
Internet Draft T. Herbert
<draft-herbert-gue-00.txt> Google
Category: Experimental
Expires June 2014 December 20, 2013

Generic UDP Encapsulation
<draft-herbert-gue-00.txt>

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on June 24, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Herbert Expires June 2014 [Page 1]

https://datatracker.ietf.org/doc/html/draft-herbert-gue-00.txt
https://datatracker.ietf.org/doc/html/draft-herbert-gue-00.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet Draft herbert-gue.txt December 20, 2013

Abstract

 This specification describes Generic UDP Encapsulation (GUE), which
 is a scheme for using UDP to encapsulate packets of arbitrary IP
 protocols for transport across layer 3 networks. By encapsulating
 packets in UDP, specialized capabilities in networking hardware for
 efficient handling of UDP packets can be leveraged. GUE specifies
 basic encapsulation methods upon which higher level constructs, such
 tunnels and overlay networks, can be constructed.

Table of Contents

1. Introduction . 2
2. Packet formats . 3
2.1. GUE header preamble . 3
2.2. GUE encapsulation header 4

3. Operation . 5
3.1. Encapsulator operation 6
3.2. Decapsulator operation 7
3.3. Router and switch operation 7
3.4. Middlebox and NAT interactions 7
3.5. UDP checksum . 8
3.6. MTU and fragmentation issues 8

4. Inner flow identifier properties 8
4.1. Flow classification . 8
4.2. Inner flow identifier properties 9

5. Motivation for GUE . 10
6. Security Considerations . 11
7. IANA Considerations . 11
8. References . 12
8.1. Normative References 12
8.2. Informative References 12

Appendix A: NIC processing for GUE 13
A.1. Receive multi-queue . 13
A.2. Checksum offload . 14
A.2.1. Transmit checksum offload 14
A.2.2. Receive checksum offload 14

A.3. Transmit Segmentation Offload 14
A.4. Large Receive Offload 15

Appendix B: Privileged ports 16
Appendix C: Inner flow identifier as a route selector 16

 Authors' Addresses . 16

1. Introduction

 This specification describes a general method for encapsulating
 packets of arbitrary IP protocols within User Datagram Protocol (UDP)
 [RFC0768] packets. Encapsulating packets in UDP facilitates efficient

https://datatracker.ietf.org/doc/html/rfc0768

Herbert Expires June 2014 [Page 2]

Internet Draft herbert-gue.txt December 20, 2013

 transport across networks. Networking devices widely provide protocol
 specific processing and optimizations for UDP (as well as TCP)
 packets. Packets for atypical IP protocols (those not usually parsed
 by networking hardware) can be encapsulated in UDP packets to
 maximize deliverability and to leverage flow specific mechanisms for
 routing and packet steering.

 Hardware devices commonly perform hash computations on packet headers
 to classify packets into flows or flow buckets. Flow classification
 is done to support load balancing (statistical multiplexing) of flows
 across a set of networking resources. Examples of such load balancing
 techniques are Equal Cost Multipath routing (ECMP), port selection in
 Link Aggregation, and NIC device Receive Side Scaling (RSS). Hashes
 are usually either a three-tuple hash of IP protocol, source address,
 and destination address; or a five-tuple hash consisting of IP
 protocol, source address, destination address, source port, and
 destination port. Typically, networking hardware will compute five-
 tuple hashes for TCP and UDP, but only three-tuple hashes for other
 IP protocols. Since the five-tuple hash provides more granularity,
 load balancing can be finer grained with better distribution. When a
 packet is encapsulated with GUE, the source port in the outer UDP
 packet is set to reflect the flow of the inner packet. When a device
 computes a five-tuple hash on the outer UDP/IP header of a GUE
 packet, the resultant value classifies the packet per its inner flow.

2. Packet formats

 The payload of a UDP packet destined to a GUE port starts with a GUE
 header. If a packet is being encapsulated it immediately follows the
 GUE header.

2.1. GUE header preamble

 The first byte of the GUE packet header contains a packet type and
 header length.
 0
 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | Type | Hlen |
 +-+-+-+-+-+-+-+-+

 Contents are:

 o Type: type of header. The rest of the fields in the header are
 defined based the type.

 o Hlen: Length in 32-bit words of the GUE header, including

Herbert Expires June 2014 [Page 3]

Internet Draft herbert-gue.txt December 20, 2013

 optional fields but not the first four bytes of the header.
 Computed as (header_len - 4) / 4. All GUE headers are a multiple
 of four bytes in length.

2.2. GUE encapsulation header

 The GUE encapsulation header is used to encapsulate packets for
 various IP protocols. Encapsulation with a GUE header has the general
 format:

 +-------------------------------+
 | |
 | UDP/IP header |
GUE Header

Encapsulated packet
 +-------------------------------+

 The GUE encapsulation header is variable length as determined by the
 presence of optional fields.

 The UDP and GUE encapsulation header format is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source port | Destination port |
 +-+
 | Length | Checksum |
 +-+
 | 0x0 | Hlen | Protocol |V|R|R|R|R|R|R|R|R|R|R|R|R|R|P|P|
 +-+
 | Virtual network ID (optional) |
 +-+
 | |
 ~ Private fields (optional) ~
 | |
 +-+

 The contents of the UDP header are:

Herbert Expires June 2014 [Page 4]

Internet Draft herbert-gue.txt December 20, 2013

 o Source port (inner flow identifier): This should be set to a
 value that represents the encapsulated flow. The properties of
 the inner flow identifier are described below.

 o Destination port: The GUE assigned port number, XXXX.

 o Length: Canonical length of the UDP packet (payload length).

 o Checksum: Either the standard UDP checksum or zero indicating no
 checksum calculated. Zero checksum is recommended.

 The GUE header consists of:

 o Type: Set to 0x0 to indicate GUE encapsulation header.

 o Hlen: Length in 32-bit words of the GUE header, including
 optional fields but not the first four bytes of the header.
 Computed as (header_len - 4) / 4. The length of the encapsulated
 packet is determined from the UDP length and the Hlen:
 encapsulated_packet_length = UDP_Length - 8 - GUE_Hlen.

 o Protocol: IP protocol number for the next header. The next
 header begins at the offset provided by Hlen.

 o 'R' Reserved flag. Must be set to zero for sending.

 o 'V' Virtualization flag. Indicates presence of the Virtual
 Network Identifier (VNID) field. The VNID is used to tunnel
 layer 2 or layer 3 packets for network virtualization. Use and
 semantics of this field should be defined in separate documents.

 o 'P' Private flag. Indicates flags reserved for private use (as
 per private use policy specified in [RFC2434]). These flags may
 indicate the presence of private fields. These flags can only be
 used between a sender and a receiver that have agreement as to
 their meaning.

 o Virtual network ID (4 octets): Used in network virtualization to
 identify the virtual network that packet was sent on. Only
 present if virtualization bit is set.

 o Private fields: An implementation may define private fields that
 are present when a corresponding private bit is set. A private
 field must have a length which is a multiple of four bytes, and
 must be correctly accounted for in the GUE header length.

3. Operation

https://datatracker.ietf.org/doc/html/rfc2434

Herbert Expires June 2014 [Page 5]

Internet Draft herbert-gue.txt December 20, 2013

 The figure below illustrates the use of GUE encapsulation between two
 servers. Sever 1 is sending packets to server 2. An encapsulator
 performs encapsulation of packets from server 1. These encapsulated
 packets traverse the network as UDP packets. At the decapsulator,
 packets are decapsulated and sent on to server 2. Packet flow in the
 reverse direction need not be symmetric; GUE encapsulation is not
 required in the reverse path.

 +---------------+ +---------------+
Server 1		Server 2
 +---------------+ +---------------+
 | ^
 V |
 +---------------+ +---------------+ +---------------+
Encapsulator	-->	Layer 3	-->	Decapsulator
		Network		
 +---------------+ +---------------+ +---------------+

 The encapsulator and decapsulator may be co-resident with the
 corresponding servers, or may be on separate nodes in the network.

 Network tunneling can be achieved by encapsulating layer 2 or layer 3
 packets. In this case the encapsulator and decapsulator nodes are the
 tunnel endpoints. These could be routers that provide network tunnels
 on behalf of communicating servers.

 When encapsulating layer 4 packets, the encapsulator and decapsulator
 should be co-resident with the servers. In this case, the
 encapsulation headers are inserted between the IP header and the
 transport packet. The addresses in the IP header refer to both the
 endpoints of the encapsulation and the endpoints for terminating the
 the transport protocol.

3.1. Encapsulator operation

 Encapsulators create encapsulation headers, set the source port to
 the inner flow identifier, set flags and optional fields in the GUE
 header, and forward packets to a decapsulator.

 An encapsulator may be an end host originating the packets of a flow,
 or may be a network device performing encapsulation on behalf of
 servers (routers implementing tunnels for instance). In either case,
 the intended target (decapsulator) is indicated by the outer
 destination IP address.

Herbert Expires June 2014 [Page 6]

Internet Draft herbert-gue.txt December 20, 2013

 If an encapsulator is tunneling packets, that is encapsulating
 packets of layer 2 or layer 3 protocols (e.g. EtherIP, IPIP, ESP
 tunnel mode), it should follow standard conventions for tunneling of
 one IP protocol over another. Diffserv interaction with tunnels is
 described in [RFC2983], ECN propagation for tunnels is described in
 [RFC6040].

3.2. Decapsulator operation

 A decapsulator performs decapsulation of GUE packets. A decapsulator
 is addressed by the outer destination IP address of a GUE packet.
 The decapsulator validates packets, including fields of the GUE
 header. If a packet is acceptable, the UDP and GUE headers are
 removed and the packet is resubmitted for IP protocol processing.

 If a decapsulator receives a GUE packet with an unknown flag, bad
 header length (too small for included optional fields), or an
 otherwise malformed header, it must drop the packet and may log the
 event. No error message is returned back to the encapsulator.

3.3. Router and switch operation

 Routers and switches should forward GUE packets as standard UDP/IP
 packets. The outer five-tuple should contain sufficient information
 to perform flow classification corresponding to the flow of the inner
 packet. A switch should not need to parse a GUE header, and none of
 the flags or optional fields in the GUE header should affect routing.

 A router should not modify a GUE header when forwarding a packet. It
 may encapsulate a GUE packet in another GUE packet, for instance to
 implement a network tunnel. In this case the router takes the role of
 an encapsulator, and the corresponding decapsulator is the logical
 endpoint of the tunnel.

3.4. Middlebox and NAT interactions

 A middle box may interpret some flags and optional fields of the GUE
 header for classification purposes, but is not required to understand
 all flags and fields in GUE packets. A middle box should not drop a
 GUE packet because there are flags unknown to it. The header length
 in the GUE header allows a middlebox to inspect the payload packet
 without needing to parse the flags or optional fields.

 In certain instances a middlebox may infer bidirectional connection
 semantics to a UDP flow. For instance a stateful firewall may create
 a five-tuple rule to match flows on egress, and a corresponding five-
 tuple rule for matching ingress packets where the roles of source and
 destination are reversed for the IP addresses and UDP port numbers.

https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6040

Herbert Expires June 2014 [Page 7]

Internet Draft herbert-gue.txt December 20, 2013

 NAT for UDP assumes bidirectional connection semantics.

 GUE primarily assumes unidirectional flow properties, there is no
 necessary correspondence between the UDP ports of GUE packet for
 encapsulated flows in different directions. GUE could be extended to
 provide bidirectional semantics, however that is outside the scope of
 this document.

3.5. UDP checksum

 GUE packets should be sent with a zero checksum if the encapsulated
 packet contains its own checksum or can be checked with some
 alternate means. Applicability Statement for the Use of IPv6 UDP
 Datagrams with Zero Checksums [RFC6936] provides analysis and
 motivation of sending zero checksums when using UDP as an
 encapsulation protocol.

 If a receiver receives a GUE packet with a non-zero checksum, it must
 perform normal UDP checksum verification.

3.6. MTU and fragmentation issues

 Standard conventions for handling of MTU (Maximum Transmission Unit)
 and fragmentation in conjunction with networking tunnels
 (encapsulation of layer 2 or layer 3 packets) should be followed.
 Details are described in MTU and Fragmentation Issues with In-the-
 Network Tunneling [RFC4459]

 If a packet is fragmented before encapsulation in GUE, all the
 related fragments must be encapsulated using the same source port
 (inner flow identifier). An operator may set MTU to account for
 encapsulation overhead and reduce the likelihood of fragmentation.

4. Inner flow identifier properties

4.1. Flow classification

 A major objective of using GUE is that a network device can perform
 flow classification corresponding to the flow of the inner
 encapsulated packet based on the contents in the outer headers.

 To support flow classification, the source port of the UDP header in
 GUE is set to a value that maps to the inner flow. This is referred
 to as the inner flow identifier. The inner flow identifier is set by
 the encapsulator; it can be computed on the fly based on packet
 contents or retrieved from a state maintained for the inner flow.

 Examples of deriving an inner flow identifier are:

https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc4459

Herbert Expires June 2014 [Page 8]

Internet Draft herbert-gue.txt December 20, 2013

 o If the encapsulated packet is a layer 4 packet, TCP/IPv4 for
 instance, the inner flow identifier could be based on the
 canonical five-tuple hash of the inner packet.

 o If the encapsulated packet is an AH transport mode packet with
 TCP as next header, the inner flow identifier could be a hash
 over a three-tuple: TCP protocol and TCP ports of the
 encapsulated packet.

 o If a node is encrypting a packet using ESP tunnel mode and GUE
 encapsulation, the inner flow identifier could be based on the
 contents of clear-text packet. For instance, a canonical five-
 tuple hash for a TCP/IP packet could be used.

 The five-tuple hash commonly used to identify a flow in UDP will
 cover the outer source address, destination address, source port
 (inner flow identifier), and destination port. These values should be
 mostly persistent for the lifetime of an encapsulated flow, only
 changing infrequently (at most once every thirty seconds).

4.2. Inner flow identifier properties

 The inner flow identifier is the value set in the UDP source port of
 a GUE packet. The inner flow identifier should adhere to the
 following properties:

 o The value set in the source port should be within the ephemeral
 port range. IANA suggest this range to be 49152 to 65535, where
 the high order two bits of the port are set to one. This
 provides fourteen bits for the inner flow identifier value.

 o The inner flow identifier should have a uniform distribution
 across encapsulated flows.

 o An encapsulator may occasionally change the inner flow
 identifier used for an inner flow per its discretion (for
 security, route selection, etc). Changing the value should
 happen no more than once every thirty seconds.

 o Decapsulators, or any networking devices, should not attempt any
 interpretation of the inner flow identifier, nor should they
 attempt to reproduce any hash calculation. They may use the
 value to match further receive packets for steering decisions,
 but cannot assume that the hash uniquely or permanently
 identifies a flow.

 o Input to the inner flow identifier is not restricted to ports
 and addresses; input could include flow label from an IPv6

Herbert Expires June 2014 [Page 9]

Internet Draft herbert-gue.txt December 20, 2013

 packet, SPI from an ESP packet, or other flow related state in
 the encapsulator that is not necessarily conveyed in the packet.

 o The assignment function for inner flow identifiers should be
 randomly seeded to mitigate denial of service attacks. The seed
 may be changed periodically.

5. Motivation for GUE

 This section presents the motivation for GUE with respect to other
 encapsulation methods.

 A number of different encapsulation techniques have been proposed for
 the encapsulation of one protocol over another. EtherIP [RFC3378]
 provides layer 2 tunneling of Ethernet frames over IP. GRE [RFC2784],
 MPLS [RFC4023], and L2TP [RFC2661] provide methods for tunneling
 layer 2 and layer 3 packets over IP. NVGRE [NVGRE] and VXLAN [VXLAN]
 are proposals for encapsulation of layer 2 packets for network
 virtualization. IPIP [RFC2003] and Generic packet tunneling in IPv6
 [RFC2473] provide methods for tunneling IP packets over IP.

 Several proposals exist for encapsulating packets over UDP including
 ESP over UDP [RFC3948], TCP directly over UDP [TCPUDP], VXLAN, LISP
 [RFC6830] which encapsulates layer 3 packets, and Generic UDP
 Encapsulation for IP Tunneling (GRE over UDP)[GREUDP]. Generic UDP
 tunneling [GUT] is a proposal similar to GUE in that it aims to
 tunnel packets of IP protocols over UDP.

 GUE has the following discriminating features:

 o UDP encapsulation leverages specialized network device
 processing for efficient transport. The semantics for using the
 UDP source port as an identifier for an inner flow are defined.

 o GUE permits encapsulation of arbitrary IP protocols, which
 includes layer 2 3, and 4 protocols. This potentially allows
 nearly all traffic within a data center to be normalized to be
 either TCP or UDP on the wire.

 o Multiple protocols can be multiplexed over a single UDP port
 number. This is in contrast to techniques to encapsulate
 specific protocols over UDP using a protocol specific port
 number (such as ESP/UDP, GRE/UDP, SCTP/UDP). GUE provides a
 uniform and extensible mechanism for encapsulating all IP
 protocols in UDP with minimal overhead (four bytes of additional
 header).

 o GUE is extensible. New flags and fields can be defined.

https://datatracker.ietf.org/doc/html/rfc3378
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc4023
https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2473
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc6830

Herbert Expires June 2014 [Page 10]

Internet Draft herbert-gue.txt December 20, 2013

 o The GUE header includes a header length field. This allows a
 network node to inspect an encapsulated packet without needing
 to parse the full encapsulation header.

 o Private flags and fields allow local customization and
 experimentation while being compatible with processing in
 network nodes (routers and middleboxes).

 o GUE can provide encapsulation for a virtual network that
 provides layer 3 connectivity. In contrast, VXLAN and NVGRE are
 defined to only provide layer 2 services (encapsulation of
 Ethernet).

 o GUE defines a 32 bit virtual networking identifier (in contrast
 to 24 bit values defined for VXLAN and NVGRE). This facilitates
 hierarchical assignment, local flag definitions in the
 identifier, and potentially obfuscation of the identifier on the
 wire.

6. Security Considerations

 Encapsulation of IP protocols within GUE should not increase
 security risk, nor provide additional security in itself. As
 suggested in section 3 the source port for of UDP packets in GUE
 should be randomly seeded to mitigate some possible denial
 service attacks.

7. IANA Considerations

 A well known UDP port number assignment for GUE will be
 requested.

Herbert Expires June 2014 [Page 11]

Internet Draft herbert-gue.txt December 20, 2013

8. References

8.1. Normative References

 [RFC0768]Postel, J., "User Datagram Protocol", STD 6, RFC 768, August
 1980.

 [RFC2434]Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434, October 1998.

 [RFC2983]Black, D., "Differentiated Services and Tunnels", RFC 2983,
 October 2000.

 [RFC6040]Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, November 2010.

 [RFC6936]Fairhurst, G. and M. Westerlund, "Applicability Statement
 for the Use of IPv6 UDP Datagrams with Zero Checksums", RFC 6936,
 April 2013.

 [RFC4459]Savola, P., "MTU and Fragmentation Issues with In-the-
 Network Tunneling", RFC 4459, April 2006.

8.2. Informative References

 [RFC2003]Perkins, C., "IP Encapsulation within IP", RFC 2003, October
 1996.

 [RFC3948]Huttunen, A., Swander, B., Volpe, V., DiBurro, L., and M.
 Stenberg, "UDP Encapsulation of IPsec ESP Packets", RFC 3948, January
 2005.

 [RFC6830]Farinacci, D., Fuller, V., Meyer, D., and D. Lewis, "The
 Locator/ID Separation Protocol (LISP)", RFC 6830, January 2013.

 [RFC3378]Housley, R. and S. Hollenbeck, "EtherIP: Tunneling Ethernet
 Frames in IP Datagrams", RFC 3378, September 2002.

 [RFC2784]Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina,
 "Generic Routing Encapsulation (GRE)", RFC 2784, March 2000.

 [RFC4023]Worster, T., Rekhter, Y., and E. Rosen, Ed., "Encapsulating
 MPLS in IP or Generic Routing Encapsulation (GRE)", RFC 4023, March
 2005.

 [RFC2661]Townsley, W., Valencia, A., Rubens, A., Pall, G., Zorn, G.,

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc2983
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc6040
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc6936
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc4459
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc2003
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc3948
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc6830
https://datatracker.ietf.org/doc/html/rfc3378
https://datatracker.ietf.org/doc/html/rfc3378
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc4023
https://datatracker.ietf.org/doc/html/rfc4023
https://datatracker.ietf.org/doc/html/rfc2661

Herbert Expires June 2014 [Page 12]

Internet Draft herbert-gue.txt December 20, 2013

 and B. Palter, "Layer Two Tunneling Protocol "L2TP"", RFC 2661,
 August 1999.

 [NVGRE] NVGRE: Network Virtualization using Generic Routing
 Encapsulation draft-sridharan-virtualization-nvgre-03

 [VXLAN] VXLAN: A Framework for Overlaying Virtualized Layer 2
 Networks over Layer 3 Networks draft-mahalingam-dutt-dcops-vxlan-06

 [TCPUDP] Encapsulation of TCP and other Transport Protocols over UDP
draft-cheshire-tcp-over-udp-00

 [GREUDP] Generic UDP Encapsulation for IP Tunneling draft-yong-tsvwg-
gre-in-udp-encap-02

 [GUT] Generic UDP Tunnelling (GUT) draft-manner-tsvwg-gut-02.txt

Appendix A: NIC processing for GUE

 This appendix provides some guidelines for Network Interface Cards
 (NICs) to implement common offloads and accelerations to support GUE.
 Note that most of this discussion is generally applicable to other
 methods of encapsulation.

A.1. Receive multi-queue

 Contemporary NICs support multiple receive descriptor queues (multi-
 queue). Multi-queue enables load balancing of network processing for
 a NIC across multiple CPUs. On packet reception, a NIC must select
 the appropriate queue for host processing. Receive Side Scaling is a
 common method which uses the flow hash for a packet to index an
 indirection table where each entry stores a queue number. Flow
 Director and Accelerated Receive Flow Steering (aRFS) allow a host to
 program the queue that is used for a given flow which is identified
 either by an explicit five-tuple or by flow hash.

 GUE encapsulation should be compatible with multi-queue NICs that
 support five-tuple hash calculation for UDP/IP packets as input to
 RSS. The inner flow identifier (source port) ensures classification
 of the encapsulated flow even in the case that the outer source and
 destination addresses are the same for all flows (e.g. all flows are
 going over a single tunnel).

 By default, UDP support may be disabled in NICs to avoid out of order
 reception that can occur when UDP packets are fragmented. As
 discussed above, fragmentation of GUE packets should be mitigated by
 fragmenting packets before entering a tunnel, path MTU discovery in
 higher layer protocols, or operator adjusting MTUs. Other UDP traffic

https://datatracker.ietf.org/doc/html/rfc2661
https://datatracker.ietf.org/doc/html/draft-sridharan-virtualization-nvgre-03
https://datatracker.ietf.org/doc/html/draft-mahalingam-dutt-dcops-vxlan-06
https://datatracker.ietf.org/doc/html/draft-cheshire-tcp-over-udp-00
https://datatracker.ietf.org/doc/html/draft-yong-tsvwg-gre-in-udp-encap-02
https://datatracker.ietf.org/doc/html/draft-yong-tsvwg-gre-in-udp-encap-02
https://datatracker.ietf.org/doc/html/draft-manner-tsvwg-gut-02.txt

Herbert Expires June 2014 [Page 13]

Internet Draft herbert-gue.txt December 20, 2013

 may not implement such procedures to avoid fragmentation, so enabling
 UDP support in the NIC should be a considered tradeoff during
 configuration.

A.2. Checksum offload

 Many NICs provide capabilities to calculate standard ones complement
 payload checksum for packets in transmit or receive. When using GUE
 encapsulation there are two checksums that may be of interest, the
 payload checksum of an encapsulated packet, and the UDP checksum of
 in the outer header.

A.2.1. Transmit checksum offload

 NICs may provide a protocol agnostic method to offload transmit
 checksum that can be used with GUE. In this method the host provides
 checksum related parameters in a transmit descriptor for a packet.
 These parameters include the starting offset of data to checksum, the
 length of data to checksum, and the offset in the packet where the
 computed checksum is to be written. The host may seed the checksum
 with for data not covered by the NIC computation (the checksum of the
 pseudo header for instance).

 In the case of GUE, the checksum for an encapsulated transport layer
 packet, a TCP packet for instance, can be offloaded by setting the
 appropriate checksum parameters.

 NICs typically can offload only one transmit checksum per packet, so
 simultaneously offloading both an inner transport packet's checksum
 and the outer UDP checksum is likely not possible. In this case
 setting UDP checksum to zero (per above discussion) and offloading
 the inner transport packet checksum is desirable.

A.2.2. Receive checksum offload

 GUE is compatible with NICs that perform a protocol agnostic receive
 checksum. In this technique, a NIC computes a ones complement
 checksum over all (or some predefined portion) of a packet. The
 computed value is provided to the host stack in the packet's receive
 descriptor. The host driver can use this checksum to "patch up" and
 validate any inner packet transport checksum, as well as the outer
 UDP checksum if it is non-zero.

A.3. Transmit Segmentation Offload

 Transmit Segmentation Offload (TSO) is a NIC feature where a host
 provides a large (>MTU size) TCP packet to the NIC, which in turn
 splits the packets into separate segments and transmits each one.

Herbert Expires June 2014 [Page 14]

Internet Draft herbert-gue.txt December 20, 2013

 This is useful to reduce CPU load on host.

 The process of TSO could be generalized as:

 1. Split the TCP payload into segments which will allow less than
 MTU size packets.

 2. For each segment, replicate the TCP header and all preceding
 headers of the original packet.

 3. For each protocol header set any payload length fields to
 reflect the length for the segment.

 4. Set TCP sequence number to correctly reflect the offset of the
 TCP data in the stream.

 5. Recompute and set any checksums that either cover the payload
 of the packet or cover header which was changed by setting a
 payload length.

 Following this general process, TSO can be extended to support TCP
 encapsulation in GUE. For each segment the Ethernet, outer IP, UDP
 header, GUE header, inner IP header if tunneling, and TCP headers are
 replicated. Any packet length header fields need to be set properly
 (including the length in the outer UDP header), and checksums need to
 be set correctly (including the outer UDP checksum if being used).

A.4. Large Receive Offload

 Large Receive Offload (LRO) is a NIC feature where packets of a TCP
 connection are reassembled, or coalesced, in the NIC and delivered to
 the host as one large packet. This feature can reduce CPU utilization
 in the host.

 LRO requires significant protocol awareness to be implemented
 correctly and is difficult to generalize. Packets in the same flow
 need to be unambiguously identified. In the presence of tunnels or
 network virtualization, this may require more than a five-tuple match
 (for instance packets for flows in two different virtual networks may
 have identical five-tuples). Additionally, a NIC needs to perform
 validation over packets that are being coalesced, and needs to
 fabricate a single meaningful header from all the coalesced packets.

 The conservative approach to supporting LRO for GUE would be to
 assign packets to the same flow only if they have the same five-tuple
 and were encapsulated the same way. That is the outer IP addresses,
 the outer UDP ports, GUE protocol, GUE flags and fields, and inner
 five tuple are all identical.

Herbert Expires June 2014 [Page 15]

Internet Draft herbert-gue.txt December 20, 2013

Appendix B: Privileged ports

 Using the source port to contain an inner flow identifier value
 disallows the security method of a receiver enforcing that the source
 port be a privileged port. Privileged ports are defined by some
 operating systems to restrict source port binding. Unix, for
 instance, considered port number less than 1024 to be privileged.

 Enforcing that packets are sent from a privileged port is widely
 considered an inadequate security mechanism and has been mostly
 deprecated. To approximate this behavior, an implementation could
 restrict a user from sending a packet destined to the GUE port
 without proper credentials.

Appendix C: Inner flow identifier as a route selector

 A encapsulator generating an inner flow identifier may modulate the
 value to perform a type of multipath source routing. Assuming that
 networking switches perform ECMP based on the flow hash, a sender can
 affect this decision by altering the inner flow identifier. For
 instance, a sender may store a flow hash in its PCB for an inner
 flow, and may alter the value upon detecting that packets are
 traversing a lossy path. Changing the inner flow identifier for a
 flow should be subject to hysteresis (at most once every thirty
 seconds) to limit the number of out of order packets delivered.

Authors' Addresses

 Tom Herbert
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA
 EMail: therbert@google.com

Herbert Expires June 2014 [Page 16]

