
INTERNET-DRAFT T. Herbert
Intended Status: Experimental Google
Expires: May 2015 November 12, 2014

Remote checksum offload for encapsulation
draft-herbert-remotecsumoffload-01

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Herbert Expires May 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

Abstract

 This specification describes remote checksum offload, which is a
 mechanism that provides checksum offload of transport checksums in
 encapsulated packets using rudimentary offload capabilities found in
 most Network Interface Card (NIC) devices. The outer header checksum
 (e.g. that in UDP or GRE) is enabled in packets and, with some
 additional meta information, a receiver is able to deduce the
 checksum to be set in an encapsulated packet. Effectively this
 offloads the computation of the inner checksum. Enabling the outer
 checksum in encapsulation has the additional advantage that it covers
 more of the packet than the inner checksum including the
 encapsulation headers.

Table of Contents

1 Introduction . 3
2 Checksum offload background 3
2.1 The Internet checksum 3
2.2 Transmit checksum offload 4
2.2.1 Generic transmit offload 4
2.2.2 Protocol specific transmit offload 4

2.3 Receive checksum offload 5
2.3.1 Checksum-complete 5
2.3.2 Checksum-unnecessary 5
2.3.3 Checksum-unnecessary conversion 6

3 Remote checksum offload . 6
3.1 Meta data format . 6
3.2 Transmitter operation 6
3.3 Receiver operation . 7
3.4 Interaction with TCP segmentation offload 8

4 Remote checksum offload for Generic UDP Encapsulation 8
5 Security Considerations . 9
6 IANA Considerations . 9
7 References . 10
7.1 Normative References 10
7.2 Informative References 10

 Authors' Addresses . 10

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

Herbert Expires May 2015 [Page 2]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

1 Introduction

 Checksum offload is a capability of NICs where the checksum
 calculation for a transport layer packet (TCP, UDP, etc.) is
 performed by a device on behalf of the host stack. Checksum offload
 is applicable to both transmit and receive, where on transmit the
 device writes the computed checksum into the packet, and on receive
 the device provides the computed checksum of the packet or an
 indication that specific transport checksums were validated. This
 feature saves CPU cycles in the host and has become ubiquitous in
 modern NICs.

 A host may both source transport packets and encapsulate them for
 transit over an underlying network. In this case, checksum offload is
 still desirable, but now must be done on an encapsulated packet. Many
 deployed NICs are only capable of providing checksum offload for
 simple TCP or UDP packets. Such NICs typically use protocol specific
 mechanisms where they must parse headers in order to perform checksum
 calculations. Updating these NICs to perform checksum offload for
 encapsulation requires new parsing logic which is likely infeasible
 or at cost prohibitive.

 In this specification we describe an alternative that uses
 rudimentary NIC offload features to support offloading checksum
 calculation of encapsulated packets. In this design, the outer
 checksum is enabled on transmit, and meta information indicating the
 location of the checksum field being offloaded and its starting point
 for computation are sent with a packet. On receipt, after the outer
 checksum is verified, the receiver sets the offloaded checksum field
 per the computed packet checksum and the meta data.

2 Checksum offload background

 In this section we provide some background into checksum offload
 operation.

2.1 The Internet checksum

 The Internet checksum [RFC0791] is used by several Internet protocols
 including IP [RFC1122], TCP [RFC0793], UDP [RFC0768] and GRE
 [RFC2784]. Efficient checksum calculation is critical to good
 performance [RFC1071], and the mathematical properties are useful in
 incrementally updating checksums [RFC1624]. An early approach to
 implementing checksum offload in hardware is described in [RFC1936].

 TCP and UDP checksums cover a pseudo header which is composed of the
 source and destination addresses of the corresponding IP packet,

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01
https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1936

Herbert Expires May 2015 [Page 3]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

 layer 4 packet length, and protocol. The checksum pseudo header is
 defined in [RFC0768] and [RFC0793] for IPv4, and in [RFC2460] for
 IPv6.

2.2 Transmit checksum offload

 In transmit checksum offload, a host networking stack defers the
 calculation and setting of a transport checksum in the packet to the
 device. A device may provide checksum offload only for specific
 protocols, or may provide a generic interface. In either case, only
 one offloaded checksum per packet is typical.

 When using transmit checksum offload, a host stack must initialize
 the checksum field in the packet. This is done by setting to zero
 (GRE) or to the bitwise "not" of the pseudo header (UDP or TCP). The
 device proceeds by computing the packet checksum from the start of
 the transport header through to the end of the packet. The resulting
 value is written in the checksum field of the transport packet.

2.2.1 Generic transmit offload

 A device can provide a generic interface for transmit checksum
 offload. Checksum offload is enabled by setting two fields in the
 transmit descriptor for a packet: start offset and checksum offset.
 The start offset indicates the byte in the packet where the checksum
 calculation should start. The checksum offset indicates the offset in
 the packet where the checksum value is to be written.

 The generic interface is protocol agnostic, however only supports one
 offloaded checksum per packet. It is conceivable that a NIC could
 provide offload for more checksums by defining more than one
 checksum start, checksum offset pair in the transmit descriptor.

2.2.2 Protocol specific transmit offload

 Some devices support transmit checksum offload for very specific
 protocols. For instance, many legacy devices can only perform
 checksum offload for UDP/IP and TCP/IP packets. These devices parse
 transmitted packets in order to determine the checksum start and
 checksum offset. They may also ignore the value in the checksum field
 by setting it to zero for checksum computation and computing the
 pseudo header checksum themselves.

 Protocol specific transmit offload is limited to the protocols a
 device supports. To support checksum offload of an encapsulated
 packet, a device must be a able to parse the encapsulation layer in
 order to locate the inner packet.

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2460

Herbert Expires May 2015 [Page 4]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

2.3 Receive checksum offload

 Upon receiving a packet, a device may perform a checksum calculation
 over the packet or part of the packet depending on the protocol. A
 result of this calculation is returned in the meta data of the
 receive descriptor for the packet. The host stack can apply the
 result in verifying checksums as it processes the packet. The intent
 is that the offload will obviate the need for the networking stack to
 perform its own checksum calculation for the packet.

 There are two basic methods of receive checksum offload: checksum-
 complete and checksum-unnecessary.

2.3.1 Checksum-complete

 A device may calculate the checksum of a whole packet (layer 2
 payload) and return the resultant value to the host stack. The host
 stack can subsequently use this value to validate checksums in the
 packet. As the packet is parsed through various layers, the
 calculated checksum is updated to correspond to each layer (subtract
 out checksum for preceding bytes for a given header).

 Checksum-complete is protocol agnostic and does not require any
 protocol awareness in the device. It works for any encapsulation and
 supports an arbitrary number of checksums in the packet.

2.3.2 Checksum-unnecessary

 A device may explicitly validate a checksum in a packet and return a
 flag in the receive descriptor that a transport checksum has been
 verified (host performing checksum computation is unnecessary). Some
 devices may be capable of validating more than one checksum in the
 packet, in which case the device returns a count of the number
 verified. Typically, only a positive signal is returned, if the
 device was unable to validate a checksum it does not return any
 information and the host will generally perform its own checksum
 computation. If a device returns a count of validations, this must
 refer to consecutive checksums that are present and validated in a
 packet (checksums cannot be skipped).

 Checksum-unnecessary is protocol specific, for instance in the case
 of UDP or TCP a device needs to consider the pseudo header in
 checksum validation. To support checksum offload of an encapsulated
 packet, a device must be able to parse the encapsulation layer in
 order to locate the inner packet.

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

Herbert Expires May 2015 [Page 5]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

2.3.3 Checksum-unnecessary conversion

 If a device returns checksum-unnecessary for a non-zero checksum, the
 checksum-complete value can easily be derived as the bitwise "not" of
 the pseudo header checksum. This is useful in the case that the
 device has verified the outermost checksum of the packet, and there
 are checksums in an encapsulated packet to be verified.

3 Remote checksum offload

 This section describes the remote checksum offload mechanism. This is
 primarily useful with UDP based encapsulation where the UDP checksum
 is enabled (not set to zero on transmit). The same technique could be
 applied to GRE encapsulation where the GRE checksum is enabled.

3.1 Meta data format

 Remote checksum offload requires the sending of meta data with an
 encapsulated packet. This data is a pair of checksum start and
 checksum offset values. More than one offloaded checksum could be
 supported if multiple pairs are sent.

 Remote checksum offload will typically be implemented as a remote
 checksum option in the encapsulation headers. Any encapsulation
 format that allows optional data for extensibility should be able to
 support remote checksum offload. The format of the remote checksum
 offload option is diagrammed below.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Checksum start | Checksum offset |
 +-+

 o Checksum start: starting offset for checksum computation
 relative to the start of the encapsulated payload. This is
 typically the offset of a transport header (e.g. UDP or TCP).

 o Checksum offset: Offset where the derived checksum value is to
 be written relative to the start of encapsulated payload. This
 typically is the offset of the checksum field in the transport
 header (e.g. UDP or TCP).

3.2 Transmitter operation

 The typical actions to set remote checksum offload on transmit are:

 1) Transport layer creates a packet and indicates in internal packet

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

Herbert Expires May 2015 [Page 6]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

 meta data that checksum is to be offloaded to the NIC (normal
 transport layer processing for checksum offload). The checksum
 field is populated with the bitwise "not" of the checksum of the
 pseudo header or zero as appropriate.

 2) Encapsulation layer adds its headers to the packet including the
 remote checksum offload option. The start offset and checksum
 offset are set accordingly.

 3) Encapsulation layer arranges for checksum offload of the outer
 header checksum (e.g. UDP). This supersedes the settings to
 offload the inner packet's transport checksum.

 4) Packet is sent to the NIC. The NIC will perform transmit checksum
 offload and set the checksum field in the outer header. The inner
 header and rest of the packet are transmitted without
 modification.

3.3 Receiver operation

 The typical actions a host receiver does to support remote checksum
 offload are:

 1) Receive packet and validate outer checksum following normal
 processing (e.g. validate non-zero UDP checksum).

 2) Deduce full checksum for the IP packet. This is directly provided
 if device returns the packet checksum in checksum-complete or
 checksum-unnecessary conversion can be done.

 3) From the packet checksum, subtract the checksum computed from the
 start of the packet (outer IP header) to the offset in the packet
 indicted by checksum start in the remote checksum offload option.
 The result is the deduced checksum to set in the checksum field of
 the encapsulated transport packet.

 4) Write the resultant checksum value into the packet at the offset
 provided by checksum offset in the remote checksum offload option.

 5) Adjust the packet checksum to account for changing the checksum
 field within the packet.

 6) Checksum is verified at the transport layer using normal
 processing. This should not require any checksum computation over
 the packet since the complete checksum has already been provided.

 Steps 3,4, and 5 in pseudo code:

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

Herbert Expires May 2015 [Page 7]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

 packet_csum: checksum computed by receiver covering the start
 of the packet (outer IP header) to the end of the packet

 start_of_packet: memory address of start of packet

 offset_encap_payload: offset of encapsulation payload relative
 to start_of_packet

 csum_start, csum_offset: values from remote checksum offload
 option

 checksum(start, len): function to compute checksum from start
 address for len bytes

 // Compute packet checksum starting from checksum start value
 // (1's complement arithmetic)
 csum -= checksum(start_of_packet,
 offset_encap_payload + csum_start)

 // Set derived checksum in the checksum field
 old = *(start_of_packet + offset_encap_payload + csum_offset)
 *(start_of_packet + offset_encap_payload + csum_offset) = csum

 // Adjust packet checksum (1's complement arithmetic)
 packet_csum += (csum - old)

3.4 Interaction with TCP segmentation offload

 Remote checksum offload may be useful with TCP Segmentation Offload
 (TSO) in order to avoid host checksum calculation at the receiver.
 This can be implemented on a transmitter as follows:

 1) Host stack prepares a large segment for transmission including
 encapsulation headers and the remote checksum option which refers
 to the encapsulated transport checksum in the large segment.

 2) TSO is performed by the device taking encapsulation into account.
 The outer checksum is computed and written for each packet. The
 inner checksum is not computed, and the encapsulation header
 (including checksum meta data) is replicated for each packet.

 3) At the receiver remote checksum offload processing occurs as
 normal for each packet.

4 Remote checksum offload for Generic UDP Encapsulation

 Remote checksum offload in Generic UDP Encapsulation [GUE] is
 supported with the addition of a remote checksum option. The GUE

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

Herbert Expires May 2015 [Page 8]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

 header format below illustrates remote checksum option as a private
 field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Source port | Destination port |
 +-+
 | Length | Checksum |
 +-+
 |0x0|C| Hlen | Proto/ctype | Flags |P|
 +-+
 | |
 ~ Fields (optional) ~
 | |
 +-+
 |R| Private flags(optional) |
 +-+
 | Checksum start | Checksum offset |
 +-+
 | |
 ~ Private fields (optional) ~
 | |
 +-+

 Pertinent fields are described below:

 o Hlen: GUE header length. The offset of the encapsulated payload
 is Hlen * 4 + 4.

 o P bit: Set to one to indicate presence of private options

 o R bit: Private flag bit that indicates presence of the remote
 checksum option. Remote checksum offload is four bytes in length

 o Checksum start: Offset of start of checksum computation for
 remote checksum offload. This is relative to the encapsulated
 payload whose offset is provided by Hlen.

 o Checksum offset: Offset to write the checksum which is computed
 by the receiver. This is relative to the encapsulated payload
 whose offset is provided by Hlen.

5 Security Considerations

 Remote checksum offload should not impact protocol security.

6 IANA Considerations

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

Herbert Expires May 2015 [Page 9]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

 There are no IANA considerations in this specification. The remote
 checksum offload meta data may require an option number or type in
 specific encapsulation formats that support it.

7 References

7.1 Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina,
 "Generic Routing Encapsulation (GRE)", RFC 2784, March
 2000.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

7.2 Informative References

 [RFC1071] Braden, R., Borman, D., and C. Partridge, "Computing the
 Internet checksum", RFC1071, September 1988.

 [RFC1624] Rijsinghani, A., Ed., "Computation of the Internet Checksum
 via Incremental Update", RFC1624, May 1994.

 [RFC1936] Touch, J. and B. Parham, "Implementing the Internet
 Checksum in Hardware", RFC1936, April 1996.

 [GUE] Generic UDP Encapsulation draft-herbert-gue-02

Authors' Addresses

 Tom Herbert
 Google
 1600 Amphitheatre Parkway
 Mountain View, CA

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01
https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1936
https://datatracker.ietf.org/doc/html/draft-herbert-gue-02

Herbert Expires May 2015 [Page 10]

INTERNET DRAFT draft-herbert-remotecsumoffload-01 November 12, 2014

 EMail: therbert@google.com

Herbert Expires May 2015 [Page 11]

https://datatracker.ietf.org/doc/html/draft-herbert-remotecsumoffload-01

