
Workgroup: RIFT

Internet-Draft: draft-head-rift-auto-evpn-01

Published: 9 July 2021

Intended Status: Standards Track

Expires: 10 January 2022

Authors: J. Head, Ed.

Juniper Networks

T. Przygienda

Juniper Networks

W. Lin

Juniper Networks

RIFT Auto-EVPN

Abstract

This document specifies procedures that allow an EVPN overlay to be

fully and automatically provisioned when using RIFT as underlay by

leveraging RIFT's no-touch ZTP architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 January 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

1.1.  Requirements Language

2.  Design Considerations

3.  System ID

4.  Fabric ID

5.  Auto-EVPN Device Roles

5.1.  All Participating Nodes

5.2.  ToF Nodes as Route Reflectors

5.3.  Leaf Nodes

6.  Auto-EVPN Variable Derivation

6.1.  Auto-EVPN Version

6.2.  MAC-VRF ID

6.3.  Loopback Address

6.3.1.  Leaf Nodes as Gateways

6.3.2.  ToF Nodes as Route Reflectors

6.3.2.1.  Route Reflector Election Procedures

6.4.  Autonomous System Number

6.5.  Router ID

6.6.  Cluster ID

6.7.  Route Target

6.8.  Route Distinguisher

6.9.  EVPN MAC-VRF Services

6.9.1.  Untagged Traffic in Multiple Fabrics

6.9.1.1.  VLAN

6.9.1.2.  VNI

6.9.1.3.  MAC Address

6.9.1.4.  IPv6 IRB Gateway Address

6.9.1.5.  IPv4 IRB Gateway Address

6.9.2.  Tagged Traffic in Multiple Fabrics

6.9.2.1.  VLAN

6.9.2.2.  VNI

6.9.2.3.  MAC Address

6.9.2.4.  IPv6 IRB Gateway Address

6.9.2.5.  IPv4 IRB Gateway Address

6.9.3.  Tagged Traffic in a Single Fabric

6.9.3.1.  VLAN

6.9.3.2.  VNI

6.9.3.3.  MAC Address

6.9.3.4.  IPv6 IRB Gateway Address

6.9.3.5.  IPv4 IRB Gateway Address

6.9.4.  Traffic Routed to External Destinations

6.9.4.1.  Route Distinguisher

6.9.4.2.  Route Target

6.10. Auto-EVPN Analytics

6.10.1.  Auto-EVPN Global Analytics Key Type

6.10.2.  Auto-EVPN MAC-VRF Key Type

7.  Acknowledgements



8.  Security Considerations

9.  References

9.1.  Normative References

Appendix A.  Thrift Models

A.1.  RIFT LIE Schema

A.1.1.  Auto-EVPN Version

A.1.2.  Fabric ID

A.2.  RIFT Node-TIE Schema

A.2.1.  Auto-EVPN Version

A.2.2.  Fabric ID

A.3.  common_evpn.thrift

A.4.  auto_evpn_kv.thrift

Appendix B.  Auto-EVPN Variable Derivation

Authors' Addresses

1. Introduction

RIFT is a protocol that focuses heavily on operational simplicity. 

[RIFT] natively supports Zero Touch Provisioning (ZTP) functionality

that allows each node in an underlay network to automatically derive

its place in the topology and configure itself accordingly when

properly cabled. RIFT can also disseminate Key-Value information

contained in Key-Value Topology Information Elements (KV-TIEs)

[RIFT-KV]. These KV-TIEs can contain any information and therefore

be used for any purpose. Leveraging RIFT to provision EVPN overlays

without any need for configuration and leveraging KV capabilities to

easily validate correct operation of such overlay without a single

point of failure would provide significant benefit to operators in

terms of simplicity and robustness of such a solution.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

2. Design Considerations

EVPN supports various service models, this document defines a method

for the VLAN-Aware service model defined in [RFC7432]. Other service

models may be considered in future revisions of this document.

Each model has its own set of requirements for deployment. For

example, a functional BGP overlay is necessary to exchange EVPN NLRI

regardless of the service model. Furthermore, the requirements are

made up of individual variables, such as each node's loopback

address and AS number for the BGP session. Some of these variables

may be coordinated across each node in a network, but are ultimately

locally significant (e.g. route distinguishers). Similarly,
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calculation of some variables will be local only to each device.

RIFT contains currently enough topology information in each node to

calculate all those necessary variables automatically.

Once the EVPN overlay is configured and becomes operational, RIFT

Key-Value TIEs can be used to distribute state information to allow

for validation of basic operational correctness without the need for

further tooling.

3. System ID

The 64-bit RIFT System ID that uniquely identifies a node as defined

in RIFT [RIFT].

4. Fabric ID

RIFT operates on variants of Clos substrate which are commonly

called an IP Fabric. Since EVPN VLANs can be either contained within

one fabric or span them, Auto-EVPN introduces the concept of a

Fabric ID into RIFT.

This section describes an optional extension to LIE packet schema in

the form of a 16-bit Fabric ID that identifies a nodes membership

within a particular fabric. Auto-EVPN capable nodes MUST support

this extension but MAY not advertise it when not participating in

Auto-EVPN. A non-present Fabric ID and value of 0 is reserved as

ANY_FABRIC and MUST NOT be used for any other purpose.

Fabric ID MUST be considered in existing adjacency FSM rules so

nodes that support Auto-EVPN can interoperate with nodes that do

not. The LIE validation is extended with following clause and if it

is not met, miscabling should be declared:

(if fabric_id is not advertised by either node OR

 if fabric_id is identical on both nodes)

    AND

(if auto_evpn_version is not advertised by either node OR

 if auto_evpn_version is identical on both nodes)

The appendix details LIE (Appendix A.1.2) and Node-TIE (Appendix A.

2.2) schema changes.

5. Auto-EVPN Device Roles

Auto-EVPN requires that each node understand its given role within

the scope of the EVPN implementation so each node derives the

necessary variables and provides the necessary overlay

configuration. For example, a leaf node performing VXLAN gateway
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IPv6 Loopback Address

Router ID

Autonomous System Number

Cluster ID

IPv6 RR Loopback Address

IPv6 RR Acceptable Prefix Range

functions does not need to derive its own Cluster ID or learn one

from the route reflector that it peers with.

5.1. All Participating Nodes

Not all nodes have to participate in Auto-EVPN, however if a node

does assume an Auto-EVPN role, it MUST derive the following

variables:

Unique IPv6 loopback address used in BGP sessions.

The BGP Router ID.

The ASN for IBGP sessions.

The Cluster ID for Top-of-Fabric IBGP route reflection.

5.2. ToF Nodes as Route Reflectors

This section defines an Auto-EVPN role whereby some Top-of-Fabric

nodes act as EVPN route reflectors. It is expected that route

reflectors would establish IBGP sessions with leaf nodes in the same

fabric. The typical route reflector requirements do not change,

however determining which specific values to use requires further

consideration. ToF nodes performing route reflector functionality

MUST derive the following variables:

The source address for IBGP sessions with leaf nodes in case

ToF won election for one of the route reflectors in the

fabric.

Range of addresses acceptable by the route reflector to form a

IBGP session. This range covers ALL possible IPv6 Loopback

Addresses derived by other Auto EVPN nodes in the current

fabric and other Auto-EVPN RRs addresses.

5.3. Leaf Nodes

Leaf nodes derive their role from realizing they are at the bottom

of the fabric, i.e. not having any southbound adjacencies.

Alternately, a node can assume a leaf node if it has only southbound

adjacencies to nodes with explicit LEAF_LEVEL to allow for scenarios

where RIFT leaves do NOT participate in Auto-EVPN.
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IPv6 RR Loopback Addresses

EVIs

Route Distinguisher

Route Target

MAC VRF Name

Set of VLANs

VLAN

Name

VNI

IRB

Leaf nodes MUST derive the following variables:

Addresses of the RRs present in the fabric. Those addresses

are used to build BGP sessions to the RR.

Leaf node derives all the necessary variables to instantiate

EVIs with layer-2 and optionally layer-3 functionality.

If a leaf node is required to perform layer-2 VXLAN gateway

functions, it MUST be capable of deriving the following types of

variables:

The route distinguisher corresponding to a MAC-VRF that

uniquely identifies each node.

The route target that corresponds to a MAC-VRF.

This is an optional variable to provide a common MAC VRF name

across all leaves.

Those are VLANs provisioned either within the fabric or

allowing to stretch across fabrics.

For each VLAN derived in an EVI the following variables MUST be

derived:

The VLAN ID.

This is an optional variable to provide a common VLAN name

across all leaves.

The VNI that corresponds to the VLAN ID. This will contribute

to the EVPN Type-2 route.

Optional variables of the IRB for the VLAN if the leaf

performs layer-3 gateway function.

If a leaf node is required to perform layer-3 VXLAN gateway

functions, it MUST additionally be capable of deriving the following

types of variables:
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IP Gateway MAC Address

IP Gateway Subnetted Address

The MAC address associated with IP gateway.

The IPv4 and/or IPv6 gateway address including its subnet

length.

Type-5 EVPN IP Prefix with ToFs performing gateway functionality can

also be derived and will be described in a future version of this

document.

6. Auto-EVPN Variable Derivation

As previously mentioned, not all nodes are required to derive all

variables in a given network (e.g. a transit spine node may not need

to derive any or participate in Auto-EVPN). Additionally, all

derived variables are derived from RIFT's FSM or ZTP mechanism so no

additional flooding beside RIFT flooding is necessary for the

functionality.

It is also important to mention that all variable derivation is in

some way based on combinations of System ID, MAC-VRF ID, Fabric ID,

EVI and VLAN and MUST comply precisely with calculation methods

specified in the Auto-EVPN Variable Derivation section to allow

interoperability between different implementations. All foundational

code elements such as imports, constants, etc. are also mentioned

there.

6.1. Auto-EVPN Version

This section describes extensions to both the RIFT LIE packet and

Node-TIE schemas in the form of a 16-bit value that identifies the

Auto-EVPN Version. Auto-EVPN capable nodes MUST support this

extension, but MAY choose not to advertise it in LIEs and Node-TIEs

when Auto-EVPN is not being utilized. The appendix describes LIE

(Appendix A.1.1) and Node-TIE (Appendix A.2.1) schema changes in

detail.

6.2. MAC-VRF ID

This section describes a variable MAC-VRF ID that uniquely

identifies an instance of EVPN instance (EVI) and is used in

variable derivation procedures. Each EVPN EVI MUST be associated

with a unique MAC-VRF ID, this document does not specify a method

for making that association or ensuring that they are coordinated

properly across fabric(s).
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6.3. Loopback Address

First and foremost, RIFT does not advertise anything more specific

than the fabric default route in the southbound direction by

default. However, Auto-EVPN nodes MUST advertise specific loopback

addresses southbound to all other Auto-EVPN nodes so to establish

MP-BGP reachability correctly in all scenarios.

Auto-EVPN nodes MUST derive a ULA-scoped IPv6 loopback address to be

used as both the IBGP source address, as well as the VTEP source

when VXLAN gateways are required. Calculation is done using the 6-

bytes of reserved ULA space, the 2-byte Fabric ID, and the node's 8-

byte System ID. Derivation of the System ID varies slightly

depending upon the node's location/role in the fabric and will be

described in subsequent sections.

6.3.1. Leaf Nodes as Gateways

Calculation is done using the 6-bytes of reserved ULA space, the 2-

byte Fabric ID, and the node's 8-byte System ID.

In order for leaf nodes to derive IPv6 loopback addresses,

algorithms shown in both auto_evpn_fidsidv6loopback (Figure 24) and 

auto_evpn_v6prefixfidsid2loopback (Figure 9) are required.

IPv4 addresses MAY be supported, but it should be noted that they

have a higher likelihood of collision. The appendix contains the

required auto_evpn_fidsid2v4loopback (Figure 23) algorithm to

support IPv4 loopback derivation.

6.3.2. ToF Nodes as Route Reflectors

ToF nodes acting as route reflectors MUST derive their loopback

address according to the specific section describing the algorithm.

Calculation is done using the 6-bytes of reserved ULA space, the 2-

byte Fabric ID, and the 8-byte System ID of each elected route

reflector.

In order for the ToF nodes to derive IPv6 loopbacks, the algorithms

shown in both auto_evpn_fidsidv6loopback (Figure 24) and 

auto_evpn_fidrrpref2rrloopback (Figure 10) are required.

In order for the ToF derive the necessary prefix range to facilitate

peering requests from any leaf, the algorithm shown in 

"auto_evpn_fid2fabric_prefixes" (Figure 8) is required.

6.3.2.1. Route Reflector Election Procedures

Four Top-of-Fabric nodes MUST be elected as an IBGP route reflector.

Each ToF performs the election independently based on system IDs of
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other ToFs in the fabric obtained via southbound reflection. The

route reflector election procedures are defined as follows:

ToF node with the highest System ID.

ToF node with the lowest System ID.

ToF node with the 2nd highest System ID.

ToF node with the 2nd lowest System ID.

This ordering is necessary to prevent a single node with either the

highest or lowest System ID from triggering changes to route

reflector loopback addresses as it would result in all BGP sessions

dropping.

For example, if two nodes, ToF01 and ToF02 with System IDs

002c6af5a281c000 and 002c6bf5788fc000 respectively, ToF02 would be

elected due to it having the highest System ID of the ToFs

(002c6bf5788fc000). If a ToF determines that it is elected as route

reflector, it uses the knowledge of its position in the list to

derive route reflector v6 loopback address.

The algorithm shown in "auto_evpn_sids2rrs" (Figure 6) is required

to accomplish this.

Considerations for multiplane route reflector elections will be

included in future revisions.

6.4. Autonomous System Number

Nodes in each fabric MUST derive a private autonomous system number

based on its Fabric ID so that it is unique across the fabric.

The algorithm shown in auto_evpn_fid2private_AS (Figure 25) is

required to derive the private ASN.

6.5. Router ID

Nodes MUST drive a Router ID that is based on both its System ID and

Fabric ID so that it is unique to both.

The algorithm shown in auto_evpn_sidfid2bgpid (Figure 11) is

required to derive the BGP Router ID.

6.6. Cluster ID

Route reflector nodes in each fabric MUST derive a cluster ID that

is based on its Fabric ID so that it is unique across the fabric.
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The algorithm shown in auto_evpn_fid2clusterid (Figure 26) is

required to derive the BGP Cluster ID.

6.7. Route Target

Nodes hosting EVPN EVIs MUST derive a route target extended

community based on the MAC-VRF ID for each EVI so that it is unique

across the network. Route targets MUST be of type 0 as per RFC4360.

For example, if given a MAC-VRF ID of 1, the derived route target

would be "target:1"

The algorithm shown in auto_evpn_evi2rt (Figure 12) is required to

derive the Route Target community.

6.8. Route Distinguisher

Nodes hosting EVPN EVIs MUST derive a type-0 route distinguisher

based on its System ID and Fabric ID so that it is unique per MAC-

VRF and per node.

The algorithm shown in auto_evpn_sidfid2rd (Figure 18) is required

to derive the Route Distinguisher.

6.9. EVPN MAC-VRF Services

It's obvious that applications utilizing Auto-EVPN overlay services

may require a variety of layer-2 and/or layer-3 traffic

considerations. Variables supporting these services are also derived

based on some combination of MAC-VRF ID, Fabric ID, and other

constant values. Integrated Routing and Bridging (IRB) gateway

address derivation also leverages a set of constant RANDOMSEEDS

(Figure 5) values that MUST be used to provide additional entropy.

In order to ensure that VLAN ID's don't collide, a single deployment

SHOULD NOT exceed 3 fabrics with 3 EVIs where each EVI terminate 15

VLANs. The algorithms shown in auto_evpn_fidevivlansvlans2desc

(Figure 16) and auto_evpn_vlan_description_table (Figure 15) are

required to derive VLANs accordingly. An implementation MAY exceed

this, but MUST indicate methods to ensure collision-free derivation

and describe which VLANs are stretched across fabrics.

6.9.1. Untagged Traffic in Multiple Fabrics

This section defines methods to derive unique VLAN, VNI, MAC, and

gateway address values for deployments where untagged traffic is

stretched across multiple fabrics.
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6.9.1.1. VLAN

Untagged traffic stretched across multiple fabrics MUST derive VLAN

tags based on MAC-VRF ID in conjunction with a constant value of 1

(i.e. MAC-VRF ID + 1).

6.9.1.2. VNI

Untagged traffic stretched across multiple fabrics MUST derive VNIs

based on MAC-VRF ID and Fabric ID in conjunction with a constant

value. These VNIs MUST correspond to EVPN Type-2 routes.

The algorithm shown in auto_evpn_fidevivid2vni (Figure 14) is

required to derive VNIs for Type-2 EVPN routes.

6.9.1.3. MAC Address

The MAC address MUST be a unicast address and also MUST be identical

for any IRB gateways that belong to an individual bridge-domain

across fabrics. The last 5-bytes MUST be a hash of the MAC-VRF ID

and a constant value of 1 that is calculated using the previously

mentioned random seed values.

The algorithm shown in auto_evpn_fidevividsid2mac (Figure 22) is

required to derive MAC addresses.

6.9.1.4. IPv6 IRB Gateway Address

The derived IPv6 gateway address MUST be from a ULA-scoped range

that will account for the first 6-bytes. The next 5-bytes MUST be

the last bytes of the derived MAC address. Finally, the remaining 7-

bytes MUST be ::0001.

The algorithm shown in auto_evpn_fidevividsid2v6subnet (Figure 21)

is required to derive the IPv6 gateway address.

6.9.1.5. IPv4 IRB Gateway Address

The derived IPv4 gateway address MUST be from a RFC1918 range, which

accounts for the first octet. The next octet MUST a hash of the MAC-

VRF ID and a constant value of 1 that is calculated using the

previously mentioned random seed values. Finally, the remaining 2

octets MUST be 0 and 1 respectively.

The algorithm shown in auto_evpn_v4prefixfidevividsid2v4subnet

(Figure 19) is required to derive the IPv4 gateway address. It

should be noted that there is a higher likelihood of address

collisions when deriving IPv4 addresses.

¶

¶

¶

¶

¶

¶

¶

¶

¶



6.9.2. Tagged Traffic in Multiple Fabrics

This section defines methods to derive unique VLAN, VNI, MAC, and

gateway address values for deployments where tagged traffic is

stretched across multiple fabrics.

6.9.2.1. VLAN

Tagged traffic stretched across multiple fabrics MUST derive VLAN

tags based on MAC-VRF ID in conjunction with a constant value of 16

(i.e. MAC-VRF ID + 16).

6.9.2.2. VNI

Tagged traffic stretched across multiple fabrics MUST derive VNIs

based on MAC-VRF ID and Fabric ID in conjunction with a constant

value. These VNIs MUST correspond to EVPN Type-2 routes.

The algorithm shown in auto_evpn_fidevivid2vni (Figure 14) is

required to derive VNIs for Type-2 EVPN routes.

6.9.2.3. MAC Address

The MAC address MUST be a unicast address and also MUST be identical

for any IRB gateways that belong to an individual bridge-domain

across fabrics. The last 5-bytes MUST be a hash of the MAC-VRF ID

and a constant value of 1 that is calculated using the previously

mentioned random seed values.

The algorithm shown in auto_evpn_fidevividsid2mac (Figure 22) is

required to derive MAC addresses.

6.9.2.4. IPv6 IRB Gateway Address

The derived IPv6 gateway address MUST be from a ULA-scoped range

that will account for the first 6-bytes. The next 5-bytes MUST be

the last bytes of the derived MAC address. Finally, the remaining 7-

bytes MUST be ::0001.

The algorithm shown in auto_evpn_fidevividsid2v6subnet (Figure 21)

is required to derive the IPv6 gateway address.

6.9.2.5. IPv4 IRB Gateway Address

The derived IPv4 gateway address MUST be from a RFC1918 range, which

accounts for the first octet. The next octet MUST a hash of the MAC-

VRF ID and a constant value of 16 that is calculated using the

previously mentioned random seed values. Finally, the remaining 2

octets MUST be 0 and 1 respectively.
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The algorithm shown in auto_evpn_v4prefixfidevividsid2v4subnet

(Figure 19) is required to derive the IPv4 gateway address. It

should be noted that there is a higher likelihood of address

collisions when deriving IPv4 addresses.

6.9.3. Tagged Traffic in a Single Fabric

This section defines a method to derive unique VLAN, VNI, MAC, and

gateway address values for deployments where untagged traffic is

contained within a single fabric.

6.9.3.1. VLAN

Tagged traffic contained to a single fabric MUST derive VLAN tags

based on MAC-VRF ID and Fabric ID in conjunction with a constant

value of 17 (i.e. MAC-VRF ID + Fabric ID + 17).

6.9.3.2. VNI

Tagged traffic contained to a single fabric MUST derive VNIs based

on MAC-VRF ID and Fabric ID in conjunction with a constant value.

These VNIs MUST correspond to EVPN Type-2 routes.

The algorithm shown in auto_evpn_fidevivid2vni (Figure 14) is

required to derive VNIs for Type-2 EVPN routes.

6.9.3.3. MAC Address

The MAC address MUST be a unicast address and also MUST be identical

for any IRB gateways that belong to an individual bridge-domain

across fabrics. The last 5-bytes MUST be a hash of the MAC-VRF ID

and a constant value of 1 that is calculated using the previously

mentioned random seed values.

The algorithm shown in auto_evpn_fidevividsid2mac (Figure 22) is

required to derive MAC addresses.

6.9.3.4. IPv6 IRB Gateway Address

The derived IPv6 gateway address MUST be from a ULA-scoped range,

which accounts for the first 6-bytes. The next 5-bytes MUST be the

last bytes of the derived MAC address. Finally, the remaining 7-

bytes MUST be ::0001.

The algorithm shown in auto_evpn_fidevividsid2v6subnet (Figure 21)

is required to derive the IPv6 gateway address.
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6.9.3.5. IPv4 IRB Gateway Address

The derived IPv4 gateway address MUST be from a RFC1918 range, which

accounts for the first octet. The next octet MUST a hash of the MAC-

VRF ID and a constant value of 17 that is calculated using the

previously mentioned random seed values. Finally, the remaining 2

octets MUST be 0 and 1 respectively.

The algorithm shown in auto_evpn_v4prefixfidevividsid2v4subnet

(Figure 19) is required to derive the IPv4 gateway address. It

should be noted that there is a higher likelihood of address

collisions when deriving IPv4 addresses.

6.9.4. Traffic Routed to External Destinations

6.9.4.1. Route Distinguisher

Nodes hosting IP Prefix routes MUST derive a type-0 route

distinguisher based on its System ID and Fabric ID so that it is

unique per IP-VRF and per node.

The algorithm shown in auto_evpn_sidfid2rd (Figure 18) is required

to derive the Route Target.

6.9.4.2. Route Target

Nodes hosting IP prefix routes MUST derive a route target extended

community based on the MAC-VRF ID for each IP-VRF so that it is

unique across the network. Route targets MUST be of type 0.

The algorithm shown in auto_evpn_evi2rt (Figure 12) is required to

derive the Route Target community.

6.10. Auto-EVPN Analytics

Leaf nodes MAY optionally advertise analytics information about the

Auto-EVPN fabric to ToF nodes using RIFT Key-Value TIEs. This may be

advantageous in that overlay validation and troubleshooting

activities can be performed on the ToF nodes.

This section requests suggested values from the RIFT Well-Known Key-

Type Registry and describes their use for Auto-EVPN.

Name Value Description

Auto-EVPN

Analytics MAC-VRF
3

Analytics describing a MAC-VRF on a

particular node within a fabric.

Auto-EVPN

Analytics Global
4

Analytics describing an Auto-EVPN node

within a fabric.

Table 1: Requested RIFT Key Registry Values
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Auto-EVPN Role:

0:

1:

2:

Established BGP Session Count:

Total BGP Peer Count:

The normative Thrift schema can be found in the appendix (Appendix

A.4).

6.10.1. Auto-EVPN Global Analytics Key Type

This Key Type describes node level information within the context of

the Auto-EVPN fabric. The System ID of the advertising leaf node

MUST be used to differentiate the node among other nodes in the

fabric.

The Auto-EVPN Global Key Type MUST be advertised with the RIFT

Fabric ID encoded into the 3rd and 4th bytes of the Key Identifier.

Figure 1: Auto-EVPN Global Key-Value TIE

where:

The value indicating the node's Auto-EVPN role within the

fabric.

Illegal value, MUST NOT be used.

Auto-EVPN Leaf Gateway

Auto-EVPN Top-of-Fabric Gateway

A 16-bit integer indicating the number of BGP sessions in the

Established state.

A 16-bit integer indicating the total number of possible BGP

sessions on the local node, regardless of state.

6.10.2. Auto-EVPN MAC-VRF Key Type

This Key-Value structure contains information about a specific MAC-

VRF within the Auto-EVPN fabric.

¶

¶

¶

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Well-Known  |             Auto-EVPN (Global)                 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|     (Auto-EVPN Role,                                          |

|      Established BGP Peer Count,                              |

|      Total BGP Peer Count,)                                   |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶



The Auto-EVPN MAC-VRF Key Type MUST be advertised with the Auto-EVPN

MAC-VRF ID encoded into the 3rd and 4th bytes of the Key Identifier.

All values advertised in a MAC-VRF Key-Value TIE MUST represent only

state of the local node.

Figure 2: Auto-EVPN MAC-VRF Key-Value TIE

¶

¶

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|  Well-Known  |             Auto-EVPN (MAC-VRF)                |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|     (Operational CE Interface Count,                          |

|      Total CE Interface Count,                                |

|      Operational IRB Interface Count,                         |

|      Total IRB Interface Count,                               |

|      EVPN Type-2 MAC Route Count,                             |

|      EVPN Type-2 MAC/IP Route Count,                          |

|      Configured VLAN Count,                                   |

|      MAC-VRF Name,                                            |

|      MAC-VRF Description,)                                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶



Operational Customer Edge Interface Count:

Total Customer Edge Interface Count:

Operational IRB Interface Count:

Total IRB Interface Count:

EVPN Type-2 MAC Route Count:

EVPN Type-2 MAC/IP Route Count:

VLAN Count:

MAC-VRF Name:

MAC-VRF Description:

where:

A 16-bit integer indicating the number of CE interfaces

associated with the MAC-VRF where both administrative and

operational status are "up".

A 16-bit integer indicating the total number of CE interfaces

associated with the MAC-VRF regardless of interface status.

A 16-bit integer indicating the number of IRB interfaces

associated with the MAC-VRF where both administrative and

operational status are "up".

A 16-bit integer indicating the total number of IRB interfaces

associated with the MAC-VRF regardless of interface status.

A 32-bit integer indicating the total number of EVPN Type-2

MAC routes.

A 32-bit integer indicating the total number of EVPN Type-2

MAC/IP routes.

A 16-bit integer indicating the total number configured VLANs.

A string used to indicate the name of the MAC-VRF on the node.

A string used to describe the MAC-VRF on the node, similar to

that of an interface description.
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8. Security Considerations

This document introduces no new security concerns to RIFT or other

specifications referenced in this document.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶
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Appendix A. Thrift Models

This section contains the normative Thrift models required to

support Auto-EVPN. Per the main RIFT [RIFT] specification, all

signed values MUST be interpreted as unsigned values.

A.1. RIFT LIE Schema

A.1.1. Auto-EVPN Version

struct LIEPacket {

...

   /** It provides optional version of EVPN ZTP as 256 * MAJOR + MINOR */

   26: optional i16                       auto_evpn_version;

...

A.1.2. Fabric ID

struct LIEPacket {

...

   /** It provides the optional ID of the configured fabric  */

   25: optional common.FabricIDType       fabric_id;

...

¶

¶

¶
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A.2. RIFT Node-TIE Schema

A.2.1. Auto-EVPN Version

struct NodeTIEElement {

...

   /** It provides optional version of EVPN ZTP as 256 * MAJOR + MINOR */

   13: optional i16                         auto_evpn_version;

...

A.2.2. Fabric ID

struct NodeTIEElement {

...

   /** It provides the optional ID of the Fabric configured */

   12: optional common.FabricIDType         fabric_id;

...

A.3. common_evpn.thrift

This section contains the normative Auto-EVPN Thrift schema.

¶

¶

¶



/**

    Thrift file for common AUTO EVPN definitions for RIFT

    Copyright (c) Juniper Networks, Inc., 2016-

    All rights reserved.

*/

namespace py common_evpn

namespace rs models

include "common.thrift"

include "encoding.thrift"

include "statistics.thrift"

const common.FabricIDType   default_fabric_id     = 1

const i8                    default_evis          = 3

const i8                    default_vlans_per_evi = 7

typedef i32       RouterIDType

typedef i32       ASType

typedef i32       ClusterIDType

struct EVPNAnyRole {

    1: required   common.IPv6Address                    v6_loopback,

    2: required   common.IPv6Address                    type5_v6_loopback,

    3: required   common.IPv4Address                    type5_v4_loopback,

    4: required   RouterIDType                          bgp_router_id,

    5: required   ASType                                autonomous_system,

    6: required   ClusterIDType                         cluster_id,

    /** prefixes to be redistributed north */

    7: required   set<common.IPPrefixType>              redistribute_north,

    /** prefixes to be redistributed south */

    8: required   set<common.IPPrefixType>              redistribute_south,

    /** group name for evpn auto overlay */

    9: required   string                                bgp_group_name,

    /** fabric prefixes to be advertised in rift instead of default */

   10: required   set<common.IPPrefixType>              fabric_prefixes,

}

struct PartialEVPNEVI {

    // route target per RFC4360

    1: required   CommunityType                         rt_target,

    2: required   RTDistinguisherType                   rt_distinguisher,

    3: required   RTDistinguisherType                   rt_type5_distinguisher,

    5: required   string                                mac_vrf_name,

    6: required   VNIType                               type5_vni,

}

struct EVPNRRRole {

    2: required   common.IPv6Address                    v6_rr_addr_loopback,



    3: required   common.IPv6PrefixType                 v6_peers_allowed_range,

    4: required   map<MACVRFNumberType, PartialEVPNEVI> evis,

}

typedef i64         RTDistinguisherType

typedef i64         RTTargetType

typedef i16         MACVRFNumberType

typedef i16         VLANIDType

typedef binary      MACType

typedef i16         UnitType

struct IRBType {

    1: required   string                                name,

    2: required   UnitType                              unit,

    /// constant

    3: required   MACType                               mac,

    /// contains address of the gateway as well

    4: optional   common.IPv6PrefixType                 v6_subnet,

    /// contains address of the gateway as well

    5: optional   common.IPv4PrefixType                 v4_prefix,

}

typedef i32      VNIType

struct VLANType {

    1: optional   VLANIDType                            id,

    2: required   string                                name,

    3: optional   IRBType                               irb,

    5: optional   bool                                  stretched = false,

    6: optional   bool                                  is_native = false,

}

struct CEInterfaceType {

    2: optional   common.IEEE802_1ASTimeStampType       moved_to_ce,

    // we may not be able to obtain it in case of internal errors

    3: optional   string                                platform_interface_name,

}

typedef i64       CommunityType

struct EVPNEVI {

    // route target per RFC4360

    1: required   CommunityType                         rt_target,

    2: required   RTDistinguisherType                   rt_distinguisher,

    3: required   RTDistinguisherType                   rt_type5_distinguisher,

    4: required   string                                mac_vrf_name,

    // fabric unique 24 bits VNI on non-stretch, otherwise unique across fabrics

    5: required   map<VNIType, VLANType>                vlans,



    6: required   VNIType                               type5_vni,

}

struct EVPNLeafRole {

    1: required   set<common.IPv6Address>               rrs,

    2: required   map<MACVRFNumberType, EVPNEVI>        evis,

    3: optional   map<common.LinkIDType,

                      CEInterfaceType>                  ce_interfaces,

    5: optional   binary                                leaf_unique_lacp_system_id,

    6: optional   binary                                fabric_unique_lacp_system_id,

}

/// structure to indicate EVPN roles assumed and their variables for

/// external platform to configure itself accordingly. Presence of

/// according structure indicates that the role is assumed.

struct EVPNRoles {

    1: required  EVPNAnyRole                            generic,

    2: optional  EVPNRRRole                             route_reflector,

    3: optional  EVPNLeafRole                           leaf,

}

const common.TimeIntervalInSecType          default_leaf_delay = 120

const common.TimeIntervalInSecType          default_interface_ce_delay = 180

/// default delay before EVPNZTP FSM starts to compute anything

const common.TimeIntervalInSecType          default_evpnztp_startup_delay = 60

¶



A.4. auto_evpn_kv.thrift

This section contains the normative Auto-EVPN Analytics Thrift

schema.¶



include "common.thrift"

namespace py auto_evpn_kv

namespace rs models

/** We don't need the full role structure, only an indication of the node's basic role */

enum AutoEVPNRole {

    ILLEGAL            = 0,

    auto_evpn_leaf_erb = 1,

    auto_evpn_tof_gw   = 2,

}

enum   KVTypes {

    OUI       = 1,

    WellKnown = 2,

}

const i8            AutoEVPNWellKnownKeyType  = 1

typedef i32         AutoEVPNKeyIdentifier

typedef i16         AutoEVPNCounterType

typedef i32         AutoEVPNLongCounterType

const i8            GlobalAutoEVPNTelemetryKV = 4

const i8            AutoEVPNTelemetryKV       = 3

/** Per the according RIFT draft the key comes from the well known space.

    Part of the key is used as Fabric-ID.

    1st     byte  MUST be = "Well-Known"

    2nd     byte  MUST be = "Global Auto-EVPN Telemetry KV",

    3rd/4th bytes MUST be = FabricIDType

*/

struct AutoEVPNTelemetryGlobalKV {

    /** Only values that the ToF cannot derive itself should be flooded. */

    1: required   set<AutoEVPNRole>            auto_evpn_roles,

    /** Established BGP peer count (for Auto-EVPN)

    2: optional   AutoEVPNCounterType          established_bgp_peer_count,

    /** Total BGP peer count (for Auto-EVPN)

    3: optional   AutoEVPNCounterType          total_bgp_peer_count,

}

/** Per the according RIFT draft the key comes from the well known space.

    Part of the key is used as MAC-VRF number.

    1st     byte  MUST be = "Well-Known"

    2nd     byte  MUST be = indicates "Auto-EVPN Telemetry KV",

    3rd/4th bytes MUST be = MACVRFNumberType

*/



struct AutoEVPNTelemetryMACVRFKV {

    /** Active CE interface count (up/up)

    1: optional   AutoEVPNCounterType          active_ce_interfaces,

    /** Total CE interface count

    2: optional   AutoEVPNCounterType          total_ce_interfaces,

    /** Active IRB interface count (up/up)

    3: optional   AutoEVPNCounterType          active_irb_interfaces,

    /** Total IRB interface count

    4: optional   AutoEVPNCounterType          total_irb_interfaces,

    /** Local EVPN Type-2 MAC route count

    5: optional  AutoEVPNLongCounterType       local_evpn_type2_mac_routes,

    /** Local EVPN Type-2 MAC/IP route count

    6: optional  AutoEVPNLongCounterType       local_evpn_type2_mac_ip_routes,

    /** number of configured VLANs */

    7: optional  i16                           configured_vlans,

    /** optional human readable name */

    8: optional  string                        name,

    /** optional human readable string describing the MAC-VRF */

    9: optional  string                        description,

}

¶



Figure 3: Auto-EVPN Key-Value Thrift Schema

Appendix B. Auto-EVPN Variable Derivation

Figure 4: auto_evpn_imports

use std::cell::{RefCell, RefMut};

use std::cmp::{max, min};

use std::collections::{BTreeMap, BTreeSet, HashMap};

use std::fmt::Debug;

use std::net::{Ipv4Addr, Ipv6Addr};

use std::str::FromStr;

use itertools::interleave;

use itertools::Itertools;

use rayon::slice::ParallelSliceMut;

use foundation::models::common::{FabricIDType, IPv6PrefixType};

use foundation::models::common::LevelType;

use foundation::models::common::HierarchyIndications;

use foundation::models::common::IPPrefixType;

use foundation::models::common::IPv4Address;

use foundation::models::common::IPv4PrefixType;

use foundation::models::common::IPv6Address;

use foundation::models::common::LEAF_LEVEL;

use foundation::models::common_services::ServiceErrorType;

use foundation::models::common_evpn::{DEFAULT_EVIS, DEFAULT_VLANS_PER_EVI,

                                          DEFAULT_EVPNZTP_STARTUP_DELAY, DEFAULT_FABRIC_ID, DEFAULT_INTERFACE_CE_DELAY,

                                          DEFAULT_LEAF_DELAY, EVPNAnyRole, EVPNLeafRole,

                                          EVPNRoles, EVPNRRRole, UnitType};

use foundation::models::common_evpn::CEInterfaceType;

use foundation::models::common_evpn::CommunityType;

use foundation::models::common_evpn::EVPNEVI;

use foundation::models::common_evpn::IRBType;

use foundation::models::common_evpn::MACVRFNumberType;

use foundation::models::common_evpn::PartialEVPNEVI;

use foundation::models::common_evpn::RTDistinguisherType;

use foundation::models::common_evpn::VLANIDType;

use foundation::models::common_evpn::VLANType;

use foundation::models::common_evpn::VNIType;

use ILLEGAL_SYSTEM_I_D;

use NodeCapabilities;

use UnsignedSystemID;



/// indicates how many RRs we're computing in EVPN ZTP

pub const MAX_AUTO_EVPN_RRS: usize = 3;

/// indicates the fabric has no ID, used in computations to omit effects of fabric ID

pub const NO_FABRIC_ID: FabricIDType = 0;

/// invalid MACVRF number, MACVRFs start from 1

pub const NO_MACVRF: MACVRFNumberType = 0;

/// unique v6 prefix for all nodes starts with this

pub const AUTO_EVPN_V6PREF: &str = "FD00:A1";

/// how many bytes in a v6pref for RRs

pub const AUTO_EVPN_V6PREFLEN: usize = 8 * 3;

/// unique v6 prefix for route reflector purposes starts like this

pub const AUTO_EVPN_V6RRPREF: &str = "FD00:A2";

/// unique v6 prefix for type-5 purposes starts like this

pub const AUTO_EVPN_V6T5PREF: &str = "FD00:A3";

/// unique v6 prefix for IRB prefix purposes

pub const AUTO_EVPN_V6IRBPREF: &str = "FD00";

/// unique v6 prefix first byte for v6 IRB prefix purposes

pub const AUTO_EVPN_V6IRBPREFFIRSTBYTE: u8 = 0xA4;

/// unique v4 prefix for IRB purposes

pub const AUTO_EVPN_V4IRBPREF: &str = "10";

/// 3 bytes of prefix type and then we have fabric ID after that

pub const AUTO_EVPN_V6_FABPREFIXLEN: usize = 8 + 8 + 8 + 16;

/// per RFC magic

const RT_TARGET_HIGH: CommunityType = 0;

const RT_TARGET_LOW: CommunityType = 0;

/// first available VLAN number

pub const FIRST_VLAN: VLANIDType = 1;

// maximum vlan number one less than maximum to use as bitmask

pub const MAX_VLAN: VLANIDType = 4095;

/// constant VLAN shift

pub const FIRST_VLAN_SHIFT: VLANIDType = 16;

/// NATIVE VLAN number

pub const NATIVE_VLAN: VLANIDType = 1;

/// abstract description of VLAN properties for a derived VLAN

pub struct VLANDescription {

    pub vlan_id: VLANIDType,

    pub name: String,

    /// can this VLAN be stretched across multiple fabrics

    pub stretchable: bool,

    pub native: bool,

}

/// maximum number of VLANs per MACVRF

pub const MAX_VLANS_PER_EVI: usize = 15;



pub type VLANStretchableType = bool;

pub type VLANNativeType = bool;

pub const EXTRATYPE5_RD_DISTINGUISHER: u32 = 0xffff_ffff;

/// high bits of type 5 VNI

const TYPE5VNIHIGH: VNIType = 0x0080_0000;

/// bitmask for type 2 VNI

const TYPE2VNIMASK: VNIType = 0x00ff_ffff ^ TYPE5VNIHIGH;

/// random seeds used in several algorithms to increase entropy

pub const RANDOMSEEDS: [u64; 4] = [

    27008318799u64,

    67438371571,

    37087353685,

    88675895388,

];



Figure 5: auto_evpn_const_structs_type

Figure 6: auto_evpn_sids2rrs

Figure 7: auto_evpn_v62octets

Figure 8: auto_evpn_fid2fabric_prefixes

pub(crate) fn auto_evpn_sids2rrs(mut v: Vec<UnsignedSystemID>) -> Vec<UnsignedSystemID> {

    v.par_sort_unstable();

    let r = if v.len() > 2 {

        let mut s = v.split_off(v.len() / 2);

        s.reverse();

        interleave(v.into_iter(), s.into_iter()).collect()

    } else {

        v

    };

    r

}

pub(crate) fn auto_evpn_v62octets(a: Ipv6Addr) -> Vec<u8> {

    a.octets().iter().cloned().collect()

}

/// fabric prefixes derived instead of advertising default on the fabric to allow

/// for default route on ToF or leaves

pub fn auto_evpn_fid2fabric_prefixes(fid: FabricIDType) -> Result<Vec<IPPrefixType>, ServiceErrorType> {

    vec![

        (auto_evpn_fidsidv6loopback(fid, ILLEGAL_SYSTEM_I_D as _), AUTO_EVPN_V6PREFLEN),

        (auto_evpn_fidrrpref2rrloopback(fid, ILLEGAL_SYSTEM_I_D as _), AUTO_EVPN_V6PREFLEN),

    ]

        .into_iter()

        .map(|(p, _)|

            match p {

                Ok(_) => Ok(

                    IPPrefixType::Ipv6prefix(

                        IPv6PrefixType {

                            address: auto_evpn_v62octets(p?),

                            prefixlen: AUTO_EVPN_V6PREFLEN as _,

                        })),

                Err(e) => Err(e),

            }

        )

        .collect::<Result<Vec<_>, _>>()

}



Figure 9: auto_evpn_v6prefixfidsid2loopback

Figure 10: auto_evpn_fidrrpref2rrloopback

Figure 11: auto_evpn_sidfid2bgpid

/// local address with encoded fabric ID and system ID for collision free identifiers. Basis

/// for several different prefixes.

pub fn auto_evpn_v6prefixfidsid2loopback(v6pref: &str, fid: FabricIDType,

                                         sid: UnsignedSystemID) -> Result<Ipv6Addr, ServiceErrorType> {

    assert!(fid != 0);

    let a = format!("{}{:02X}::{}",

                    v6pref,

                    fid as u16,

                    sid.to_ne_bytes()

                        .iter()

                        .chunks(2)

                        .into_iter()

                        .map(|chunk|

                            chunk.fold(0u16, |v, n| (v << 8) | *n as u16))

                        .map(|v| format!("{:04X}", v))

                        .collect::<Vec<_>>()

                        .into_iter()

                        .join(":")

    );

    Ipv6Addr::from_str(&a)

        .map_err(|_| ServiceErrorType::INTERNALRIFTERROR)

}

/// auto evpn V6 loopback for RRs

pub fn auto_evpn_fidrrpref2rrloopback(fid: FabricIDType,

                                      preference: u8) -> Result<Ipv6Addr, ServiceErrorType> {

    auto_evpn_v6prefixfidsid2loopback(AUTO_EVPN_V6RRPREF, fid, (1 + preference) as _)

}

/// auto evpn BGP router ID

pub fn auto_evpn_sidfid2bgpid(fid: FabricIDType, sid: UnsignedSystemID) -> u32 {

    assert!(fid != 0);

    let hs: u32 = ((sid & 0xffff_ffff_0000_0000) >> 32) as _;

    let mut ls: u32 = (sid & 0xffff_ffff) as _;

    ls = ls.rotate_right(7) ^ (fid as u32).rotate_right(13);

    max(1, hs ^ ls) // never a 0

}



Figure 12: auto_evpn_evi2rt

Figure 13: auto-evpn_fidevi2type5vni

Figure 14: auto_evpn_fidevivid2vni

/// route target bytes are type0/0 and then add EVI

pub fn auto_evpn_evi2rt(evi: MACVRFNumberType) -> CommunityType {

    let wideevi = (evi + 1) as CommunityType;

    (RT_TARGET_HIGH << (64 - 8)) | (RT_TARGET_LOW << 64 - 16) |

        ((wideevi) << 17) |

        ((wideevi))

}

/// type-5 VNI for an EVI

pub fn auto_evpn_fidevi2type5vni(fid: FabricIDType, evi: MACVRFNumberType) -> VNIType {

    TYPE5VNIHIGH | auto_evpn_fidevivid2vni(fid, evi, 0)

}

/// type-2 VNI for a specific VLAN

pub fn auto_evpn_fidevivid2vni(fid: FabricIDType, evi: MACVRFNumberType, vlanid: VLANIDType) -> VNIType {

    let rfid = fid as i32;

    let revi = evi as i32;

    let rvlan = vlanid as i32;

// mask out high bits, VNI is only 24 bits

    TYPE2VNIMASK &

        (

            rfid.rotate_left(16) ^

                revi.rotate_left(12) ^

                rvlan

        )

}



Figure 15: auto_evpn_vlan_description_table

/// maximum VLANs per EVI supported by auto evpn when deriving

pub fn auto_evpn_vlan_description_table<'a>(vlans: usize)

                                            -> Result<&'a [(VLANIDType, VLANStretchableType, VLANNativeType)], ServiceErrorType> {

    // up to 15 vlans can be activated

    const VLANSARRAY: [(i16, bool, bool); MAX_VLANS_PER_EVI] = [

        (NATIVE_VLAN, true, true, ),

        (FIRST_VLAN_SHIFT, true, false, ),

        (FIRST_VLAN_SHIFT + 1, true, false, ),

        (FIRST_VLAN_SHIFT + 2, true, false, ),

        (FIRST_VLAN_SHIFT + 3, false, false, ),

        (FIRST_VLAN_SHIFT + 4, false, false, ),

        (FIRST_VLAN_SHIFT + 5, false, false, ),

        (FIRST_VLAN_SHIFT + 6, false, false, ),

        (FIRST_VLAN_SHIFT + 7, false, false, ),

        (FIRST_VLAN_SHIFT + 8, false, false, ),

        (FIRST_VLAN_SHIFT + 9, false, false, ),

        (FIRST_VLAN_SHIFT +10, false, false, ),

        (FIRST_VLAN_SHIFT +11, false, false, ),

        (FIRST_VLAN_SHIFT +12, false, false, ),

        (FIRST_VLAN_SHIFT +13, false, false, ),

    ];

    if vlans > VLANSARRAY.len() {

        return Err(ServiceErrorType::INVALIDPARAMETERVALUE)

    }

    Ok(&VLANSARRAY[..vlans])

}



Figure 16: auto_evpn_fidevivlansvlans2desc

/// delivers the vlan description that can be used to generate vlans for a

/// specific fabric ID and a MACVRF number

pub fn auto_evpn_fidevivlansvlans2desc(fid: FabricIDType, macvrf: MACVRFNumberType,

                                       vlans: usize) -> Vec<VLANDescription> {

    assert!(NO_MACVRF != macvrf);

    // abstract description of derived VLANs

    let vlan_table = auto_evpn_vlan_description_table(vlans)

        .expect("vlan table in AUTO EVPN incorrect");

    let vlanshift = vlan_table

        .iter()

        .map(|(vl, _, _)| *vl as usize)

        .max()

        .expect("vlan table in AUTO EVPN incorrect")

        .checked_next_power_of_two()

        .expect("vlan table in AUTO EVPN incorrect");

    assert!(vlan_table.len() < FIRST_VLAN_SHIFT as _);

    vlan_table

        .iter()

        .map(move |(vid, stretch, native_)| {

            let stretchedfid = if !stretch {

                fid

            } else {

                NO_FABRIC_ID

            };

            let mut vlan_id = *vid ^ stretchedfid

                .rotate_left(max(16, vlanshift as u32 + 8)) as VLANIDType;

            // leave space for VLANs in the encoding

            vlan_id ^= macvrf.rotate_left(vlanshift as _) as VLANIDType;

            vlan_id %= MAX_VLAN;

            vlan_id = max(1, vlan_id);

            VLANDescription {

                vlan_id: vlan_id as _,

                name: format!("V{}", vlan_id),

                stretchable: *stretch,

                native: *native_,

            }

        })

        .collect()

}



Figure 17: auto_evpn_fidevivid2irb

Figure 18: auto_evpn_sidfid2rd

/// IRB interface number.

/// fid/evi combination shifted up to not interfere with the VLAN-ID

/// and then add the VLAN-ID

pub fn auto_evpn_fidevivid2irb(fid: FabricIDType, evi: MACVRFNumberType, vid: VLANIDType) -> UnitType {

    assert!(NO_MACVRF != evi);

    let mut v = (fid as UnitType ^ evi.rotate_left(4) as UnitType) << (16 - FIRST_VLAN.leading_zeros());

    v = 1 + v.wrapping_add(vid) % MAX_VLAN;

    v % (UnitType::MAX - 1)

}

/// route distinguisher derivation

pub fn auto_evpn_sidfid2rd(sid: UnsignedSystemID, fid: FabricIDType, extra: u32) -> RTDistinguisherType {

    // generate type 0 route distinguisher, first 2 bytes 0 and then 6 bytes

    assert!(fid != NO_FABRIC_ID);

    // shift the 2 bytes we loose

    let convsid = sid as RTDistinguisherType;

    let hs = ((sid & 0xffff_0000_0000_0000) >> 32) as RTDistinguisherType;

    let mut ls: RTDistinguisherType = convsid & 0x0000_ffff_ffff_ffff;

    ls ^= hs;

    ls ^= (fid as RTDistinguisherType).rotate_left(16);

    ls ^= extra as RTDistinguisherType;

    ls

}



Figure 19: auto_evpn_v4prefixfidevividsid2v4subnet

/// v4 subnet derivation

pub fn auto_evpn_v4prefixfidevividsid2v4subnet(v4pref: &str, fid: FabricIDType,

                                               evi: MACVRFNumberType, vid: VLANIDType,

                                               sid: UnsignedSystemID) -> Result<IPv4PrefixType, ServiceErrorType> {

    assert!(NO_MACVRF != evi);

    // fid can be 0 for stretched v4subnets

    let mut sub = evi.to_ne_bytes().iter()

        .fold((RANDOMSEEDS[0] & 0xff) as u8, |r, e| r.rotate_left(1) ^ e.rotate_right(1));

    sub ^= fid.to_ne_bytes().iter()

        .fold((RANDOMSEEDS[1] & 0xff) as u8, |r, e| r.rotate_left(2) ^ e.rotate_right(1));

    sub ^= vid.to_ne_bytes().iter()

        .fold((RANDOMSEEDS[2] & 0xff) as u8, |r, e| r.rotate_left(3) ^ e.rotate_right(1));

    let subnet = sub % 254; // make sure we don't show multicast subnet

    let _host = sid.to_ne_bytes().iter()

        .fold(0u16, |r, e| r.rotate_left(3) ^ e.rotate_right(3) as u16);

    let a = format!("{}.{}.{}.{}",

                    v4pref,

                    subnet,

                    0,

                    1,

    );

    Ok(

        IPv4PrefixType {

            address: Ipv4Addr::from_str(&a)

                .map_err(|_| {

                    ServiceErrorType::INTERNALRIFTERROR

                })?

                .octets()

                .iter()

                .fold(0u32, |v, nv| v << 8 | (*nv as u32)) as IPv4Address

            ,

            prefixlen: 16,

        }

    )

}



Figure 20: auto_evpn_v6hash

Figure 21: auto_evpn_fidevividsid2v6subnet

/// generic v6 bytes derivation used for different purposes

pub fn auto_evpn_v6hash(fid: FabricIDType, evi: MACVRFNumberType, vid: VLANIDType, sid: UnsignedSystemID)

                        -> [u8; 8] {

    let mut sub = evi.to_ne_bytes().iter()

        .fold(RANDOMSEEDS[3], |r, e| r.rotate_left(6) ^ e.rotate_right(4) as u64);

    sub ^= fid.to_ne_bytes().iter()

        .fold(RANDOMSEEDS[0], |r, e| r.rotate_left(6) ^ e.rotate_right(4) as u64);

    sub ^= vid as u64;

    sub ^= sid;

    sub.to_ne_bytes()

}

pub fn auto_evpn_fidevividsid2v6subnet(fid: FabricIDType, evi: MACVRFNumberType,

                                       vid: VLANIDType,

                                       sid: UnsignedSystemID) -> Result<IPv6PrefixType, ServiceErrorType> {

    assert!(NO_MACVRF != evi);

    let sb = auto_evpn_v6hash(fid, evi, vid, sid);

    let a = format!("{}:{:02X}{:02X}:{:02X}{:02X}:{:02X}{:02X}::1",

                    AUTO_EVPN_V6IRBPREF,

                    AUTO_EVPN_V6IRBPREFFIRSTBYTE,

                    sb[3] ^ sb[0],

                    sb[4] ^ sb[1],

                    sb[5] ^ sb[2],

                    sb[6],

                    sb[7],

    );

    Ok(IPv6PrefixType {

        address: Ipv6Addr::from_str(

            &a)

            .map_err(|_| {

                ServiceErrorType::INTERNALRIFTERROR

            })?

            .octets()

            .to_vec(),

        prefixlen: 64,

    })

}



Figure 22: auto_evpn_fidevividsid2mac

Figure 23: auto_evpn_fidsid2v4loopback

Figure 24: auto_evpn_fidsidv6loopback

Figure 25: auto_evpn_fid2private_AS

/// MAC address derivation for IRB

pub fn auto_evpn_fidevividsid2mac(fid: FabricIDType, evi: MACVRFNumberType,

                                  vid: VLANIDType, sid: UnsignedSystemID) -> Vec<u8> {

    let sb = auto_evpn_v6hash(fid, evi, vid, sid);

    vec![0x02,

         sb[3] ^ sb[0],

         sb[4] ^ sb[1],

         sb[5] ^ sb[2],

         sb[6],

         sb[7],

    ]

}

/// v4 loopback address derivation for every node in auto-evpn

pub fn auto_evpn_fidsid2v4loopback(fid: FabricIDType, sid: UnsignedSystemID) -> IPv4Address {

    let mut derived = sid.to_ne_bytes().iter()

        .fold(0 as IPv4Address, |p, e| (p << 4) ^ (*e as IPv4Address));

    derived ^= fid as IPv4Address;

    // use the byte we loose for entropy

    derived ^= derived >> 24;

    // and sanitize for loopback range

    derived &= 0x00ff_ffff;

    let m = ((127 as IPv4Address) << 24) | derived;

    m as _

}

/// V6 loopback derivation for every node in auto-evpn

pub fn auto_evpn_fidsidv6loopback(fid: FabricIDType,

                                  sid: UnsignedSystemID) -> Result<Ipv6Addr, ServiceErrorType> {

    auto_evpn_v6prefixfidsid2loopback(AUTO_EVPN_V6PREF, fid, sid)

}

#[allow(non_snake_case)]

pub fn auto_evpn_fid2private_AS(fid: FabricIDType) -> u32 {

    assert!(fid != NO_FABRIC_ID);

    // range 4200000000-4294967294

    const DIFF: u32 = 4_294_967_294 - 4_200_000_000;

    64496 + ((fid as u32) << 3) % DIFF

}



Figure 26: auto_evpn_fid2clusterid

Authors' Addresses

Jordan Head (editor)

Juniper Networks

1137 Innovation Way

Sunnyvale, CA

United States of America

Email: jhead@juniper.net

Tony Przygienda

Juniper Networks

1137 Innovation Way

Sunnyvale, CA

United States of America

Email: prz@juniper.net

Wen Lin

Juniper Networks

10 Technology Park Drive

Westford, MA

United States of America

Email: wlin@juniper.net

pub fn auto_evpn_fid2clusterid(fid: FabricIDType) -> u32 {
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