. They are built on

top of the external data representation (XDR) [RFC4506] generated

from [RFC7863].

1.1. Definitions

that part of the file system object that contains the

data to be read or written. It is the contents of the object

rather than the attributes of the object.

a pNFS server that provides the file's data when

the file system object is accessed over a file-based protocol.

the part of the file system object that contains

various descriptive data relevant to the file object, as opposed

to the file data itself. This could include the time of last

modification, access time, EOF position, etc.

the pNFS server that provides metadata

information for a file system object.

In NFSv3, WCC allows the client to

check for file attribute changes before and after an operation.

(See Section 2.6 of [RFC1813])

1.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency

2.1. ARGUMENT

¶

¶

¶

¶

¶

¶

¶

<CODE BEGINS>

/// struct LAYOUT_WCC4args {

/// stateid4 lowa_stateid;

/// layouttype4 lowa_type;

/// opaque lowa_body<>;

/// };

<CODE ENDS>

¶

2.2. RESULT

2.3. DESCRIPTION

When using pNFS (See Section 12 of [RFC8881]), the client is most

likely to be performing file operations to the storage device and

not the metadata server. With a NFSv3 data server in the flexible

files layout type (in [RFC8435]) there is no control protocol

([RFC8434]) between the metadata server and the storage device. In

order to update the metadata state of the file, the metadata server

will need to track the metadata state of the data file - once the

layout is issued, it is not able to see the NFSv3 file operations

from the client to the storage device. Thus the metadata server will

be required to query the storage device for the data file

attributes.

For example, the metadata server would issue a NFSv3 GETATTR to the

storage device. These queries are most likely triggered in response

to a NFSv4 GETATTR to the metadata server. Not only are these NFSv3

GETATTRs to the storage device individually expensive, the storage

device can become inundated by a storm of such requests. NFSv3

solved a similar issue by having the READ and WRITE operations

employ a post-operation attribute to report the weak cache

consistency (WCC) data (See Section 2.6 of [RFC1813]).

Each NFSv3 operation corresponds to one round trip between the

client and server. So a WRITE followed by a GETATTR would require

two round trips. In that scenario, the attribute information

retrieved is considered to be strict server-client consistency. For

NFSv4, the WRITE and GETATTR can be issued together inside a

compound, which only requires one round trip between the client and

server. And this is also considered to be a strict server-client

consistency. In essence, the NFSv4 READ and WRITE operations drop

the post-operation attributes, allowing the client to decide if it

needs that information.

With the flexible files layout type, the client can leverage the

NFSv3 WCC to service the proxying of times (See Section 4 of

[delstid]). But the granularity of this data is limited. With client

side mirroring (See Section 8 of [RFC8435]), the client has to

aggregate the N mirrored files in order to send one piece of

information instead of N pieces of information. Also, the client is

<CODE BEGINS>

/// struct LAYOUT_WCC4res {

/// nfsstat4 lowr_status;

/// };

<CODE ENDS>

¶

¶

¶

¶

limited to sending that information only when it returns the

delegation.

The current filehandle and the lowa_stateid identifies the

particular layout for the LAYOUT_WCC operation. The lowa_type

indicates how to unpack the layout type specific payload inside the

lowa_body field. The lowa_type is defined to be a value from the

IANA registry for "pNFS Layout Types Registry".

The lowa_body will contain the data file attributes. The client will

be responsible for mapping the NFSv3 post-operation attributes to

those in a fattr4. Just as the post-operation attributes may be

ignored by the client, the server may ignore the attributes inside

the LAYOUT_WCC. But the server can also use those attributes to

avoid querying the storage device for the data file attributes. Note

that as these attributes are optional and there is nothing the

client can do if the server ignores one, there is no need to return

a bitmap4 of which attributes were accepted in the result of the

LAYOUT_WCC.

2.4. Allowed Errors

The LAYOUT_WCC operation can raise the errors in Table 1. When an

error is encountered, the metadata server can decide to ignore the

entire operation or depending on the layout type specific payload,

it could decide to apply a portion of the payload.

Valid Error Returns for LAYOUT_WCC

Errors

NFS4ERR_ADMIN_REVOKED, NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,

NFS4ERR_DEADSESSION, NFS4ERR_DELAY, NFS4ERR_DELEG_REVOKED,

NFS4ERR_EXPIRED, NFS4ERR_FHEXPIRED, NFS4ERR_GRACE, NFS4ERR_INVAL,

NFS4ERR_ISDIR, NFS4ERR_MOVED, NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,

NFS4ERR_NO_GRACE, NFS4ERR_OLD_STATEID, NFS4ERR_OP_NOT_IN_SESSION,

NFS4ERR_REP_TOO_BIG, NFS4ERR_REP_TOO_BIG_TO_CACHE,

NFS4ERR_REQ_TOO_BIG, NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_SERVERFAULT,

NFS4ERR_STALE, NFS4ERR_TOO_MANY_OPS, NFS4ERR_UNKNOWN_LAYOUTTYPE,

NFS4ERR_WRONG_CRED, NFS4ERR_WRONG_TYPE

Table 1

2.5. Extension of Existing Implementations

The new LAYOUT_WCC operation is OPTIONAL for both NFSv4.2

([RFC7863]) and the flexible files layout type ([RFC8435]).

¶

¶

¶

¶

¶

¶

2.6. Flex Files Layout Type

The flex file layout type specific results MUST correspond to the

ff_layout4 data structure as defined in Section 5.1 of [RFC8435].

There MUST be a one-to-one correspondence between:

ff_data_server4 -> ff_data_server_wcc4

ff_mirror4 -> ff_mirror_wcc4

ff_layout4 -> ff_layout_wcc4

Each ff_layout4 has an array of ff_mirror4, which have an array of

ff_data_server4. Based on the current filehandle and the

lowa_stateid, the server can match the reported attributes.

But the positional correspondence between the elements is not

sufficient to determine the attributes to update. Consider the case

where a layout had three mirrors and two of them had updated

attributes, but the third did not. A client could decide to present

all three mirrors, with one mirror having an attribute mask with no

attributes present. Or it could decide to present only the two

mirrors which had been changed.

In either case, the combination of ffdsw_deviceid, ffdsw_stateid,

and ffdsw_fh_vers will uniquely identify the attributes to be

updated. All three arguments are required. A layout might have

multiple data files on the same storage device, in which case the

ffdsw_deviceid and ffdsw_stateid would match, but the ffdsw_fh_vers

would not.

<CODE BEGINS>

/// struct ff_data_server_wcc4 {

/// deviceid4 ffdsw_deviceid;

/// stateid4 ffdsw_stateid;

/// nfs_fh4 ffdsw_fh_vers<>;

/// fattr4 ffdsw_attributes;

/// };

///

/// struct ff_mirror_wcc4 {

/// ff_data_server_wcc4 ffmw_data_servers<>;

/// };

///

/// struct ff_layout_wcc4 {

/// ff_mirror_wcc4 fflw_mirrors<>;

/// };

<CODE ENDS>

¶

¶

* ¶

* ¶

* ¶

¶

¶

¶

The ffdsw_attributes are processed similar to the obj_attributes in

the SETATTR arguments (See Section 18.34 of [RFC8881]).

3. Extraction of XDR

This document contains the external data representation (XDR)

[RFC4506] description of the new open flags for delegating the file

to the client. The XDR description is embedded in this document in a

way that makes it simple for the reader to extract into a ready-to-

compile form. The reader can feed this document into the following

shell script to produce the machine readable XDR description of the

new flags:

That is, if the above script is stored in a file called

"extract.sh", and this document is in a file called "spec.txt", then

the reader can do:

The effect of the script is to remove leading white space from each

line, plus a sentinel sequence of "///". XDR descriptions with the

sentinel sequence are embedded throughout the document.

Note that the XDR code contained in this document depends on types

from the NFSv4.2 nfs4_prot.x file (generated from [RFC7863]). This

includes both nfs types that end with a 4, such as offset4, length4,

etc., as well as more generic types such as uint32_t and uint64_t.

While the XDR can be appended to that from [RFC7863], the various

code snippets belong in their respective areas of the that XDR.

3.1. Code Components Licensing Notice

Both the XDR description and the scripts used for extracting the XDR

description are Code Components as described in Section 4 of "Legal

Provisions Relating to IETF Documents" [LEGAL]. These Code

Components are licensed according to the terms of that document.

¶

¶

<CODE BEGINS>

#!/bin/sh

grep '^ *///' $* | sed 's?^ */// ??' | sed 's?^ *///$??'

<CODE ENDS>

¶

¶

<CODE BEGINS>

sh extract.sh < spec.txt > layout_wcc.x

<CODE ENDS>

¶

¶

¶

¶

¶

[delstid]

[RFC2119]

[RFC4506]

[RFC7862]

[RFC7863]

[RFC8174]

[RFC8178]

[RFC8434]

[RFC8435]

4. Security Considerations

There are no new security considerations beyond those in [RFC7862].

5. IANA Considerations

IANA should use the current document (RFC-TBD) as the reference for

the new entries.

6. References

6.1. Normative References

Haynes, T. and T. Myklebust, "Extending the Opening of

Files in NFSv4.2", draft-ietf-nfsv4-delstid-02.xml (Work

In Progress), February 2023.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Eisler, M., Ed., "XDR: External Data Representation

Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May

2006, <https://www.rfc-editor.org/info/rfc4506>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 Protocol", RFC 7862, DOI 10.17487/RFC7862,

November 2016, <https://www.rfc-editor.org/info/rfc7862>.

Haynes, T., "Network File System (NFS) Version 4 Minor

Version 2 External Data Representation Standard (XDR)

Description", RFC 7863, DOI 10.17487/RFC7863, November

2016, <https://www.rfc-editor.org/info/rfc7863>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Noveck, D., "Rules for NFSv4 Extensions and Minor

Versions", RFC 8178, DOI 10.17487/RFC8178, July 2017,

<https://www.rfc-editor.org/info/rfc8178>.

Haynes, T., "Requirements for Parallel NFS (pNFS) Layout

Types", RFC 8434, DOI 10.17487/RFC8434, August 2018,

<https://www.rfc-editor.org/info/rfc8434>.

Halevy, B. and T. Haynes, "Parallel NFS (pNFS) Flexible

File Layout", RFC 8435, DOI 10.17487/RFC8435, August

2018, <https://www.rfc-editor.org/info/rfc8435>.

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4506
https://www.rfc-editor.org/info/rfc7862
https://www.rfc-editor.org/info/rfc7863
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8178
https://www.rfc-editor.org/info/rfc8434
https://www.rfc-editor.org/info/rfc8435

[RFC8881]

[LEGAL]

[RFC1813]

Noveck, D., Ed. and C. Lever, "Network File System (NFS)

Version 4 Minor Version 1 Protocol", RFC 8881, DOI

10.17487/RFC8881, August 2020, <https://www.rfc-

editor.org/info/rfc8881>.

6.2. Informative References

IETF Trust, "Legal Provisions Relating to IETF

Documents", November 2008, <http://trustee.ietf.org/docs/

IETF-Trust-License-Policy.pdf>.

Callaghan, B., Pawlowski, B., and P. Staubach, "NFS

Version 3 Protocol Specification", RFC 1813, DOI

10.17487/RFC1813, June 1995, <https://www.rfc-editor.org/

info/rfc1813>.

Appendix A. Acknowledgments

Trond Myklebust and David Flynn all worked on the prototype at

Hammerspace.

Dave Noveck and Tigran Mkrtchyan provided reviews of the document.

Authors' Addresses

Thomas Haynes

Hammerspace

Email: loghyr@hammerspace.com

Trond Myklebust

Hammerspace

Email: trondmy@hammerspace.com

¶

¶

https://www.rfc-editor.org/info/rfc8881
https://www.rfc-editor.org/info/rfc8881
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
http://trustee.ietf.org/docs/IETF-Trust-License-Policy.pdf
https://www.rfc-editor.org/info/rfc1813
https://www.rfc-editor.org/info/rfc1813
mailto:loghyr@hammerspace.com
mailto:trondmy@hammerspace.com

	Add LAYOUT_WCC to NFSv4.2
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Definitions
	1.2. Requirements Language

	2. Operation 77: LAYOUT_WCC - Layout Weak Cache Consistency
	2.1. ARGUMENT
	2.2. RESULT
	2.3. DESCRIPTION
	2.4. Allowed Errors
	2.5. Extension of Existing Implementations
	2.6. Flex Files Layout Type

	3. Extraction of XDR
	3.1. Code Components Licensing Notice

	4. Security Considerations
	5. IANA Considerations
	6. References
	6.1. Normative References
	6.2. Informative References

	Appendix A. Acknowledgments
	Authors' Addresses

