
INTERNET-DRAFT T. Herbert
Intended Status: Informational Facebook

 February 29, 2016

Remote checksum offload for encapsulation
draft-herbert-remotecsumoffload-02

Abstract

 This document describes remote checksum offload for encapsulation,
 which is a mechanism that provides checksum offload of encapsulated
 packets using rudimentary offload capabilities found in most Network
 Interface Card (NIC) devices. The outer header checksum e.g. that in
 UDP or GRE) is enabled in packets and, with some additional meta
 information, a receiver is able to deduce the checksum to be set for
 an inner encapsulated packet. Effectively this offloads the
 computation of the inner checksum. Enabling the outer checksum in
 encapsulation has the additional advantage that it covers more of the
 packet than the inner checksum including the encapsulation headers.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

Herbert Expires September 1, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 3
2 Checksum offload background 3
2.1 The Internet checksum 3
2.2 Transmit checksum offload 4
2.2.1 Generic transmit offload 4
2.2.2 Local checksum offload 4
2.2.3 Protocol specific transmit offload 5

2.3 Receive checksum offload 5
2.3.1 CHECKSUM_COMPLETE 6
2.3.2 CHECKSUM_UNNECESSARY 6

3.0 Remote checksum offload 6
3.1 Option format . 6
3.2 Transmit operation . 7
3.3 Receiver operation . 8
3.4 Interaction with TCP segmentation offload 9

4 Security Considerations . 9
5 IANA Considerations . 9
6 References . 9
6.1 Normative References 9
6.2 Informative References 10

 Authors' Addresses . 10

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Herbert Expires September 1, 2016 [Page 2]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

1 Introduction

 Checksum offload is a capability of NICs where the checksum
 calculation for a transport layer packet (TCP, UDP, etc.) is
 performed by a device on behalf of the host stack. Checksum offload
 is applicable to both transmit and receive, where on transmit the
 device writes the computed checksum into the packet, and on receive
 the device provides the computed checksum of the packet or an
 indication that specific transport checksums were validated. This
 feature saves CPU cycles in the host and has become ubiquitous in
 modern NICs.

 A host may both source transport packets and encapsulate them for
 transit over an underlying network. In this case checksum offload is
 still desirable, but now must be done on an encapsulated packet. Many
 deployed NICs are only capable of providing checksum offload for
 simple TCP or UDP packets. Such NICs typically use protocol specific
 mechanisms where they must parse headers in order to perform checksum
 calculations. Updating these NICs to perform checksum offload for
 encapsulation requires new parsing logic which is likely infeasible
 or at cost prohibitive.

 In this specification we describe an alternative that uses
 rudimentary NIC offload features to support offloading checksum
 calculation of encapsulated packets. In this design, the outer
 checksum is enabled on transmit, and meta information indicating the
 location of the checksum field being offloaded and its starting point
 for computation are sent with a packet. On receipt, after the outer
 checksum is verified, the receiver sets the offloaded checksum field
 per the computed packet checksum and the meta data.

2 Checksum offload background

 In this section we provide some background into checksum offload
 operation.

2.1 The Internet checksum

 The Internet checksum [RFC0791] is used by several Internet protocols
 including IP [RFC1122], TCP [RFC0793], UDP [RFC0768] and GRE
 [RFC2784]. Efficient checksum calculation is critical to good
 performance [RFC1071], and the mathematical properties are useful in
 incrementally updating checksums [RFC1624]. An early approach to
 implementing checksum offload in hardware is described in [RFC1936].

 TCP and UDP checksums cover a pseudo header which is composed of the
 source and destination addresses of the corresponding IP packet,
 upper layer packet length, and protocol. The checksum pseudo header

https://datatracker.ietf.org/doc/html/rfc0791
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1936

Herbert Expires September 1, 2016 [Page 3]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 is defined in [RFC0768] and [RFC0793] for IPv4, and in [RFC2460] for
 IPv6.

2.2 Transmit checksum offload

 In transmit checksum offload, a host network stack defers the
 calculation and setting of a transport checksum in the packet to the
 device. A device may provide checksum offload only for specific
 protocols, or may provide a generic interface. In either case,
 support for only one offloaded checksum per packet is typical.

 When using transmit checksum offload, a host stack must initialize
 the checksum field in the packet. This is done by setting to zero
 (GRE) or to the bitwise not of the pseudo header (UDP or TCP). The
 device proceeds by computing the packet checksum from the start of
 the transport header through to the end of the packet. The bitwise
 not of the resulting value is written in the checksum field of the
 transport packet.

2.2.1 Generic transmit offload

 A device can provide a generic interface for transmit checksum
 offload. Checksum offload is enabled by setting two fields in the
 transmit descriptor for a packet: start offset and checksum offset.
 The start offset indicates the byte in the packet where the checksum
 calculation should start. The checksum offset indicates the offset in
 the packet where the checksum value is to be written.

 The generic interface is protocol agnostic, however only supports one
 offloaded checksum per packet. While it is conceivable that a NIC
 could provide offload for more checksums by defining more than one
 checksum start/offset pair in the transmit descriptor, a more general
 and efficient solution is Local Checksum Offload.

2.2.2 Local checksum offload

 Local Checksum Offload [LCO] (or LCO) is a technique for efficiently
 computing the outer checksum of an encapsulated datagram when the
 inner checksum is due to be offloaded. The ones-complement sum of a
 correctly checksummed TCP or UDP packet is equal to the sum of the
 pseudo header, since everything else gets 'cancelled out' by the
 checksum field. This property holds since the sum was complemented
 before being written to the checksum field. More generally, this
 holds in any case where the Internet one's complement checksum is
 used, and thus any checksum that generic transmit offload supports.
 That is, if we have set up transmit checksum offload with a
 start/offset pair, we know that after the device has filled in that
 checksum the one's complement sum from checksum start to the end of

https://datatracker.ietf.org/doc/html/rfc0768
https://datatracker.ietf.org/doc/html/rfc0793
https://datatracker.ietf.org/doc/html/rfc2460

Herbert Expires September 1, 2016 [Page 4]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 the packet will be equal to whatever value is set in the checksum
 field beforehand. This property allows computing the outer checksum
 without considering at the payload per the algorithm:

 1) Compute the checksum from the outer packet's checksum start
 offset to the inner packet's checksum start offset.

 2) Add the bit-wise not of the pseudo header checksum for the
 inner packet.

 3) The result is the checksum from the outer packet's start offset
 to the end of the packet. Taking into account the pseudo header
 for the outer checksum allows the outer checksum field to be
 set without offload processing.

 Step 1) requires that some checksum calculation is performed on the
 host stack, however this is only done over some portion of packet
 headers which is typically much smaller than the payload of the
 packet.

 LCO can be used for nested encapsulations; in this case, the outer
 encapsulation layer will sum over both its own header and the
 'middle' header. Thus, if the device has the capability to offload
 an inner checksum in encapsulation, any number of outer checksums can
 be efficiently calculated using this technique.

2.2.3 Protocol specific transmit offload

 Some devices support transmit checksum offload for very specific
 protocols. For instance, many legacy devices can only perform
 checksum offload for UDP/IP and TCP/IP packets. These devices parse
 transmitted packets in order to determine the checksum start and
 checksum offset. They may also ignore the value in the checksum field
 by setting it to zero for checksum computation and computing the
 checksum of the pseudo header themselves.

 Protocol specific transmit offload is limited to the protocols a
 device supports. To support checksum offload of an encapsulated
 packet, a device must be a able to parse the encapsulation layer in
 order to locate the inner packet.

2.3 Receive checksum offload

 Upon receiving a packet, a device may perform a checksum calculation
 over the packet or part of the packet depending on the protocol. A
 result of this calculation is returned in the meta data of the
 receive descriptor for the packet. The host stack can apply the
 result in verifying checksums as it processes the packet. The intent

Herbert Expires September 1, 2016 [Page 5]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 is that the offload will obviate the need for the networking stack to
 perform its own checksum calculation over the packet.

 There are two basic methods of receive checksum offload:
 CHECKSUM_COMPLETE and CHECKSUM_UNNECESSARY.

2.3.1 CHECKSUM_COMPLETE

 A device may calculate the checksum of a whole packet (layer 2
 payload) and return the resultant value to the host stack. The host
 stack can subsequently use this value to validate checksums in the
 packet. As the packet is parsed through various layers, the
 calculated checksum is updated to correspond to each layer (subtract
 out checksum for preceding bytes for a given header).

 CHECKSUM_COMPLETE is protocol agnostic and does not require any
 protocol awareness in the device. It works for any encapsulation and
 supports an arbitrary number of checksums in the packet.

2.3.2 CHECKSUM_UNNECESSARY

 A device may explicitly validate a checksum in a packet and return a
 flag in the receive descriptor that a transport checksum has been
 verified (host performing checksum computation is unnecessary). Some
 devices may be capable of validating more than one checksum in the
 packet, in which case the device returns a count of the number
 verified. Typically, only a positive signal is returned, if the
 device was unable to validate a checksum it does not return any
 information and the host will generally perform its own checksum
 computation. If a device returns a count of validations, this must
 refer to consecutive checksums that are present and validated in a
 packet (checksums cannot be skipped).

 CHECKSUM_UNNECESSARY is protocol specific, for instance in the case
 of UDP or TCP a device needs to consider the pseudo header in
 checksum validation. To support checksum offload of an encapsulated
 packet, a device must be able to parse the encapsulation layer in
 order to locate the inner packet.

3.0 Remote checksum offload

 This section describes the remote checksum offload mechanism. This is
 primarily useful with UDP based encapsulation where the UDP checksum
 is enabled (not set to zero on transmit). The same technique could be
 applied to GRE encapsulation where the GRE checksum is enabled.

3.1 Option format

Herbert Expires September 1, 2016 [Page 6]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 Remote checksum offload requires the sending of optional data with an
 encapsulated packet. This data is a pair of checksum start and
 checksum offset values. More than one offloaded checksum could be
 supported if multiple pairs are sent.

 The logical data format for remote checksum offload is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Checksum start | Checksum offset |
 +-+

 o Checksum start: starting offset for checksum computation
 relative to the start of the encapsulated packet. This is
 typically the offset of a transport header (e.g. UDP or TCP).

 o Checksum offset: Offset relative to the start of the
 encapsulated packet where the derived checksum value is to be
 written. This typically is the offset of the checksum field in
 the transport header (e.g. UDP or TCP).

 Support for remote checksum offload with specific encapsulation
 protocols is outside the scope of this document, however any
 encapsulation format that supports some reasonable form of optional
 meta data should be amenable. In Generic UDP Encapsulation [GUE] this
 would entail defining an optional field, in Geneve [GENEVE] a TLV
 would be defined, for NSH [NSH] the meta data can either be in a
 service header or within a TLV. In any scenario, what the offsets in
 the meta data are relative to must be unambiguous.

3.2 Transmit operation

 The typical actions to set remote checksum offload on transmit are:

 1) Transport layer creates a packet and indicates in internal
 packet meta data that checksum is to be offloaded to the NIC
 (normal transport layer processing for checksum offload). The
 checksum field is populated with the bitwise not of the
 checksum of the pseudo header or zero as appropriate.

 2) Encapsulation layer adds its headers to the packet including
 the offload meta data. The start offset and checksum offset are
 set accordingly.

 3) Encapsulation layer arranges for checksum offload of the outer
 header checksum (e.g. UDP).

Herbert Expires September 1, 2016 [Page 7]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 4) Packet is sent to the NIC. The NIC will perform transmit
 checksum offload and set the checksum field in the outer
 header. The inner header and rest of the packet are transmitted
 without modification.

3.3 Receiver operation

 The typical actions a host receiver does to support remote checksum
 offload are:

 1) Receive packet and validate outer checksum following normal
 processing (e.g. validate non-zero UDP checksum).

 2) Deduce full checksum for the IP packet. This is directly
 provided if device returns the packet checksum in
 CHECKSUM_COMPLETE. If the device returned CHECKSUM_UNNECESSARY,
 then the complete checksum can be trivially derived as either
 zero (GRE) or the bitwise not of the outer pseudo header (UDP).

 3) From the packet checksum, subtract the checksum computed from
 the start of the packet (outer IP header) to the offset in the
 packet indicted by checksum start in the meta data. The result
 is the deduced checksum to set in the checksum field of the
 encapsulated transport packet.

 In pseudo code:

 csum: initialized to checksum computed from start (outer IP
 header) to the end of the packet
 start_of_packet: address of start of packet
 encap_payload_offset: relative to start_of_packet
 csum_start: value from meta data
 checksum(start, len): function to compute checksum from start
 address for len bytes

 csum -= checksum(start_of_packet, encap_payload_offset +
 csum_start)

 4) Write the resultant checksum value into the packet at the
 offset provided by checksum offset in the meta data.

 In pseudo code:

 csum_offset: offset of checksum field

 *(start_of_packet + encap_payload_offset +
 csum_offset) = csum

Herbert Expires September 1, 2016 [Page 8]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 5) Checksum is verified at the transport layer using normal
 processing. This should not require any checksum computation
 over the packet since the complete checksum has already been
 provided.

3.4 Interaction with TCP segmentation offload

 Remote checksum offload may be useful with TCP Segmentation Offload
 (TSO) in order to avoid host checksum calculations at the receiver.
 This can be implemented on a transmitter as follows:

 1) Host stack prepares a large segment for transmission including
 adding of encapsulation headers and the remote checksum option
 which refers to the encapsulated transport checksum in the
 large segment.

 2) TSO is performed by the device taking encapsulation into
 account. The outer checksum is computed and written for each
 packet. The inner checksum is not computed, and the
 encapsulation header (including checksum meta data) is
 replicated for each packet.

 3) At the receiver remote checksum offload processing occurs as
 normal for each packet.

4 Security Considerations

 Remote checksum offload should not impact protocol security.

5 IANA Considerations

 There are no IANA considerations in this specification. The remote
 checksum offload meta data may require an option number or type in
 specific encapsulation formats that support it.

6 References

6.1 Normative References

 [RFC0791] Postel, J., "Internet Protocol", STD 5, RFC 791, September
 1981.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -
 Communication Layers", STD 3, RFC 1122, October 1989.

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc1122
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793

Herbert Expires September 1, 2016 [Page 9]

INTERNET DRAFT Remote Checksum Offload February 29, 2016

 [RFC0768] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 August 1980.

 [RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P. Traina,
 "Generic Routing Encapsulation (GRE)", RFC 2784, March
 2000.

 [RFC2460] Deering, S. and R. Hinden, "Internet Protocol, Version 6
 (IPv6) Specification", RFC 2460, December 1998.

6.2 Informative References

 [RFC1071] Braden, R., Borman, D., and C. Partridge, "Computing the
 Internet checksum", RFC1071, September 1988.

 [RFC1624] Rijsinghani, A., Ed., "Computation of the Internet Checksum
 via Incremental Update", RFC1624, May 1994.

 [RFC1936] Touch, J. and B. Parham, "Implementing the Internet
 Checksum in Hardware", RFC1936, April 1996.

 [GUE] Herbert, T., Yong, L, and Zia, O., "Generic UDP
 Encapsulation". draft-ietf-nvo3-gue-02

 [GENEVE] Gross, J. and Gango, I., "Geneve: Generic Network
 Virtualization Encapsulation", draft-ietf-nvo3-geneve-01,
 January 1, 2016
 [NSH] Quinn, P. and Elzur, U., "Network Service Header", draft-

ietf-sfc-nsh-02.txt, January 19,2016

 [LOC] Cree, E. Checksum Offloads in the Linux Networking Stack,
 Linux documentation:
 Documentation/networking/checksum-offloads.txt

Authors' Addresses

 Tom Herbert
 Facebook
 1 Hacker Way
 Menlo Park, CA
 US

 EMail: tom@herbertland.com

https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc2784
https://datatracker.ietf.org/doc/html/rfc2460
https://datatracker.ietf.org/doc/html/rfc1071
https://datatracker.ietf.org/doc/html/rfc1624
https://datatracker.ietf.org/doc/html/rfc1936
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-gue-02
https://datatracker.ietf.org/doc/html/draft-ietf-nvo3-geneve-01
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sfc-nsh-02.txt

Herbert Expires September 1, 2016 [Page 10]

