
Internet Draft H. Heikkila
<draft-heikkila-ip-checksum-00.txt>
Intended Status: Informational
Updates: 1071, 1141, 1624 (once approved)
Expires: May 9, 2013 November 5, 2012

Practical Math and Algorithms for TCP/IP checksum
<draft-heikkila-ip-checksum-00.txt>

Abstract

 This document reformulates the definition of TCP/IP checksum.
 The new formulation is equivalent to the traditional one, but
 it uses much simpler mathematics, avoiding concepts like "one's
 complement sum". This document attempts to be helpful for both
 newbies and seasoned engineers when considering checksum
 problems. Practical calculation and software examples are included.

Status of this Memo

 Distribution of this memo is unlimited.

 This Internet-Draft is submitted in full
 conformance with the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Heikkila Expires: May 2013 [Page 1]

https://datatracker.ietf.org/doc/html/draft-heikkila-ip-checksum-00.txt
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/draft-heikkila-ip-checksum-00.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78

Internet Draft IP checksum November 5, 2012

 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction
 2. Old Definition of Checksum
 3. Mathematical Observations
 3.1. Basics
 3.2. The Shift Property
 3.3. Negation and Subtraction
 3.4. Byte Order Independence
 4. New Definition of Checksum
 5. Examples of Algorithms
 5.1. Basic Calculations
 5.2. Integer Division versus Folding
 5.3. Choice of Data Types
 5.4. Efficient Calculation of Sum
 5.5. Byte Order Issues
 5.6. Incremental Update of Checksum
 5.7. The Last Octet
 6. Security Considerations
 7. IANA Considerations
 8. References
 8.1. Normative References
 8.2. Informative References

http://trustee.ietf.org/license-info

Heikkila Expires: May 2013 [Page 2]

Internet Draft IP checksum November 5, 2012

1. Introduction

RFC 793 defines the TCP checksum briefly as "the 16 bit one's
 complement of the one's complement sum of all 16 bit words in the
 header and text" [RFC0793]. RFC 1071 contains helpful details and
 examples that make the checksum understandable, and mentions the
 useful method of "end around carry". However, it can be argued that
 the presentation of RFC 1071 is still more complicated than necessary
 [RFC1071].

 This document argues that the checksum is best described in terms of
 more elementary mathematics, namely remainders modulo 65,535. It may
 be easier to avoid the concept of one's complement sum, which is
 nowadays not widely used for computer arithmetic. This document also
 attempts to show that the proposed new description is, in general,
 sufficient for practical purposes. In what follows, the equivalence
 of the old and new definition is proved, example calculations are
 included to show how the known mathematical properties of the
 checksum can be derived from the new definition, and software code
 examples are included.

2. Old Definition of Checksum

RFC 1071 uses the notation +' for one's complement sum. Here is a
 definition of it:

 (Definition of binary operation +')
 For any two integers a and b such that 0 <= a,b <= 65,535,

 a +' b = a+b, if a+b <= 65,535; [Eq. 1]

 = a+b-65,535, otherwise.

 Textually, this definition appears to differ from that in RFC 1071;
 but if the reader understands the +' operation in RFC 1071, he or she
 can easily verify that the two formulations of +' are equivalent.

RFC 1071 calls this operation "1's complement addition". But in the
 definition of this document, the operands a,b and the result are
 definitely non-negative integers (actual 1's complement calculations
 are not involved).

 Note that this definition uses elementary school mathematics: the
 right-hand side of the definition uses just the well-known addition
 and subtraction operators. Overflow or wraparound properties are not
 used as such and wraparound of +' is defined explicitly. Also, the
 decimal constant 65,535 is chosen (instead of the hexadecimal
 constant ffff) to emphasize the elementary character of the proposed
 mathematical operations.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 3]

Internet Draft IP checksum November 5, 2012

 Operation +' wraps around to prevent results larger than 65,535, but
 the wraparound is slightly different from ordinary addition modulo
 65,535. The following figure illustrates the wraparound properties
 of operator +' and compares it to the normal wraparound modulo 65,535
 (wrap-to-one versus wrap-to-zero). Of course, both wrap methods
 differ from the familiar 16-bit register addition modulo 2^16, since
 65,535 = 2^16-1.

 +---------- wraparound of +' ----------+
 | |
 v |
 -> 0 -> 1 -> 2 -> . . . -> 65,534 -> 65,535 ->+ [Fig. 2]
 ^ |
 | |
 +--- wraparound modulo 65,535 ---+

 Following RFC 1071 very closely, we define IP checksum as follows:

 (1) Data consists of octets, which are paired to form 16-bit
 unsigned integers, with most significant octet first (network
 byte order). Within the data, there is a field for 16-bit
 checksum, in an even offset location. If the total number of
 octets is odd, an additional zeroed octet is added to the end
 of the octet string for checksum calculation and removed after
 the calculation.

 (2) To generate a checksum, the checksum field itself is cleared,
 the sum B is computed over the octets concerned using operation
 +', and the value (65,535-B) is placed in the checksum field.
 (Note that 65,535-B means just the elementary subtraction.)

 (3) To check a checksum, the sum B is computed over the octets
 concerned using operation +'. If the result is 65,535, the
 check succeeds.

 Note some differences to RFC 1071: We have 16-bit *unsigned*
 integers, while RFC 1071 has just "integers" (probably to make it
 possible to interpret these 16 bits as a signed integer with one's
 complement representation). Instead of (65,535-B), RFC 1071 uses bit
 complementation, but the reader can easily see that the results are
 the same. Thus, the definition presented above is equivalent to that
 in RFC 1071.

 For completeness, we add a fourth rule, mandated by [RFC0768] and
 [RFC2460]:

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460

Heikkila Expires: May 2013 [Page 4]

Internet Draft IP checksum November 5, 2012

 (4) To generate a checksum for UDP header, calculate as above, but
 if the resulting checksum is 0, place 65,535 instead in the
 checksum field.

 One observation is still in order. If some data consists of nothing
 but octets where all bits are cleared, we call the data "zeroed".
 Real protocols never send such data; for example, IPv4 header starts
 with version number 4 and so IPv4 header checksum is never calculated
 over zeroed data [RFC0791]. However, the algorithm may still face
 zeroed data, as errors are possible. The following facts are
 notable.

 o If checksum is generated over zeroed data, the checksum will be
 65,535. After that checksum has been placed to the checksum
 field, the resulting data will be acceptable to the checking
 algorithm.

 o If checksum checking is done over zeroed data (meaning that even
 the checksum is zeroed), the checking will reject the data. (This
 is appropriate, because no reasonable protocol would send such
 data anyway.)

 In what follows, we occasionally need to consider three special cases
 for checksum calculation: UDP data, zeroed data with valid checksum
 65,535, and zeroed data with invalid checksum 0. (This is slightly
 annoying, because without these cases the checksum analysis would be
 easier.)

3. Mathematical Observations

 This section contains basic mathematical analysis of the checksum
 algorithm. While this section is not really difficult, the reader
 may anyway choose to skip it. The later part of this document uses
 only simple and well-known concepts like division with remainder and
 bit shift.

3.1. Basics

 We use the symbol % for remainder division, in accordance with the C
 programming language. While our divisors are positive, we allow the
 dividends to be negative. The remainder is always positive; for
 example, (-2) % 65,535 = 65,533. Computers are known to be
 unpredictable with division of negative integers; so we avoid such
 divisions in algorithms.

 As expected, we need the concept of "congruence modulo M"; we use
 symbol =' for the congruence relation. Thus

https://datatracker.ietf.org/doc/html/rfc0791

Heikkila Expires: May 2013 [Page 5]

Internet Draft IP checksum November 5, 2012

 a =' b (mod M)

 means simply that a and b have the same remainder when divided by M.
 Equivalently, this means that the difference a-b is an integral
 multiple of M. For checksum, the modulus M is always 65,535, and we
 omit the (mod M) from the notation, from now on.

 One well-known property of congruence is this. If

 a =' b and c =' d

 then

 a+c =' b+d and a-c =' b-d and ac =' bd. [Eq. 3]

 This fact makes it possible to calculate with congruences almost as
 easily as with equalities.

 Obviously a+b =' a+b-65,535, so that definition [Eq. 1] yields this:

 Fact. a+'b =' a+b.

 Corollary. If B is the sum calculated with +' over some 16-bit
 unsigned integers and S is the sum calculated with ordinary
 addition over the same data, then B =' S.

 According to definition item (3), the sum with +' yields 65,535 when
 calculated over correctly checksummed data; since 65,535 =' 0, we
 see:

 Corollary. If S is the sum calculated with ordinary addition over
 some data that has correct checksum, S =' 0; equivalently, S is
 divisible by 65,535.
 [Eq. 4]

 Now we see that [Eq. 4] is an almost complete definition of the
 checksum, without referring to one's complement sum. From it, we can
 derive both generation and checking algorithms for checksum, with the
 following open issues: for generating a checksum, [Eq. 4] does not
 tell whether 0 or 65,535 should be chosen if both are possible; for
 checking a checksum, [Eq. 4] considers both 0 and 65,535 equal as
 checksums, while sometimes they are not.

3.2. The Shift Property

 Obviously, 65,536 =' 1 and 65,536 = 2^16. From this we see that for
 any integer a, we have a*2^16 =' a. But for non-negative integers,
 multiplication by 2^16 means bit shifting to the left by 16 bits.

Heikkila Expires: May 2013 [Page 6]

Internet Draft IP checksum November 5, 2012

 Using the C notation for bit shift (left shift is <<, right shift is
 >>), we have the following basic property for any non-negative
 integer a:

 a << 16 =' a. [Eq. 5]

 As a first application of this property, consider four-octet
 integers, using the notation of RFC 1071, sec. 2(C).

 [A,B,C,D] + [E,F,G,H] = [A,B,0,0] + [C,D] + [E,F,0,0] + [G,H]
 = ([A,B]<<16) + [C,D] + ([E,F]<<16) + [G,H]
 =' [A,B] + [C,D] + [E,F] + [G,H]

 This is what RFC 1071 calls "parallel summation": we can accumulate
 the sum in 32-bit pieces. The resulting block sum is not the same as
 the real block sum, but still congruent to it. It is fairly easy to
 see that we can do parallel summation even for eight bytes, if we
 have 64-bit arithmetic support in hardware.

 The next trick is what RFC1071 calls "folding"; long integers can be
 shortened with bit shifting.

 [A,B,C,D] = [A,B,0,0] + [C,D] = ([A,B]<<16) + [C,D]
 =' [A,B] + [C,D]

3.3. Negation and Subtraction

 Negation and subtraction are easy to do with unsigned (non-negative)
 numbers if the modulus 65,535 is first added to the operands
 sufficiently many times. To manipulate the negative of A, first find
 some N such that N*65,535 >= A; then (-A) =' N*65,535-A, and the
 latter value is non-negative but still congruent to the
 mathematically correct value.

 Similarly, to do subtraction A-B, substitute (N*65,535+A-B), where N
 is chosen so that the result is positive and calculations do not
 overflow.

3.4. Byte Order Independence

 We use the notation [a,b] = a*256+b for a 16-bit integer that
 consists of two octets a and b, as RFC 1071. If we multiply [a,b] by
 256, we can calculate:

 256*[a,b] = 256*(a*256+b) = a*256*256 + b*256
 = a*2^16 + b*256 = b*256 + (a << 16)
 =' b*256 + a.

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 7]

Internet Draft IP checksum November 5, 2012

 From this we see: 256*[a,b] =' [b,a] and 256*[b,a] =' [a,b]. Byte
 swapping is thus equivalent to multiplying by 256, modulo M. But
 multiplication is distributive over addition, so that

 256*([a,b]+[c,d]+ ... + [y,z])
 = 256*[a,b]+256*[c,d]+ ... +256*[y,z]
 =' [b,a] + [d,c] + ... + [z,y]

 From this we see that if we deliberately swap the bytes of terms of a
 sum, calculate the sum, and then swap the bytes back, we get a result
 that is (of course) in general not identical to the correct sum but
 at least congruent to it modulo 65,535. And in checksum calculation
 the critical results 0 = [0,0] and 65,535 = [255,255] are immune to
 swapping. So the congruence method yields rather elegantly the well
 known property of IP checksum: it can be calculated with inverted
 byte order.

4. New Definition of Checksum

 Here is a modified checksum definition. The mathematical
 considerations above show that it is equivalent to the traditional
 one.

 We define the *blocksum* over a set of 16-bit unsigned integers to be
 the arithmetic sum of these integers.

 (1) Data consists of octets, which are paired to form 16-bit
 unsigned integers, with most significant octet first (network
 byte order). Within the data, there is a field for 16-bit
 checksum, in an even offset location. If the total number of
 octets is odd, an additional zeroed octet is added to the end
 of the octet string for checksum calculation and removed after
 the calculation.

 (2) To generate a checksum, the checksum field itself is cleared,
 the blocksum B is computed over the octets concerned, then B is
 divided by 65,535, yielding remainder R. The value C is placed
 in the checksum field, computed as follows.

 (2a) If the blocksum B is zero, let C = 65,535. (This is the
 theoretical case of zeroed data.)

 (2b) Otherwise, if R = 0 and the checksum is for UDP header,
 let C = 65,535 [RFC0768] [RFC2460].

 (2c) Otherwise, if R = 0, let C = 0.

 (2d) Otherwise, let C = 65,535 - R.

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460

Heikkila Expires: May 2013 [Page 8]

Internet Draft IP checksum November 5, 2012

 (3) To check a checksum, the blocksum B is computed over the octets
 concerned. If the result B is non-zero and divisible by
 65,535, the check succeeds.

 Note for the UDP case: UDP protocol examines the checksum field
 before applying algorithm (3); if the checksum is zero, (3) is not
 applied at all, as there is no checksum. (Instead, the zero-checksum
 data is either accepted as in [RFC0768] or rejected as in [RFC2460].)

 Note also that the definition above is formulated to be exactly
 identical to that in RFC 1071. For example, if IPv4 header contains
 checksum 65,535 (hex-ffff), algorithm (3) accepts it (as RFC 1071
 would do) although algorithm (2) would not produce such a checksum
 except in case (2b). Also, in algorithm (3) the condition "B is non-
 zero" is usually unnecessary, because B=0 implies that all data is
 zeroed, and reasonable protocols reject such data on other grounds
 (for example, IPv4 header is rejected if its protocol version is not
 4).

5. Examples of Algorithms

 All examples use the C programming language. Naturally, identical
 algorithms can be implemented in other software languages and even in
 hardware.

5.1. Basic Calculations

 When calculating checksum, the basic method is just to add together
 the 16-bit unsigned integers over the data, accumulating the sum in a
 32-bit variable. The following example is taken from RFC 1071 (where
 it appears in a slightly more complicated form):

 register unsigned long sum = 0;
 unsigned short *addr = . .;
 int count = . . /* octet count */

 while (count > 1) {
 sum += *addr++;
 count -= 2;
 }

 If checksum is to be generated, the blocksum is calculated as above,
 after ensuring that the checksum field is cleared. The basic method
 to calculate checksum is then:

 checksum = ((N*65535) - sum) % 65535;

 (This calculates the remainder of the negative of sum, but the

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 9]

Internet Draft IP checksum November 5, 2012

 addition of N*65535 with suitably large N guarantees that dividend is
 positive without changing the result. For example, N can be 65537.)
 But if the checksum is calculated for UDP header, the algorithm is
 this:

 udp_checksum = 65535 - (sum % 65535);

 To check the checksum of some received data, blocksum is calculated
 as above, and verification can be done like this:

 if (sum % 65535 != 0) goto checksum_error;

 (Pedantically, the check should be "if (sum == 0 || sum % 65535 !=
 0)", but usually the sum is not zero, and if it is, other parts of
 the software reject the packet anyway.)

 In practice, many alterations of the algorithm are possible and often
 necessary, as follows.

 o If hardware support for efficient remainder division is not
 available, some alternative algorithm is needed.

 o The summing algorithm usually needs optimizations (as
 emphasized already in RFC 1071).

 o The summing can be done in pieces (usually pieces of even
 offset and, except for the last piece, even size), and pieces
 can be summed in any order.

 o Computer byte order needs to be taken into account (little-
 endian machines tend to reverse the byte order when doing
 arithmetic operations).

 o The last odd octet, if any, needs special attention.

 o We need algorithms for incremental update of checksum.

 The following sections consider these points. We start with some
 preliminary remarks.

 The checksum algorithm is such that usually only the remainder of the
 sum is significant (when divided by 65,535). There are several
 operations that change the mathematical value but preserve the
 remainder. Such operations can be used during the course of
 calculation. (The mathematical section above proves the validity of
 these operations.)

 o Any multiple of 65,535 can be added or subtracted, as long as

https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 10]

Internet Draft IP checksum November 5, 2012

 there is no overflow or underflow. In particular, 0xffffffff
 (the largest unsigned 32-bit integer) is a multiple of 65,535.

 o Remainder division can be done: sum = sum % 65535.

 o A non-negative value can be bit-shifted left by 16 bits: sum =
 sum << 16.

 o A non-negative value can be folded by shifting the most-
 significant bits right by 16 and adding to the rest of the
 number, for example:

 0x123456789ab = 0x12345670000 + 0x89ab
 = (0x1234567<<16) + 0x89ab
 -> change to 0x1234567 + 0x89ab

 In C language, we can define folding essentially as in RFC 1071:

 #define FOLD(sum) (((sum) & 0xffff) + ((sum) >> 16))

 o In assembly programming, the carry bit that overflows after
 unsigned 16-, 32-, or 64-bit addition can be shifted to the
 right and added back to the sum ("end around carry" [RFC1071]).

5.2. Integer Division versus Folding

 The algorithms, as defined, use the % operator, the remainder
 division. Of course it is not available in all hardware
 implementations; on the other hand, even relatively simple
 microprocessors like the 16-bit Intel 8086 can divide a 32-bit
 integer by 65,535 and find the remainder with one single machine
 instruction (DIV). Regarding efficiency, consider the example of
 Intel386SX (developed in 1980's); in 32-bit mode it can execute DIV
 instruction, nominally, in 38 clock cycles [386SX]. This should be
 contrasted with the masking, shifting and addition operations that
 would be the division-free alternative (folding); they might together
 take some ten clock cycles.

 Also, divisions would not be frequently repeated anyway. Processing
 a typical incoming TCP segment might require exactly two division
 operations, one to the check the IPv4 header, the other to check the
 TCP data. So, compared with other necessary processing, division is
 likely to be a feasible alternative in some applications.

 But there is an alternative to division, folding (defined above).
 This algorithm reduces any positive integer to 16 bits without
 changing the remainder (again, it is found in RFC 1071):

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 11]

Internet Draft IP checksum November 5, 2012

 while (sum>>16)
 sum = FOLD(sum);

 But usually sum has no more than 32 bits, in which case only two
 foldings are needed:

 sum = FOLD(FOLD(sum));

 Note that folding never produces zero result (unless its argument is
 zero), so folding has wrap-to-one behaviour; see [Fig. 2]. This
 changes the algorithms slighly, as folding tends to produce 65,535
 when true remainder is zero. So here are the algorithms for checksum
 generation (UDP considered separately) and checking, without
 division:

 checksum = 65535 - FOLD(FOLD(sum));

 udp_checksum = FOLD(FOLD(0xffffffff - sum));

 if (FOLD(FOLD(sum) != 65535) goto checksum_error;

 In many systems, operations (65535-x) and (0xffffffff-x) can be
 easily implemented with bit complement. Such optimizations are left
 to the reader as exercise.

5.3. Choice of Data Types

 We usually prefer unsigned integers, because division of signed
 integers is unpredictable in computers. (It is worth noting,
 however, that signed division can be faster than unsigned division in
 some implementations.)

 Usually 32-bit integers are suitable for blocksum calculations. For
 example, the maximum amount of data in a TCP/IPv4 segment is less
 than 65,535 octets (32,768 octet pairs), which sets an upper limit of
 block sum to 32,768*65,535 = 2,147,450,880; this means that blocksums
 fit in 32-bit integers, or even in signed 32-bit integers.

 However, 16-bit values can be calculated in parallel as 32-bit
 values, and then it may be advantageous to use 64-bit values for
 blocksums. See below for parallel calculation.

5.4. Efficient Calculation of Sum

 As RFC 1071 correctly points out, it is usually appropriate to
 optimize the checksum routine; and obviously the reading and summing
 loop is *the* most important point to optimize. Note that while the
 examples shown here are in the C programming language, the most

https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 12]

Internet Draft IP checksum November 5, 2012

 optimal solution is usually achieved with assembly language.

 Data sum should be calculated in the natural byte order, as in
 example above: "sum += *addr". This means that little-endian
 machines swap bytes, e.g., data that the network signifies as 0x1234
 is summed as 0x3412. As known, and shown in the mathematical section
 above, this leads to correct results, if the calculated checksum is
 written to its field in the same natural manner: "*addr = checksum".
 Also, the important values 0 and 65,535 are immune to byte order.
 However, see section 5.5 below.

 It may be advantageous to read data in bigger pieces, 32 bits (or
 even 64 bits) as follows. However, addition must not overflow, which
 is why folding is used in this example:

 register unsigned long sum = 0;
 unsigned long *addr = . .; /* long assumed to have 32 bits */
 int count = . . /* octet count */

 while (count > 3) {
 sum += FOLD(*addr++);
 count -= 4;
 }

 But if the sum counter has 64 bits, folding as above is not
 necessary.

 As a curiosity, consider the following case, which assumes that sum
 is a 17-bit (sic!) integer and addr is a pointer to 16-bit integer:

 while (. . .) {
 sum += *addr++;
 sum = FOLD(sum);
 count -= 2;
 }

 The case of a "17-bit" integer may sound theoretical, but actually
 this is precisely what 16-bit processors often do: the sum is
 accumulated to a 16-bit register, which, together with the "carry"
 bit, is effectively a 17-bit counter. The FOLD operation corresponds
 to what RFC 1071 calls "end around carry".

 Often blocksum is calculated in pieces, and sometimes the start of
 some piece is not at an even offset from the beginning of data. Such
 calculation swaps the octets in the sum; but this can be corrected so
 that the blocksum is swapped again before incorporating to the final
 sum (as noted in RFC 1071).

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071

Heikkila Expires: May 2013 [Page 13]

Internet Draft IP checksum November 5, 2012

5.5. Byte Order Issues

 As explained above, byte order should usually be ignored in software
 algorithms, permitting the processor to move data from memory to
 calculation as efficiently as possible. However, this means that
 checksum data is in network byte order while ordinary data is in host
 byte order. Then the standard operations "htons()" (host-to-network
 swap, short variable) and "ntohs()" (network-to-host) should be used
 as appropriate [POSIX]. Consider the case of IPv4 header, where the
 TTL field is decremented by 1 at every router, and this means that
 one element in the blocksum is decremented by 0x0100. In order not
 to recalculate the whole header checksum, the checksum is simply
 incremented by 0x0100, but this value must be modified as follows:

 new_chksum = ((unsigned long)old_chksum + htons(0x0100)) % 65535;

 Here, "htons()" is necessary because computers keep arithmetic
 constants in host byte order. (The pedantic typecast "(unsigned
 long)" is a C technicality to force the machine to use at least 32
 bits during calculation to prevent overflow, even if old_chksum is a
 16-bit integer. Here, the typecast is shown also with a
 documentation purpose, to emphasize that more than 16 bits are indeed
 necessary during the calculation.)

 Note: RFC 1141 and RFC 1624 consider a similar problem, but they
 emphasize hardware optimization (use bit operations instead of
 division), and do not mention byte order [RFC1141] [RFC1624].

5.6. Incremental Update of Checksum

 Incremental update of checksum is an old idea; it is addressed in
 [RFC1141] and [RFC1624], and also section 5.5 above uses one case of
 it as an example. This section contains a new example, ICMPv6 Echo
 Reply message, to illustrate the method of incremental update.

RFC 4443 defines the important Echo Request message, to which a host
 replies with Echo Reply (ping6). Suppose a host has received a
 Request message; naturally, it has to verify the checksum of that
 message before accepting it. Before sending the Reply message, the
 host has to calculate also the checksum over the reply. But since
 the Request and Reply are almost identical, some CPU time can be
 saved so that the Reply checksum is calculated from the Request
 checksum. Inspection of RFC 4443 shows that the checksums of Request
 and Reply differ only with respect to IPv6 addresses (in pseudo-
 header) and ICMPv6 type (and the checksum itself). So the methods of
 incremental update are well applicable to the Echo Reply case. We
 limit our consideration to the IPv6 address case; the update of
 ICMPv6 type from 128 to 129 is an easy exercise to the reader.

https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443

Heikkila Expires: May 2013 [Page 14]

Internet Draft IP checksum November 5, 2012

 In some cases, the IPv6 addresses of Request and Reply are the same,
 just so that the source and destination are swapped; and the order of
 addresses does not, of course, change the checksum. But if the
 destination address of the Request is a multicast or anycast address,
 the source address of the Reply must be a unicast address; see
 [RFC4443], Sec. 4.2.

 In what follows, we imitate the notation of RFC 1624, using ordinary
 addition and subtraction instead of +' and bit complement. We
 occasionally use the congruence operation =' (modulo 65,535).

 HC - old checksum in ICMPv6 header
 C - blocksum of old data
 HC' - new checksum in ICMPv6 header (ICMPv6 type still
 unchanged)
 C' - blocksum of new data (ICMPv6 type still unchanged)
 m - blocksum over the 16-octet old address (multicast
 or anycast)
 m' - blocksum over the 16-octet new address (unicast)

 Then, if the blocksum of the unchanged part of the data is A, we
 have:

 A + m + HC = C
 A + m' + HC' = C'

 Subtracting the two equations we get this:

 HC' - HC + m' - m = C' - C

 Although C and C' need not be identical, they are the same modulo
 65,535 (in fact, C =' C' =' 0, if the checksum is correctly
 calculated), so that C' - C =' 0. Then, doing elementary
 manipulations, we get these facts, analogously to RFC 1642:

 HC' =' HC + m - m'
 HC' =' -(m' - m - HC)

 Both of these formulas can be used. The former formula is suitable
 if we use division, and the latter one if we use folding. (RFC 1642
 does not consider division and so prefers the latter formula.) We
 obtain the following C code (two alternatives):

 new_chk = (9*65535 + old_chk
 + oldaddr_sum - newaddr_sum) % 65535;

 new_chk = 65535 - FOLD(FOLD(9*65535 + newaddr_sum
 - oldaddr_sum - old_chk));

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1642
https://datatracker.ietf.org/doc/html/rfc1642

Heikkila Expires: May 2013 [Page 15]

Internet Draft IP checksum November 5, 2012

 The constant 9*65535 is chosen small enough so that 32-bit addition
 does not overflow but large enough so that subtraction cannot make
 the result negative. Note that a sum over a 16-bit IPv6 address
 cannot exceed 8*65,535 and a checksum cannot exceed 65,535, hence the
 constant 9.

 A final note: if we were to update UDP checksum incrementally, we
 would need a checksum in the range 1...65,535, and so the following C
 code would be appropriate (two alternatives, where old_ds and new_ds
 are sum over old data and sum over new data, respectively):

 n_udp_chk = 65535 -
 (N*65535 + new_ds - old_ds - o_udp_chk) % 65535;

 n_udp_chk = FOLD(FOLD(N*65535 + o_udp_chk + old_ds - new_ds));

 Also in this case, N must be chosen according to circumstances so
 that addition and subtraction cannot lead to overflow or underflow in
 32-bit arithmetic.

 Note that byte order is not an issue in this example, provided that
 all calculations are done with the same byte order (the octets in
 IPv6 addresses are calculated with the same algorithm as all other
 octets in the data).

5.7. The Last Octet

 If checksum is calculated over an odd number of octets, the last
 octet is alone and needs a zeroed octet to form a 16-bit unsigned
 integer. This is easy, if byte order is taken into account. Here
 are two ways to add the last octet to a sum:

 {
 unsigned short tmp = 0;
 ((unsigned char*)&tmp)[0] = ((unsigned char*)last_addr)[0];
 sum += tmp;
 }

 sum += htons(((unsigned char*)last_addr)[0] << 8);

Heikkila Expires: May 2013 [Page 16]

Internet Draft IP checksum November 5, 2012

6. Security Considerations

 There are no security considerations relevant to this document.

7. IANA Considerations

 No actions are required from IANA as result of the publication of
 this document.

8. References

8.1. Normative References

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC1071] Braden, R., Borman, D., and C. Partridge, "Computing the
 Internet checksum", RFC 1071, September 1988.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

 [RFC4443] Conta, A., Deering, S., and M. Gupta, Ed., "Internet
 Control Message Protocol (ICMPv6) for the Internet
 Protocol Version 6 (IPv6) Specification", RFC 4443, March
 2006.

8.2. Informative References

 [POSIX] The Open Group Base Specifications Issue 7. IEEE Std
 1003.1-2008.

 [RFC1141] Mallory, T. and A. Kullberg, "Incremental updating of the
 Internet checksum", RFC 1141, January 1990.

 [RFC1624] Rijsinghani, A., Ed., "Computation of the Internet
 Checksum via Incremental Update", RFC 1624, May 1994.

 [386SX] Intel386(TM) SX Microprocessor Programmers's Reference
 Manual. Inter Order No. 240331-002, ISBN 1-55512-154-3,
 1991.

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624

Heikkila Expires: May 2013 [Page 17]

Internet Draft IP checksum November 5, 2012

Authors' Addresses

 Heikki Heikkila
 Tellabs Oy
 Sinimaentie 6 C
 02630 Espoo
 Finland
 EMail: heikki.heikkila@tellabs.com

Heikkila Expires: May 2013 [Page 18]

