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1. Introduction

RFC 793 defines the TCP checksum briefly as "the 16 bit one's
   complement of the one's complement sum of all 16 bit words in the
   header and text" [RFC0793].  RFC 1071 contains helpful details and
   examples that make the checksum understandable, and mentions the
   useful method of "end around carry".  However, it can be argued that
   the presentation of RFC 1071 is still more complicated than necessary
   [RFC1071].

   This document argues that the checksum is best described in terms of
   more elementary mathematics, namely remainders modulo 65,535.  It may
   be easier to avoid the concept of one's complement sum, which is
   nowadays not widely used for computer arithmetic.  This document also
   attempts to show that the proposed new description is, in general,
   sufficient for practical purposes.  In what follows, the equivalence
   of the old and new definition is proved, example calculations are
   included to show how the known mathematical properties of the
   checksum can be derived from the new definition, and software code
   examples are included.

2. Old Definition of Checksum

RFC 1071 uses the notation +' for one's complement sum.  Here is a
   definition of it:

         (Definition of binary operation +')
         For any two integers a and b such that 0 <= a,b <= 65,535,

         a +' b  =  a+b,           if a+b <= 65,535;            [Eq. 1]

                 =  a+b-65,535,    otherwise.

   Textually, this definition appears to differ from that in RFC 1071;
   but if the reader understands the +' operation in RFC 1071, he or she
   can easily verify that the two formulations of +' are equivalent.

RFC 1071 calls this operation "1's complement addition".  But in the
   definition of this document, the operands a,b and the result are
   definitely non-negative integers (actual 1's complement calculations
   are not involved).

   Note that this definition uses elementary school mathematics: the
   right-hand side of the definition uses just the well-known addition
   and subtraction operators.  Overflow or wraparound properties are not
   used as such and wraparound of +' is defined explicitly.  Also, the
   decimal constant 65,535 is chosen (instead of the hexadecimal
   constant ffff) to emphasize the elementary character of the proposed
   mathematical operations.

https://datatracker.ietf.org/doc/html/rfc793
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   Operation +' wraps around to prevent results larger than 65,535, but
   the wraparound is slightly different from ordinary addition modulo
   65,535.  The following figure illustrates the wraparound properties
   of operator +' and compares it to the normal wraparound modulo 65,535
   (wrap-to-one versus wrap-to-zero).  Of course, both wrap methods
   differ from the familiar 16-bit register addition modulo 2^16, since
   65,535 = 2^16-1.

                +----------  wraparound of +'  ----------+
                |                                        |
                v                                        |
           -> 0 -> 1 -> 2 -> . . . -> 65,534 -> 65,535 ->+     [Fig. 2]
           ^                                  |
           |                                  |
           +---  wraparound modulo 65,535  ---+

   Following RFC 1071 very closely, we define IP checksum as follows:

     (1) Data consists of octets, which are paired to form 16-bit
         unsigned integers, with most significant octet first (network
         byte order).  Within the data, there is a field for 16-bit
         checksum, in an even offset location.  If the total number of
         octets is odd, an additional zeroed octet is added to the end
         of the octet string for checksum calculation and removed after
         the calculation.

     (2) To generate a checksum, the checksum field itself is cleared,
         the sum B is computed over the octets concerned using operation
         +', and the value (65,535-B) is placed in the checksum field.
         (Note that 65,535-B means just the elementary subtraction.)

     (3) To check a checksum, the sum B is computed over the octets
         concerned using operation +'. If the result is 65,535, the
         check succeeds.

   Note some differences to RFC 1071:  We have 16-bit *unsigned*
   integers, while RFC 1071 has just "integers" (probably to make it
   possible to interpret these 16 bits as a signed integer with one's
   complement representation).  Instead of (65,535-B), RFC 1071 uses bit
   complementation, but the reader can easily see that the results are
   the same.  Thus, the definition presented above is equivalent to that
   in RFC 1071.

   For completeness, we add a fourth rule, mandated by [RFC0768] and
   [RFC2460]:

https://datatracker.ietf.org/doc/html/rfc1071
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     (4) To generate a checksum for UDP header, calculate as above, but
         if the resulting checksum is 0, place 65,535 instead in the
         checksum field.

   One observation is still in order.  If some data consists of nothing
   but octets where all bits are cleared, we call the data "zeroed".
   Real protocols never send such data; for example, IPv4 header starts
   with version number 4 and so IPv4 header checksum is never calculated
   over zeroed data [RFC0791].  However, the algorithm may still face
   zeroed data, as errors are possible.  The following facts are
   notable.

   o  If checksum is generated over zeroed data, the checksum will be
      65,535.  After that checksum has been placed to the checksum
      field, the resulting data will be acceptable to the checking
      algorithm.

   o  If checksum checking is done over zeroed data (meaning that even
      the checksum is zeroed), the checking will reject the data.  (This
      is appropriate, because no reasonable protocol would send such
      data anyway.)

   In what follows, we occasionally need to consider three special cases
   for checksum calculation: UDP data, zeroed data with valid checksum
   65,535, and zeroed data with invalid checksum 0.  (This is slightly
   annoying, because without these cases the checksum analysis would be
   easier.)

3. Mathematical Observations

   This section contains basic mathematical analysis of the checksum
   algorithm.  While this section is not really difficult, the reader
   may anyway choose to skip it.  The later part of this document uses
   only simple and well-known concepts like division with remainder and
   bit shift.

3.1. Basics

   We use the symbol % for remainder division, in accordance with the C
   programming language.  While our divisors are positive, we allow the
   dividends to be negative.  The remainder is always positive; for
   example, (-2) % 65,535 = 65,533.  Computers are known to be
   unpredictable with division of negative integers; so we avoid such
   divisions in algorithms.

   As expected, we need the concept of "congruence modulo M"; we use
   symbol =' for the congruence relation.  Thus

https://datatracker.ietf.org/doc/html/rfc0791
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                              a =' b   (mod M)

   means simply that a and b have the same remainder when divided by M.
   Equivalently, this means that the difference a-b is an integral
   multiple of M.  For checksum, the modulus M is always 65,535, and we
   omit the (mod M) from the notation, from now on.

   One well-known property of congruence is this.  If

                      a =' b    and   c =' d

   then

      a+c =' b+d     and     a-c =' b-d     and     ac =' bd.   [Eq. 3]

   This fact makes it possible to calculate with congruences almost as
   easily as with equalities.

   Obviously a+b =' a+b-65,535, so that definition [Eq. 1] yields this:

      Fact.  a+'b =' a+b.

      Corollary.  If B is the sum calculated with +' over some 16-bit
      unsigned integers and S is the sum calculated with ordinary
      addition over the same data, then B =' S.

   According to definition item (3), the sum with +' yields 65,535 when
   calculated over correctly checksummed data; since 65,535 =' 0, we
   see:

      Corollary.  If S is the sum calculated with ordinary addition over
      some data that has correct checksum, S =' 0; equivalently, S is
      divisible by 65,535.
                                                                 [Eq. 4]

   Now we see that [Eq. 4] is an almost complete definition of the
   checksum, without referring to one's complement sum.  From it, we can
   derive both generation and checking algorithms for checksum, with the
   following open issues: for generating a checksum, [Eq. 4] does not
   tell whether 0 or 65,535 should be chosen if both are possible; for
   checking a checksum, [Eq. 4] considers both 0 and 65,535 equal as
   checksums, while sometimes they are not.

3.2. The Shift Property

   Obviously, 65,536 =' 1 and 65,536 = 2^16.  From this we see that for
   any integer a, we have a*2^16 =' a.  But for non-negative integers,
   multiplication by 2^16 means bit shifting to the left by 16 bits.
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   Using the C notation for bit shift (left shift is <<, right shift is
   >>), we have the following basic property for any non-negative
   integer a:

                                a << 16  =' a.                  [Eq. 5]

   As a first application of this property, consider four-octet
   integers, using the notation of RFC 1071, sec. 2(C).

       [A,B,C,D] + [E,F,G,H] =  [A,B,0,0] + [C,D] + [E,F,0,0] + [G,H]
                             =  ([A,B]<<16) + [C,D] + ([E,F]<<16) + [G,H]
                             =' [A,B] + [C,D] + [E,F] + [G,H]

   This is what RFC 1071 calls "parallel summation": we can accumulate
   the sum in 32-bit pieces.  The resulting block sum is not the same as
   the real block sum, but still congruent to it.  It is fairly easy to
   see that we can do parallel summation even for eight bytes, if we
   have 64-bit arithmetic support in hardware.

   The next trick is what RFC1071 calls "folding"; long integers can be
   shortened with bit shifting.

       [A,B,C,D]  =  [A,B,0,0] + [C,D]  =  ([A,B]<<16) + [C,D]
                                        =' [A,B] + [C,D]

3.3. Negation and Subtraction

   Negation and subtraction are easy to do with unsigned (non-negative)
   numbers if the modulus 65,535 is first added to the operands
   sufficiently many times.  To manipulate the negative of A, first find
   some N such that N*65,535 >= A; then (-A) =' N*65,535-A, and the
   latter value is non-negative but still congruent to the
   mathematically correct value.

   Similarly, to do subtraction A-B, substitute (N*65,535+A-B), where N
   is chosen so that the result is positive and calculations do not
   overflow.

3.4. Byte Order Independence

   We use the notation [a,b] = a*256+b for a 16-bit integer that
   consists of two octets a and b, as RFC 1071.  If we multiply [a,b] by
   256, we can calculate:

         256*[a,b]  =  256*(a*256+b) = a*256*256 + b*256
                    =  a*2^16 + b*256 = b*256 + (a << 16)
                    =' b*256 + a.

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
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   From this we see: 256*[a,b] =' [b,a] and 256*[b,a] =' [a,b].  Byte
   swapping is thus equivalent to multiplying by 256, modulo M.  But
   multiplication is distributive over addition, so that

       256*([a,b]+[c,d]+ ... + [y,z])
             =  256*[a,b]+256*[c,d]+ ... +256*[y,z]
             =' [b,a] + [d,c] + ... + [z,y]

   From this we see that if we deliberately swap the bytes of terms of a
   sum, calculate the sum, and then swap the bytes back, we get a result
   that is (of course) in general not identical to the correct sum but
   at least congruent to it modulo 65,535.  And in checksum calculation
   the critical results 0 = [0,0] and 65,535 = [255,255] are immune to
   swapping.  So the congruence method yields rather elegantly the well
   known property of IP checksum: it can be calculated with inverted
   byte order.

4. New Definition of Checksum

   Here is a modified checksum definition.  The mathematical
   considerations above show that it is equivalent to the traditional
   one.

   We define the *blocksum* over a set of 16-bit unsigned integers to be
   the arithmetic sum of these integers.

     (1) Data consists of octets, which are paired to form 16-bit
         unsigned integers, with most significant octet first (network
         byte order).  Within the data, there is a field for 16-bit
         checksum, in an even offset location.  If the total number of
         octets is odd, an additional zeroed octet is added to the end
         of the octet string for checksum calculation and removed after
         the calculation.

     (2) To generate a checksum, the checksum field itself is cleared,
         the blocksum B is computed over the octets concerned, then B is
         divided by 65,535, yielding remainder R.  The value C is placed
         in the checksum field, computed as follows.

          (2a) If the blocksum B is zero, let C = 65,535.  (This is the
               theoretical case of zeroed data.)

          (2b) Otherwise, if R = 0 and the checksum is for UDP header,
               let C = 65,535 [RFC0768] [RFC2460].

          (2c) Otherwise, if R = 0, let C = 0.

          (2d) Otherwise, let C = 65,535 - R.

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460
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     (3) To check a checksum, the blocksum B is computed over the octets
         concerned.  If the result B is non-zero and divisible by
         65,535, the check succeeds.

   Note for the UDP case: UDP protocol examines the checksum field
   before applying algorithm (3); if the checksum is zero, (3) is not
   applied at all, as there is no checksum.  (Instead, the zero-checksum
   data is either accepted as in [RFC0768] or rejected as in [RFC2460].)

   Note also that the definition above is formulated to be exactly
   identical to that in RFC 1071.  For example, if IPv4 header contains
   checksum 65,535 (hex-ffff), algorithm (3) accepts it (as RFC 1071
   would do) although algorithm (2) would not produce such a checksum
   except in case (2b).  Also, in algorithm (3) the condition "B is non-
   zero" is usually unnecessary, because B=0 implies that all data is
   zeroed, and reasonable protocols reject such data on other grounds
   (for example, IPv4 header is rejected if its protocol version is not
   4).

5. Examples of Algorithms

   All examples use the C programming language.  Naturally, identical
   algorithms can be implemented in other software languages and even in
   hardware.

5.1. Basic Calculations

   When calculating checksum, the basic method is just to add together
   the 16-bit unsigned integers over the data, accumulating the sum in a
   32-bit variable.  The following example is taken from RFC 1071 (where
   it appears in a slightly more complicated form):

         register unsigned long sum = 0;
         unsigned short *addr = . .;
         int count = . . /* octet count */

         while (count > 1) {
            sum += *addr++;
            count -= 2;
         }

   If checksum is to be generated, the blocksum is calculated as above,
   after ensuring that the checksum field is cleared.  The basic method
   to calculate checksum is then:

         checksum = ((N*65535) - sum) % 65535;

   (This calculates the remainder of the negative of sum, but the

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1071
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   addition of N*65535 with suitably large N guarantees that dividend is
   positive without changing the result.  For example, N can be 65537.)
   But if the checksum is calculated for UDP header, the algorithm is
   this:

         udp_checksum = 65535 - (sum % 65535);

   To check the checksum of some received data, blocksum is calculated
   as above, and verification can be done like this:

         if (sum % 65535 != 0) goto checksum_error;

   (Pedantically, the check should be "if (sum == 0 || sum % 65535 !=
   0)", but usually the sum is not zero, and if it is, other parts of
   the software reject the packet anyway.)

   In practice, many alterations of the algorithm are possible and often
   necessary, as follows.

      o  If hardware support for efficient remainder division is not
         available, some alternative algorithm is needed.

      o  The summing algorithm usually needs optimizations (as
         emphasized already in RFC 1071).

      o  The summing can be done in pieces (usually pieces of even
         offset and, except for the last piece, even size), and pieces
         can be summed in any order.

      o  Computer byte order needs to be taken into account (little-
         endian machines tend to reverse the byte order when doing
         arithmetic operations).

      o  The last odd octet, if any, needs special attention.

      o  We need algorithms for incremental update of checksum.

   The following sections consider these points.  We start with some
   preliminary remarks.

   The checksum algorithm is such that usually only the remainder of the
   sum is significant (when divided by 65,535).  There are several
   operations that change the mathematical value but preserve the
   remainder.  Such operations can be used during the course of
   calculation.  (The mathematical section above proves the validity of
   these operations.)

      o  Any multiple of 65,535 can be added or subtracted, as long as

https://datatracker.ietf.org/doc/html/rfc1071
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         there is no overflow or underflow.  In particular, 0xffffffff
         (the largest unsigned 32-bit integer) is a multiple of 65,535.

      o  Remainder division can be done:  sum = sum % 65535.

      o  A non-negative value can be bit-shifted left by 16 bits: sum =
         sum << 16.

      o  A non-negative value can be folded by shifting the most-
         significant bits right by 16 and adding to the rest of the
         number, for example:

               0x123456789ab =  0x12345670000 + 0x89ab
                             =  (0x1234567<<16) + 0x89ab
                             -> change to 0x1234567 + 0x89ab

   In C language, we can define folding essentially as in RFC 1071:

               #define FOLD(sum)  (((sum) & 0xffff) + ((sum) >> 16))

      o  In assembly programming, the carry bit that overflows after
         unsigned 16-, 32-, or 64-bit addition can be shifted to the
         right and added back to the sum ("end around carry" [RFC1071]).

5.2. Integer Division versus Folding

   The algorithms, as defined, use the % operator, the remainder
   division.  Of course it is not available in all hardware
   implementations; on the other hand, even relatively simple
   microprocessors like the 16-bit Intel 8086 can divide a 32-bit
   integer by 65,535 and find the remainder with one single machine
   instruction (DIV).  Regarding efficiency, consider the example of
   Intel386SX (developed in 1980's); in 32-bit mode it can execute DIV
   instruction, nominally, in 38 clock cycles [386SX].  This should be
   contrasted with the masking, shifting and addition operations that
   would be the division-free alternative (folding); they might together
   take some ten clock cycles.

   Also, divisions would not be frequently repeated anyway.  Processing
   a typical incoming TCP segment might require exactly two division
   operations, one to the check the IPv4 header, the other to check the
   TCP data.  So, compared with other necessary processing, division is
   likely to be a feasible alternative in some applications.

   But there is an alternative to division, folding (defined above).
   This algorithm reduces any positive integer to 16 bits without
   changing the remainder (again, it is found in RFC 1071):

https://datatracker.ietf.org/doc/html/rfc1071
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         while (sum>>16)
            sum = FOLD(sum);

   But usually sum has no more than 32 bits, in which case only two
   foldings are needed:

         sum = FOLD(FOLD(sum));

   Note that folding never produces zero result (unless its argument is
   zero), so folding has wrap-to-one behaviour; see [Fig. 2].  This
   changes the algorithms slighly, as folding tends to produce 65,535
   when true remainder is zero.  So here are the algorithms for checksum
   generation (UDP considered separately) and checking, without
   division:

         checksum = 65535 - FOLD(FOLD(sum));

         udp_checksum = FOLD(FOLD(0xffffffff - sum));

         if (FOLD(FOLD(sum) != 65535) goto checksum_error;

   In many systems, operations (65535-x) and (0xffffffff-x) can be
   easily implemented with bit complement.  Such optimizations are left
   to the reader as exercise.

5.3. Choice of Data Types

   We usually prefer unsigned integers, because division of signed
   integers is unpredictable in computers.  (It is worth noting,
   however, that signed division can be faster than unsigned division in
   some implementations.)

   Usually 32-bit integers are suitable for blocksum calculations.  For
   example, the maximum amount of data in a TCP/IPv4 segment is less
   than 65,535 octets (32,768 octet pairs), which sets an upper limit of
   block sum to 32,768*65,535 = 2,147,450,880; this means that blocksums
   fit in 32-bit integers, or even in signed 32-bit integers.

   However, 16-bit values can be calculated in parallel as 32-bit
   values, and then it may be advantageous to use 64-bit values for
   blocksums.  See below for parallel calculation.

5.4. Efficient Calculation of Sum

   As RFC 1071 correctly points out, it is usually appropriate to
   optimize the checksum routine; and obviously the reading and summing
   loop is *the* most important point to optimize.  Note that while the
   examples shown here are in the C programming language, the most

https://datatracker.ietf.org/doc/html/rfc1071


Heikkila           Expires: May 2013                           [Page 12]



Internet Draft     IP checksum        November 5, 2012

   optimal solution is usually achieved with assembly language.

   Data sum should be calculated in the natural byte order, as in
   example above: "sum += *addr".  This means that little-endian
   machines swap bytes, e.g., data that the network signifies as 0x1234
   is summed as 0x3412.  As known, and shown in the mathematical section
   above, this leads to correct results, if the calculated checksum is
   written to its field in the same natural manner: "*addr = checksum".
   Also, the important values 0 and 65,535 are immune to byte order.
   However, see section 5.5 below.

   It may be advantageous to read data in bigger pieces, 32 bits (or
   even 64 bits) as follows.  However, addition must not overflow, which
   is why folding is used in this example:

         register unsigned long sum = 0;
         unsigned long *addr = . .; /* long assumed to have 32 bits */
         int count = . . /* octet count */

         while (count > 3) {
            sum += FOLD(*addr++);
            count -= 4;
         }

   But if the sum counter has 64 bits, folding as above is not
   necessary.

   As a curiosity, consider the following case, which assumes that sum
   is a 17-bit (sic!) integer and addr is a pointer to 16-bit integer:

         while ( . . . ) {
            sum += *addr++;
            sum = FOLD(sum);
            count -= 2;
        }

   The case of a "17-bit" integer may sound theoretical, but actually
   this is precisely what 16-bit processors often do: the sum is
   accumulated to a 16-bit register, which, together with the "carry"
   bit, is effectively a 17-bit counter.  The FOLD operation corresponds
   to what RFC 1071 calls "end around carry".

   Often blocksum is calculated in pieces, and sometimes the start of
   some piece is not at an even offset from the beginning of data.  Such
   calculation swaps the octets in the sum; but this can be corrected so
   that the blocksum is swapped again before incorporating to the final
   sum (as noted in RFC 1071).

https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1071
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5.5. Byte Order Issues

   As explained above, byte order should usually be ignored in software
   algorithms, permitting the processor to move data from memory to
   calculation as efficiently as possible.  However, this means that
   checksum data is in network byte order while ordinary data is in host
   byte order.  Then the standard operations "htons()" (host-to-network
   swap, short variable) and "ntohs()" (network-to-host) should be used
   as appropriate [POSIX].  Consider the case of IPv4 header, where the
   TTL field is decremented by 1 at every router, and this means that
   one element in the blocksum is decremented by 0x0100.  In order not
   to recalculate the whole header checksum, the checksum is simply
   incremented by 0x0100, but this value must be modified as follows:

      new_chksum = ((unsigned long)old_chksum + htons(0x0100)) % 65535;

   Here, "htons()" is necessary because computers keep arithmetic
   constants in host byte order.  (The pedantic typecast "(unsigned
   long)" is a C technicality to force the machine to use at least 32
   bits during calculation to prevent overflow, even if old_chksum is a
   16-bit integer.  Here, the typecast is shown also with a
   documentation purpose, to emphasize that more than 16 bits are indeed
   necessary during the calculation.)

   Note: RFC 1141 and RFC 1624 consider a similar problem, but they
   emphasize hardware optimization (use bit operations instead of
   division), and do not mention byte order [RFC1141] [RFC1624].

5.6. Incremental Update of Checksum

   Incremental update of checksum is an old idea; it is addressed in
   [RFC1141] and [RFC1624], and also section 5.5 above uses one case of
   it as an example.  This section contains a new example, ICMPv6 Echo
   Reply message, to illustrate the method of incremental update.

RFC 4443 defines the important Echo Request message, to which a host
   replies with Echo Reply (ping6).  Suppose a host has received a
   Request message; naturally, it has to verify the checksum of that
   message before accepting it.  Before sending the Reply message, the
   host has to calculate also the checksum over the reply.  But since
   the Request and Reply are almost identical, some CPU time can be
   saved so that the Reply checksum is calculated from the Request
   checksum.  Inspection of RFC 4443 shows that the checksums of Request
   and Reply differ only with respect to IPv6 addresses (in pseudo-
   header) and ICMPv6 type (and the checksum itself).  So the methods of
   incremental update are well applicable to the Echo Reply case.  We
   limit our consideration to the IPv6 address case; the update of
   ICMPv6 type from 128 to 129 is an easy exercise to the reader.

https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1141
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc4443
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   In some cases, the IPv6 addresses of Request and Reply are the same,
   just so that the source and destination are swapped; and the order of
   addresses does not, of course, change the checksum.  But if the
   destination address of the Request is a multicast or anycast address,
   the source address of the Reply must be a unicast address; see
   [RFC4443], Sec. 4.2.

   In what follows, we imitate the notation of RFC 1624, using ordinary
   addition and subtraction instead of +' and bit complement.  We
   occasionally use the congruence operation =' (modulo 65,535).

             HC  - old checksum in ICMPv6 header
             C   - blocksum of old data
             HC' - new checksum in ICMPv6 header (ICMPv6 type still
                   unchanged)
             C'  - blocksum of new data (ICMPv6 type still unchanged)
             m   - blocksum over the 16-octet old address (multicast
                   or anycast)
             m'  - blocksum over the 16-octet new address (unicast)

   Then, if the blocksum of the unchanged part of the data is A, we
   have:

             A + m  +  HC  = C
             A + m' +  HC' = C'

   Subtracting the two equations we get this:

            HC' - HC + m' - m = C' - C

   Although C and C' need not be identical, they are the same modulo
   65,535 (in fact, C =' C' =' 0, if the checksum is correctly
   calculated), so that C' - C =' 0.  Then, doing elementary
   manipulations, we get these facts, analogously to RFC 1642:

            HC' =' HC + m - m'
            HC' =' -(m' - m - HC)

   Both of these formulas can be used.  The former formula is suitable
   if we use division, and the latter one if we use folding.  (RFC 1642
   does not consider division and so prefers the latter formula.)  We
   obtain the following C code (two alternatives):

      new_chk = (9*65535 + old_chk
                 + oldaddr_sum - newaddr_sum) % 65535;

      new_chk = 65535 - FOLD(FOLD(9*65535 + newaddr_sum
                                  - oldaddr_sum - old_chk));

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1642
https://datatracker.ietf.org/doc/html/rfc1642
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   The constant 9*65535 is chosen small enough so that 32-bit addition
   does not overflow but large enough so that subtraction cannot make
   the result negative.  Note that a sum over a 16-bit IPv6 address
   cannot exceed 8*65,535 and a checksum cannot exceed 65,535, hence the
   constant 9.

   A final note: if we were to update UDP checksum incrementally, we
   would need a checksum in the range 1...65,535, and so the following C
   code would be appropriate (two alternatives, where old_ds and new_ds
   are sum over old data and sum over new data, respectively):

      n_udp_chk = 65535 -
                  (N*65535 + new_ds - old_ds - o_udp_chk) % 65535;

      n_udp_chk = FOLD(FOLD(N*65535 + o_udp_chk + old_ds - new_ds));

   Also in this case, N must be chosen according to circumstances so
   that addition and subtraction cannot lead to overflow or underflow in
   32-bit arithmetic.

   Note that byte order is not an issue in this example, provided that
   all calculations are done with the same byte order (the octets in
   IPv6 addresses are calculated with the same algorithm as all other
   octets in the data).

5.7. The Last Octet

   If checksum is calculated over an odd number of octets, the last
   octet is alone and needs a zeroed octet to form a 16-bit unsigned
   integer.  This is easy, if byte order is taken into account.  Here
   are two ways to add the last octet to a sum:

      {
         unsigned short tmp = 0;
         ((unsigned char*)&tmp)[0] = ((unsigned char*)last_addr)[0];
         sum += tmp;
      }

      sum += htons(((unsigned char*)last_addr)[0] << 8);
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6.  Security Considerations

   There are no security considerations relevant to this document.

7.  IANA Considerations

   No actions are required from IANA as result of the publication of
   this document.
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