Crypto Forum Research Group H. de Valence

Internet-Draft J. Grigg
Intended status: Informational G. Tankersley
Expires: 9 November 2019 F. Valsorda
I. Lovecruft

8 May 2019

The ristretto255 Group
draft-hdevalence-cfrg-ristretto-01

Abstract

This memo specifies a prime-order group, ristretto255, suitable for
implementing complex cryptographic protocols such as zero-knowledge
proofs. The ristretto255 group can be implemented using Curve25519,
allowing existing Curve25519 implementations to be reused and
extended to provide a prime-order group.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 November 2019.

Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Simplified BSD License text

de Valence, et al. Expires 9 November 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Internet-Draft ristretto255 May 2019

as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Simplified BSD License.

Table of Contents

=

Introduction .. . R
Notation and Conventions Used In ThlS Document
ristretto255 . .

1. Internal utility functlons

3.1.1. Negative field elements

3.1.2. Constant time operations
3.1.3
2

W IN =

Square root of a ratio of field elements

External ristretto255 functions
3.2.1. DECODE
3.2.2 ENCODE
3.2.3. EQUALS .
.4 FROM_UNIFORM_| BYTES e
Operations on internal representations
Scalar field
API Considerations

IANA Considerations
Security Considerations
Acknowledgements

Normative References

Informative References

ppendix A. Test vectors .o
1. Multiples of the generator
Invalid encodings
Group elements from unlform bytestrlngs
ors' Addresses

w
w

w
IN

R RRERERERERRRERRRERR
‘m‘m‘b‘w‘w‘N‘M‘N‘M‘N‘H‘H‘O‘O\@\m\ﬂ\ﬂ\@\O\@\m\b\b\w

> [© |0 N o o s

>

49
w N

=5 |-

Aut
Introduction

Ristretto is a technique for constructing prime order groups with
non-malleable encodings from non-prime-order elliptic curves. It
extends the [Decaf] approach to cofactor elimination to support
cofactor-8 curves such as Curve25519 [RFC7748]. In particular, this
allows an existing Curve25519 library to provide a prime-order group
with only a thin abstraction layer.

Edwards curves provide a number of implementation benefits for
cryptography, such as complete addition formulas with no exceptional
points and the fastest known formulas for curve operations. However,
every Edwards curve has a point of order 4, so that the group of
points on the curve is not of prime order but has a small cofactor.

This abstraction mismatch is usually handled by means of ad-hoc

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7748

de valence, et al. Expires 9 November 2019 [Page 2]

Internet-Draft ristretto255 May 2019

protocol tweaks (such as multiplying by the cofactor in an
appropriate place), or not at all.

Even for simple protocols such as signatures, these tweaks can cause
subtle issues. For instance, Ed25519 implementations may have
different validation behaviour between batched and singleton
verification, and at least as specified in [RFC8032], the set of
valid signatures is not defined by the standard.

For more complex protocols, careful analysis is required for each
protocol, as the original security proofs may no longer apply, and
the tweaks for one protocol may have disastrous effects when applied
to another (for instance, the octuple-spend vulnerability in
[Monero]).

Decaf and Ristretto fix this abstraction mismatch in one place for
all protocols, providing an abstraction to protocol implementors that
matches the abstraction commonly assumed in protocol specifications,
while still allowing the use of high-performance curve
implementations internally.

While Ristretto is a general method, and can be used in conjunction
with any Edwards curve with cofactor 4 or 8, this document specifies
the ristretto255 group, which MAY be implemented using Curve25519.

It is also possible and allowed to implement ristretto255 using a
different elliptic curve internally, but that construction is out-of-
scope for this document.

The ristretto255 abstraction layer provides the following API to
higher-level protocols:

* "ENCODE", an encoding function from internal representations to
bytestrings so that all equivalent representations on the same
ristretto255 element are encoded as identical bytestrings;

* "DECODE", a decoding function from bytestrings to internal
representations with built-in validation, so that only the
canonical encodings of valid ristretto255 elements are accepted;

* "EQUALS", an equality check that operates on internal
representations, so that all representations of the same
ristretto255 element are considered equivalent;

* "FROM_UNIFORM_BYTES", a map from uniformly distributed bytestrings
to ristretto255 elements suitable for hash-to-group and random-
point operations.

https://datatracker.ietf.org/doc/html/rfc8032

de valence, et al. Expires 9 November 2019 [Page 3]

Internet-Draft ristretto255 May 2019

N

[eM]

The internal representations are elliptic curve points, and
internally, group element addition and subtraction (and therefore
scalar multiplication) is implemented by applying point addition,
subtraction and scalar multiplication to the internal representation.

In other words, an existing Edwards curve implementation can
implement ristretto255 by adding four functions: "ENCODE", "DECODE",
"EQUALS", and "FROM_UNIFORM_BYTES".

The abstraction layer imposes minor overhead, and certain operations
(like "EQUALS") are faster than corresponding operations on the
elliptic curve points used internally.

The Ristretto construction and its ristretto255 instantiation are
described and justified in detail at https:// ristretto.group

Notation and Conventions Used In This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

A "ristretto255 group element" is the abstract element of the prime
order group. An "element encoding" is the unique reversible encoding
of a group element. An "internal representation" is a point on the
curve used to implement ristretto255. Each group element can have
multiple equivalent internal representations.

Elliptic curve points in this document are represented in extended
coordinates in the (x, y, z, t) format [Twisted]. All formulas
specify field operations unless otherwise noted.

The | symbol represents a constant-time OR.
ristretto255

This documents describes how to implement the ristretto255 group
using Curve25519 points as an internal representation. Note that
implementations MAY choose to use a different internal
representation, possibly based on a different curve, as long as they
provide an isomorphic group of order

1 = 2**252 + 27742317777372353535851937790883648493

whose encoding and decoding functions, operating on the ristretto255
group elements, match the ones in this document.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

de valence, et al. Expires 9 November 2019 [Page 4]

Internet-Draft ristretto255 May 2019

In particular, implementations MUST NOT expose the internal
representation and MUST NOT apply any operations defined on the
internal representations unless specified in this document.

Since ristretto255 is a prime order group, every element is a
generator, but for interoperability a canonical generator is
selected, which can be internally represented by the Curve25519
basepoint, enabling reuse of existing precomputation for scalar
multiplication. This is its encoding:

e2f2ae@a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945 e08d2d76
3.1. Internal utility functions

The following functions are defined on field elements, and are used
to implement the other ristretto255 functions. These are defined in
this document for convenience in extending a Curve25519
implementation to provide the ristretto255 API. Implementations
SHOULD NOT expose these to their API consumers.

The order of the field is p, the Curve25519 prime 2/255-19, as
specified in Section 4.1 of [RFC7748]. Other parameters used in this
document are:

* D = 37095705934669439343138083508754565189542113879843219016388785
533085940283555

- This is the Edwards d parameter for Curve25519, as specified in
Section 4.1 of [RFC7748].

* SQRT_M1 = 19681161376707505956807079304988542015446066515923890162
744021073123829784752

* SQRT_AD_MINUS_ONE = 2506306895338462347411141415870215270124453150
2492656460079210482610430750235

* INVSQRT_A_MINUS_D = 5446930700890931692099581386874514160539359729
2927456921205312896311721017578

* ONE_MINUS_D_SQ = 1159843021668779879193775521855586647937357759715
417654439879720876111806838

* D_MINUS_ONE_SQ = 4044083434630853685810104246932319082624839914623
8708352240133220865137265952

https://datatracker.ietf.org/doc/html/rfc7748#section-4.1
https://datatracker.ietf.org/doc/html/rfc7748#section-4.1

de valence, et al. Expires 9 November 2019 [Page 5]

Internet-Draft ristretto255 May 2019

3.1.1. Negative field elements

As in [REC8032], given a field element e, define IS_NEGATIVE(e) as
TRUE if the least significant bit of the encoding of e is 1, and
FALSE otherwise. This SHOULD be implemented in constant time.

3.1.2. Constant time operations

We assume that the field element implementation supports the
following operations, which SHOULD be implemented in constant time:

* CT_EQ(u, Vv): Return TRUE if u = v, FALSE otherwise.

* CT_SELECT(v IF cond ELSE u): Return v if cond is TRUE, else return
u.

* CT_NEG(u, cond): Return -u if cond is TRUE, else return u.
* CT_ABS(u): Return -u if u is negative, else return u.

Note that if they are not already provided, CT_NEG can be implemented
as CT_SELECT(-u IF cond ELSE u) and CT_ABS can be implemented as
CT_SELECT(-u IF IS_NEGATIVE(u) ELSE u).

3.1.3. Square root of a ratio of field elements

On input field elements u and v, the function SQRT_RATIO_M1(u, V)
returns:

* (TRUE, +sqgrt(u/v)) if u and v are non-zero, and u/v 1s square;
* (TRUE, zero) if u is zero;
* (FALSE, zero) if v is zero and u is non-zero;

* (FALSE, +sqrt(SQRT_M1*(u/v))) if u and v are non-zero, and u/v is
non-square (so SQRT_M1*(u/v) is square).

The computation is similar to Section 5.1.3 of [RFC8032], with the
difference that if the input is non-square, the function returns a
result with a defined relationship to the inputs. This result is
used for efficient implementation of the from-uniform-bytes
functionality. The function can be refactored from an existing
Ed25519 implementation.

SQRT_RATIO_M1(u, v) is defined as follows:

https://datatracker.ietf.org/doc/html/rfc8032
https://datatracker.ietf.org/doc/html/rfc8032#section-5.1.3

de valence, et al. Expires 9 November 2019 [Page 6]

Internet-Draft ristretto255 May 2019

v3 = vA2 * v

V7 = v3A2 * v

r=(u*v3) * (u* v7)r((p-5)/8)
check = v * rn2

correct_sign_sqrt
flipped_sign_sqrt
flipped_sign_sqrt_i

CT_EQ(check, u)
CT_EQ(check, -u)
CT_EQ(check, -u*SQRT_M1)

r_prime = SQRT_M1 * r
r = CT_SELECT(r_prime IF flipped_sign_sqrt | flipped_sign_sqrt_i ELSE r)

// Choose the nonnegative square root.
r = CT_ABS(r)

was_square = correct_sign_sqrt | flipped_sign_sqrt

return (was_square, r)
3.2. External ristretto255 functions

A ristretto255 implementation MUST implement the following functions:
3.2.1. DECODE

All elements are encoded as a 32-byte string. Decoding proceeds as
follows:

1. First, interpret the string as an integer s in little-endian
representation. If the resulting value is >= p, decoding fails.

2. If IS_NEGATIVE(s) returns TRUE, decoding fails.

3. Process s as follows:

de valence, et al. Expires 9 November 2019 [Page 7]

Internet-Draft ristretto255 May 2019

3.2.

SS = SN2

ul =1 - ss
u2 =1 + ss
u2_sqr u2/2

v = -(D * uln2) - u2_sqr
(was_square, invsqrt) = SQRT_RATIO_M1(1, v * u2_sqr)

den_x = invsqrt * u2
den_y invsqrt * den_x * v

X = CT_ABS(2 * s * den_x)
y = ul * den_y
t=x*y

4, If was_square is FALSE, or IS_NEGATIVE(t) returns TRUE, or y = 0O,
decoding fails. Otherwise, return the internal representation in
extended coordinates (x, y, 1, t).

2. ENCODE
An internal representation (x@, y0, z0, t0) is encoded as follows:

1. Process the internal representation into a field element s as
follows:

de valence, et al. Expires 9 November 2019 [Page 8]

Internet-Draft ristretto255 May 2019

ul
uz2

(z6 + y0) * (z0 - y0)
X0 * y0o

// Ignore was_square since this is always square
(_, invsqgrt) = SQRT_RATIO_M1(1, ul * u2A2)

denl = invsqrt * ul
den2 = invsqrt * u2
z_inv = denl * den2 * tO

ix0 X0 * SQRT_M1
iy0 y0 * SQRT_M1
enchanted_denominator = denl * INVSQRT_A_MINUS_D

rotate = IS_NEGATIVE(tO * z_inv)

X = CT_SELECT(iy® IF rotate ELSE x0)

y = CT_SELECT(ix@ IF rotate ELSE y0)

z = z0

den_inv = CT_SELECT(enchanted_denominator IF rotate ELSE den2)

y = CT_NEG(y, IS_NEGATIVE(Xx * z_inv))
s = CT_ABS(den_inv * (z - vy))
2. Return the canonical little-endian encoding of s.

Note that decoding and then re-encoding a valid group element will
yield an identical bytestring.

3.2.3. EQUALS

The equality function returns TRUE when two internal representations
correspond to the same group element. Note that internal
representations MUST NOT be compared in any other way than specified
here.

For two internal representations (x1, y1, z1, t1) and (x2, y2, z2,
t2), if

(X1 * y2 ==yl * x2 | yl * y2 == x1 * x2)
evaluates to TRUE, then return TRUE. Otherwise, return FALSE.

Note that the equality function always returns TRUE when applied to
an internal representation and to the internal representation
obtained by encoding and then re-decoding it. However, the internal
representations themselves might not be identical.

de valence, et al. Expires 9 November 2019 [Page 9]

Internet-Draft ristretto255 May 2019

Unlike the equality check for an elliptic curve point in projective
coordinates, the equality check for a ristretto255 group element does
not require an inversion.

3.2.4.

FROM_UNIFORM_BYTES

Define the function MAP(t) on field element t as:

SQRT_M1 * tA2

= (r + 1) * ONE_MINUS_D_SQ

(-1 - r*D) * (r + D)

(was_square, s) = SQRT_RATIO_M1(u, V)
s_prime = -CT_ABS(s*t)

S
C

wo
wl
w2
w3

CT_SELECT(s IF was_square ELSE s_prime)
CT_SELECT(-1 IF was_square ELSE r)

c * (r - 1) * D_MINUS_ONE_SQ - Vv

*5 *v

* SQRT_AD_MINUS_ONE
- SN2

+ SN2

TR
B R ZN

return (wO*w3, w2*wl, wl*w3, wO*w2)

Then, given a uniformly distributed 64-byte string b:

1.

.3.

Interpret the least significant 255 bits of b[0..32] as an
integer r0 in little-endian representation. Reduce r© modulo p.

Interpret the least significant 255 bits of b[32..64] as an
integer r1 in little-endian representation. Reduce r1 modulo p.

Compute group element P1 as MAP(ro)
Compute group element P2 as MAP(r1l).
Return the group element P1 + P2.

Operations on internal representations

Group addition, subtraction and (multi-)scalar multiplication are
performed without modification using the internal representations.

Implementations MUST NOT perform any other operation on internal
representations.

de valence, et al. Expires 9 November 2019 [Page 10]

Internet-Draft ristretto255 May 2019

3.4.

[

Scalar field
The scalars for the ristretto255 group are integers mod
1 = 2**252 + 27742317777372353535851937790883648493.

Scalars are encoded as 32-byte strings in little-endian order.
Implementations SHOULD check that scalars are reduced modulo 1 when
parsing them and reject non-canonical scalar encodings.
Implementations SHOULD reduce scalars modulo 1 when encoding them as
byte strings.

Given a uniformly distributed 64-byte string b, implementations can
obtain a scalar by interpreting the 64-byte string as a 512-bit
integer in little-endian order and reducing the integer modulo 1, as
in [RFC8032].

Note that this is the same scalar field as Curve25519, allowing
existing implementations to be reused.

API Considerations

ristretto255 is an abstraction which exposes a prime-order group, and
ristretto255 elements are represented by curve points, but they are
not curve points. The API needs to reflect that: the type
representing an element of the group SHOULD be opaque and MUST NOT
expose the underlying curve point.

It SHOULD be possible for a ristretto255 implementation to change its
underlying curve without causing any breaking change. A ristretto255
implementation MUST be interoperable with any other implementation,
even if that implementation uses a different curve internally. Any
operation on ristretto255 elements that only works correctly or leads
to different results based on the underlying curve is explicitly
disallowed.

In particular, implementations MUST NOT define the ristretto255
functions as operating on arbitrary curve points, and they MUST NOT
construct group elements except via "DECODE" and
"FROM_UNIFORM_BYTES".

However, it is RECOMMENDED that implementations don't perform a
"DECODE" and "ENCODE" operation for each operation in Section 3.3, as
it is inefficient and unnecessary. Implementation SHOULD instead
provide an opaque type to hold the internal representation in between
operations.

https://datatracker.ietf.org/doc/html/rfc8032

de valence, et al. Expires 9 November 2019 [Page 11]

Internet-Draft ristretto255 May 2019

(S}

o

I~

lco

[©

IANA Considerations
This document has no IANA actions.
Security Considerations

The ristretto255 group provides higher-level protocols with the
abstraction they expect: a prime-order group. Therefore, it's
expected to be safer for use in any situation where Curve25519 is
used to implement a protocol requiring a prime-order group. Note
that the safety of the abstraction can be defeated by implementations
that don't follow the guidance in Section 4.

There is no function to test whether an elliptic curve point is a
valid internal representation of a group element. The decoding
function always returns a valid internal representation, or an error,
and allowed operations on valid internal representations return valid
internal representations. 1In this way, an implementation can
maintain the invariant that an internal representation is always
valid, so that checking is never necessary, and invalid states are
unrepresentable.

Acknowledgements

Ristretto was originally designed by Mike Hamburg as a variant of
[Decaf].

The authors would like to thank Daira Hopwood for hir comments on the
draft.

Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Informative References

[Decaf] Hamburg, M., "Decaf: Eliminating cofactors through point
compression", 2015,
<https://www.shiftleft.org/papers/decaf/decaf.pdf>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.shiftleft.org/papers/decaf/decaf.pdf

de valence, et al. Expires 9 November 2019 [Page 12]

Internet-Draft ristretto255 May 2019

[Monero] Nick, J., "Exploiting Low Order Generators in One-Time
Ring Signatures", 2017,
<https://jonasnick.github.io/blog/2017/05/23/exploiting-
low-order-generators-in-one-time-ring-signatures/>.

[RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
for Security", REC 7748, DOI 10.17487/RFC7748, January
2016, <https://www.rfc-editor.org/info/rfc7748>.

[RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
Signature Algorithm (EdDSA)", RFC 8032,
DOI 10.17487/RFC8032, January 2017,
<https://www.rfc-editor.org/info/rfc8032>.

[Twisted] Hisil, H., Wong, K. K., Carter, G., and E. Dawson,
"Twisted Edwards Curves Revisited", 2008,
<https://eprint.iacr.org/2008/522>.

Appendix A. Test vectors

This section contains test vectors for ristretto255. The octets are
hex encoded, and whitespace is inserted for readability.

A.1. Multiples of the generator

The following are the encodings of the multiples 0@ to 15 of the
canonical generator. That is, the first line is the encoding of the
identity point, and each successive line is obtained by adding the
generator to the previous line.

B[0]: 00000000 OOOOCOOO OOOOOOEO EOOEOOOO OCOEONOEOO OOOOLEOOL 00O
00000000

B[1]: e2f2ae@a 6abc4e71 a884a961 c500515f 58e30b6a a582dd8d b6a65945
e08d2d76

B[2]: 6a493210 f7499cdl 7fecb510 aeOcea23 all@e8d5 b901f8ac add3095c
73a3b919

B[3]: 94741f5d 5d52755e ce4f23f0 44ee27d5 dleale2b d196b462 166b1615
2a9d0259

B[4]: da808627 73358bh46 6ffadfed® b3293ab3 d9fd53c5 ea6c9553 58156832
2daf6a57

B[5]: e882b131 016b52c1 d3337080 187cf768 423efccbhb b517bb49 5ab812c4
160ff44e

B[6]: f64746d3 c92b1305 0ed8d802 36a7f000 7c3b3f96 2f5ba793 dl9a60le
bb1df403

B[7]: 44f53520 926ec81f bd5a3878 45beb7df 85a96a24 ecel8738 bdcfa6a7
822a176d

B[8]: 903293d8 f2287ebe 10e2374d cla53e0Ob c887e592 699f02d0 77d5263c
dd55601c

B[9]: 02622ace 8f7303a3 1cafc63f 8fc48fdc 16elc8c8 d234b2f0 d6685282

https://jonasnick.github.io/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://jonasnick.github.io/blog/2017/05/23/exploiting-low-order-generators-in-one-time-ring-signatures/
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8032
https://www.rfc-editor.org/info/rfc8032
https://eprint.iacr.org/2008/522

a9076031

B[10]:

9e2db95f

B[11]:

cafdab42

B[12]:

81184460

B[13]:

5948501f

B[14]:

7f10301e

B[15]:

2e53e64e

20706fd7

bce83f8b

e4549eel

aa52e000

46376b80

e0c418f7

88h2720a

abdd2fab

6b9aab30

df2e16f5

f409b29d

c8d9c4cd

Note that because

de Valence, et al.

led2a5da

72864c24

99ca208c

5fb1032f

c2b5f6T0

d7395b93

d4952b01

bal1810f9

67adafca

c33bc427

c5259199

eal24f3a

f413bcfo

522bc600

fa4c3f3e

42dad6bd

0896e571

d99021bb

Expires 9 November 2019

e7564de8

4afe9587

4e5303de

5a8fcObe

6f41477c

681dfc33

cdc81668

7ac73241

6026e3ca

0167436¢C

d30085ab

02a9d99a

[Page 13]

Internet-Draft

B[i+1] = B[i] + B[1]

ristretto255

May 2019

these test vectors allow testing the encoding function and the
implementation of addition simultaneously.

A.2. Invalid encodings

These are examples of encodings that MUST be

Section 3.2.1.

Non-canonical field encodings.
POffffff fFffffff ffffffff fIffffff

ffffffff fffffff
f3FFffff FIffffff
edffffff fFFFfffff

frffffff
fEffffff
frFfffff

Negative field elements.

01000000 000OOOOO
P1ffffff fIffffff
ed57ffd8 c914fh20
c34c4el8 26e5d403
c940e5a4 404157cf
47cfc549 7c53dc8e
f1c6165d 33367351
87260f7a 2124951

Non-square XxA2.
26948d35 ca62e643
4eacO@77a 713c57b4
de6a7b00® deadc788
bcab477b e20861e0
2a292df7 e32cabab
f4a9e534 fcOd216¢c
8268436f 8c412619
2810e5cb c2cc4d4e

00000000
fEffffff
1471d1c3
b78e246e
b1628b10
61c91d17
boda8f6e
1836002

e26a8317
4397629
eb6b6c8d
le4a0e29
bd9de088
44bh218fa
6cf64b3c
eceb54f61

Negative xy value.

3eb858e7 8f5a7254
a45fdch5 c76448c0
d483fe81 3c6ba647
8a2e1d30 050198c6
32888462 f8b486¢c6
22714250 1b9d4355
5c37cc49 1da847cf
44542511 7cb8c90e

d8c97311
49al1ab33
ebbfd3ec
5a544831
8ad7dd96
ccha2904
eb9281d4
dcbc7cic

s = -1, which causes y =

ecffffff fIffffff

fEffffff

fffffff
fEffffff
frffffff

00000000
fEffffff
d245ce3c
88aab51c
8db051a8
fd626ffb
4511010c
c26a470f

7332e6h6
a4145982
20c0ae96
5284146a
didlabec
0c42d996
7ddbdagoe
c6f69758

74a94f76
f17023ed
4ladcalc
23960ccc
10be5192
04bde415
07efc4dle
c0e74f74

0.
fffffff

fEffffff
fEffffff
fEffffff
frffffff

00000000
fEffffff
746fcbheb
36ccfoaa
d439ela4
1c49e2bc
68174a03
450dadf3

afeb9dos
c6611480
c2f20190
510150d9
9fc0440f
35a0127e
746a3786
e289%aa7a

755fd394
fb2be358
6130c2be
38aef684
bbeaf3b4
75b03769
15144c87
7f2clefa

fffffff

rejected

frFfffff
frrfffff
frFfffff
frffffff

00000000
fffffff
3a3679d5
febffelld
21394ec4
a94eed05
b6581212
4a413d21

e4268b65
44dd3f96
78fa604f
817763ca
637ed2fb
e2e53c71
25f9813d
b440b3chb

1c0ac937
le9c7aad
eee9d9obf
8elec8f5
43951acl
3cef1f43
6e0170b4
5630a967

frffffff

according to

frffffff
frffffff
Frffffff
frffffff

00000000
fEffffff
1b6a516e
7d148a2b
ebcch9ec
2281b510
c71c0Oeld
042b43b9

0f1f5bbd
427d40b1
ee5b87d6
fla6f4b4
al145094d
2706096
dob84570
eaa21995

35c07bal
e8a61252
065c8d15
f780e852
a8118419
8c47f8fb
99a96a22
c64f2877

fffffff

fEffffff
fffff7f
ffrfff7f
frffff7f

00000000
fEffff7f
bebe0e20
9104562
92a8ac78
b1117a24
026c3c72
d93e1309

8d81d371
47d9742f
e989ad7b
22d67042
cl4bea08
49fdff22
77256731
c2f4232b

4579630e
15e04220
1c5f396e
3769ba32
d9fa097b
£35d1165
ed3l1e01le
92a48a4b

fEfFfff7f

de valence, et al. Expires 9 November 2019 [Page 14]

Internet-Draft ristretto255 May 2019

A.3.

Group elements from uniform bytestrings

The following pairs are inputs to "FROM_UNIFORM_BYTES", and their
encoded outputs.

0:

5d1be09e3d0c821c538112490e35701979d99e06ca3e2b5b54bffe8b4dc772c1
4d98b696albbfb5ca32c436cc61c16563790306c79eaca7705668b47dffe5bb6
3066f82a 1a747d45 120d1740 f1435853 1a8f04bb ffe6a819 f86dfe50 f44a0ad6

f116b34b8f17ceb56e8732a60d913dd10cced47a6d53bee9204be8b44f6678b27
0102a56902e2488c46120e9276cfe54638286h9e4b3cdb470b542d46c2068d38
f26e5b6f 7d362d2d 2a94c5d0 e7602cb4 773c95a2 eb5c3la64 f133189f a76ed6lb

8422el1bbdaab52938b81fd602effb6f89110el1e57208ad12d9ad767e2e25510c¢c
27140775f9337088b982d83d7fcfOb2faledffe51952che7365e95c86eaf325¢c
006ccd2a 9e6867e6 a2c5cea8 3d3302cc 9del28dd 2a9a57dd 8ee7b9d7 ffe®2826

ac22415129b61427bf464e17baee8db65940c233b98afce8d17¢c57beeb7876¢c2
150d15af1cb1fb824bbd14955f2b57d08d388aab431a391cfc33d5bafb5dbbaf
f8fOc87c f237953c 5890aec3 99816900 5dae3deca 1fbb0454 8c635953 c817f92a

165d697al1ef3d5¢cf3c38565beefcf88c0f282b8e7dbd28544c483432f1cec767
5debea8ebb4e5fe7d6f6e5db15f15587ac4d4d4alde7191eOclca6664abcc413
ae8le7de df20a497 el0Gc304a 765c1767 a42d6e06 029758d2 d7e8ef7c c4c41179

a836e6c9a9ca9f1e8d486273ad56a78c70cf18fOcelPabblc7172ddd6605d7fd2
979854f47aelccf204a33102095b4200e5befc0465accc263175485Ff0el7easc
e2705652 ff9f5e44 d3e841bf 1c251cf7 dddb77d1 40870dla b2ed64fl a9ce8628

2cdclleaeb95daf01189417cdddbf95952993aa9¢ch9c640eb5058d09702c7462
2c9965a697a3b345ec24ee56335b556e677b30e6T90ac77d781064F866a3c982
80bd0726 2511cdde 4863f8a7 434cef69 6750681c b9510eea 557088F7 6d9e5065

Authors' Addresses

Henry de Valence

Email: ietf@hdevalence.ca

Jack Grigg

Email: ietf@jackgrigg.com

George Tankersley

Email: ietf@gtank.cc

de valence, et al. Expires 9 November 2019 [Page 15]

Internet-Draft ristretto255 May 2019

Filippo Valsorda

Email: ietf@filippo.io

Isis Lovecruft

Email: ietf@en.ciph.re

de Vvalence, et al. Expires 9 November 2019 [Page 16]

