
MPTCP Working Group B. Hesmans
Internet-Draft O. Bonaventure
Intended status: Informational UCLouvain
Expires: January 7, 2017 July 06, 2016

A socket API to control Multipath TCP
draft-hesmans-mptcp-socket-00

Abstract

 This document proposes an enhanced socket API to allow applications
 to control the operation of a Multipath TCP stack.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hesmans & Bonaventure Expires January 7, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MPTCP API July 2016

Table of Contents

1. Introduction . 2
2. Basic operation . 3
3. Multipath TCP Socket API 5
3.1. Subflow list . 5
3.2. Open subflow . 7
3.3. Close subflow . 8
3.4. Get subflow tuple . 9
3.5. Subflow socket option 9

4. IANA considerations . 10
5. Security considerations 11
6. Conclusion . 11
7. Acknowledgements . 11
8. References . 11
8.1. Normative References 11
8.2. Informative References 12

 Authors' Addresses . 13

1. Introduction

 Multipath TCP [RFC6824] was designed as an incrementally deployable
 [RFC6182] extension to TCP [RFC0793]. One of its design objectives
 was to remain backward compatible with the traditional socket API to
 enable applications to benefit from Multipath TCP without requiring
 any modification. This solution has been adopted by the Multipath
 TCP implementation in the Linux kernel [MultipathTCP-Linux]. In this
 implementation, once Multipath TCP has been enabled, all TCP
 applications automatically use it. It is possible to turn Multipath
 TCP off on a per socket basis, but this is rarely used. The
 Multipath TCP stack contains a module, called the path manager, that
 controls the utilisation of the different paths. Three path managers
 have been implemented :

 o the "full mesh" path manager, which is the default one, tries to
 create subflows in full mesh among all the client addresses and
 all addresses advertised by the server. All subflows are created
 by the client because the server assumes that the client is often
 behind a NAT or firewall

 o the "ndiffports" path manager was designed for single-homed hosts.
 It creates n parallel subflows between the client and the server.
 It has been defined notably for datacenters [SIGCOMM11]

 o the "user space" path manager [CONEXT15] uses Netlink to expose
 events to specific applications and enables them to control the
 operation of the underlying MPTCP stack.

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc6182
https://datatracker.ietf.org/doc/html/rfc0793

Hesmans & Bonaventure Expires January 7, 2017 [Page 2]

Internet-Draft MPTCP API July 2016

 However, discussions with users of the Multipath TCP implementation
 in the Linux kernel indicate that they would often want a finer
 control on the underlying stack and more precisely on the utilisation
 of the different subflows. Smartphone applications are a typical
 example. Measurements indicate that with the default path manager,
 there are many subflows that are created without being used [PAM2016]
 [COMMAG2016]. This increases energy consumption and could be avoided
 on Multipath-TCP aware applications.

 The Multipath TCP implementation used in Apple smartphones, tablets
 and laptops [Apple-MPTCP] took a different approach. This MPTCP
 stack is not exposed by default to the applications. To use MPTCP,
 they need to use a specific address family and special system calls
 [ANRW2016].

 Using a new address family and new system calls is a major
 modification and application developers may not agree to maintain
 different versions of their applications that run above regular TCP
 and Multipath TCP. In this document, we propose a simple but
 powerful API that relies only on socket options and the existing
 system calls to interact with the MPTCP stack. Application
 developers are already used to manipulate socket options and could
 thus easily extend their applications to better utilize the
 underlying MPTCP stack when available. This approach is similar to
 the API outlined in [RFC6897], but to our knowledge, this API has
 never been implemented. We also note that during the last decade the
 socket API exposed by SCTP evolved to use more socket options
 [RFC6458].

 This document is organised as follows. We first describe the basic
 operation of our enhanced API in section Section 2. We then show in
 section Section 3 how the "getsockopt" and "setsockopt" system calls
 can be used to control the underlying Multipath TCP stack. We focus
 on basic operations like retrieving the list of subflows that compose
 a Multipath TCP connection, establishing a new subflow or terminating
 an existing subflow in this first version of the document. We will
 address in the next revision of this document more advanced topics
 such as non-blocking I/O and the utilisation of the "recvmsg" and
 "sendmsg" system calls.

2. Basic operation

 In this section, we briefly describe the basic utilisation of the
 enhanced socket API for Multipath TCP. As an illustration, we
 consider a dual-homed smartphone having a WiFi and a cellular
 interface that interacts with a single homed server.

https://datatracker.ietf.org/doc/html/rfc6897
https://datatracker.ietf.org/doc/html/rfc6458

Hesmans & Bonaventure Expires January 7, 2017 [Page 3]

Internet-Draft MPTCP API July 2016

 We assume for simplicity in this example that the server is passive.
 It creates a listening socket and accepts incoming connections
 through the following system calls :

 o "socket()"

 o "bind()"

 o "listen()"

 Then data can be sent (resp. received) with the "send()" (resp.
 "recv()") system calls and the connection can be terminated by using
 the "close()" or "shutdown()" system calls.

 On the client side, the following system calls are used to create a
 Multipath TCP connection :

 o "socket()"

 o "connect()"

 The "connect()" system call succeeds once the initial subflow of the
 Multipath TCP connection has been established. We assume here that
 Multipath TCP has been negotiated successfully. The client can then
 send and receive data by using the "send()" and "recv()" system
 calls.

 The enhanced socket API enables the client (and also the server since
 the protocol is symmetrical, but we ignore this in this section) to
 control the utilisation of the different subflows. This control is
 performed by setting and retrieving socket options through the
 "setsockopt()" and "getsockopt()" system calls. Four main socket
 options are defined to control the subflows used by the underlying
 Multipath TCP connection :

 o "MPTCP_GET_SUB_IDS" can only be used by "getsockopt()". It is
 used to retrieve the current list of the subflows that compose the
 underlying Multipath TCP connection. In this list, each one
 identifier is associated with each subflow.

 o "MPTCP_GET_SUB_TUPLE". This socket option is equivalent to the
 "getpeername()" system call with regular TCP, but on a per subflow
 basis. When used with "getsockopt()", it allows to retrieve the
 IP addresses and ports of the two endpoints of a particular
 subflow.

 o "MPTCP_OPEN_SUB_TUPLE". This socket option is the equivalent to
 the "connect()" system call, but it operates on subflows. It

Hesmans & Bonaventure Expires January 7, 2017 [Page 4]

Internet-Draft MPTCP API July 2016

 allows to attempt to establish a new subflow by specifying its
 (remote and optionally local) endpoints.

 o "MPTCP_CLOSE_SUB_ID". This socket option allows to close a
 specific subflow.

 As an example, consider a smartphone application that creates a
 Multipath TCP connection. This connection is established by using
 the "connect()" system call. The MPTCP stack selects the outgoing
 interface based on its routing table. Let us assume that the initial
 subflow is established over the cellular interface. This is the only
 subflow used for this connection at this time. To perform a
 handover, the smartphone application would use "MPTCP_OPEN_SUB_TUPLE"
 to create a new subflow over the WiFi interface. It can then use
 "MPTCP_GET_SUB_TUPLE" to retrieve the local and remote addresses of
 this subflow. Now that the WiFi subflow is active, the application
 can use "MPTCP_CLOSE_SUB_ID" to close the cellular subflow.

3. Multipath TCP Socket API

 From an application viewpoint, the interaction with the underlying
 stack is awlays performed through a single socket. This unique
 socket is used even if a Multipath TCP stack is used and many
 subflows have been established. This single socket abstraction is
 important because the applications exchange data through a bytestream
 with both TCP and Multipath TCP. We preserve this abstraction in the
 proposed enhanced socket API but expose some details of the
 underlying MPTCP stack to the application.

 For all the socket options presented bellow, we assume that the
 underlying Multipath TCP connection is still a Multipath TCP
 connection. Otherwise (e.g. after a fallback), they return an error
 and set errno to "EOPNOTSUPP" is returned.

3.1. Subflow list

Hesmans & Bonaventure Expires January 7, 2017 [Page 5]

Internet-Draft MPTCP API July 2016

 The first important information that a stack can expose are the
 different subflows that are combined within a given Multipath TCP
 connection. For this, we need a data structure that represents the
 different subflows that compose a connection. The "mptcp_sub_ids"
 structure shown in figure Figure 1 contains an array with the status
 of the different subflows that compose a given connection. The
 actual size of the array depends on the number of subflows and is
 defined with the "sub_count" field. The "mptcp_sub_status" structure
 reflects the status of each subflow. A subflow is identified by its
 "id". In addition to the "id" of the subflow, the "mptcp_sub_status"
 structure contains one flag : the "low_prio" flag. It is set to 1
 when the subflow is defined as a back-up subflow. Other flags could
 be exposed through this structure in the future.

 struct mptcp_sub_status {
 __u8 id;
 __u16 low_prio:1;
 };

 struct mptcp_sub_ids {
 __u8 sub_count;
 struct mptcp_sub_status sub_status[];
 };

 Figure 1: The mptcp_sub_ids and mptcp_sub_status structures

 This structure is used by the "MPTCP_GET_SUB_IDS" socket option.
 More precisely, the "getsockopt", when used with the
 "MPTCP_GET_SUB_IDS" socket option can retrieve the "mptcp_sub_ids" of
 the underlying Multipath TCP connection. This call may return an
 empty array if the connection does not contain any subflow. This can
 happen with Multipath TCP when the last subflow composing the
 connection has been terminated abruptly.

 The "id" that is returned in the "mptcp_sub_ids" structure is
 important because it identifies the subflow and is used as an
 identifier by the other socket options.

 The call may return the error "EINVAL" if the buffer passed by the
 application is too small to copy the array of subflow status.

 A simple example of its utilisation is presented in figure Figure 2.

 int i;
 unsigned int optlen;
 struct mptcp_sub_ids *ids;

 optlen = 42;

Hesmans & Bonaventure Expires January 7, 2017 [Page 6]

Internet-Draft MPTCP API July 2016

 ids = malloc(optlen);

 getsockopt(sockfd, IPPROTO_TCP, MPTCP_GET_SUB_IDS, ids, &optlen);

 for(i = 0; i < ids->sub_count; i++){
 printf("Subflow id : %i\n", ids->sub_status[i].id);
 }

 Figure 2: Sample code for the utilisation of MPTCP_GET_SUB_IDS

3.2. Open subflow

 Another important part of the API is to enable an application to open
 new subflows. This is possible through the "MPTCP_OPEN_SUB_TUPLE"
 socket option. This option uses the "mptcp_sub_tuple" structure
 shown in figure Figure 3 to pass the priority, local and remote
 endpoints of the new subflow.

 struct mptcp_sub_tuple {
 __u8 id;
 __u8 prio;
 __u8 addrs[0];
 };

 Figure 3: The mptcp_sub_tuple structure

 The "id" field is an output. This is the "id" of the created
 subflow. The "prio" field indicates if the new subflow should be
 considered as back-up or not. The "addrs" must be a pair array of
 size two. The first address must be the address of the source and
 the second address must be the address of the destination. The
 actual structure passed must be either "sockaddr_in"or
 "sockaddr_in6", but the two elements of the array must be of the same
 type. The struct "sockaddr" can be used to determine which one is
 actually passed.

 The caller can also set the source address to be either "INADDR_ANY"
 for IPv4 or "in6addr_any" for IPv6. In this case, the kernel chooses
 the source address to be used for the new subflow.

 Errors returned by either "bind()" or "connect()" are returned if an
 error occurred during the process.

 An example is provided in figure Figure 4.

 unsigned int optlen;
 struct mptcp_sub_tuple *sub_tuple;
 struct sockaddr_in *addr;

Hesmans & Bonaventure Expires January 7, 2017 [Page 7]

Internet-Draft MPTCP API July 2016

 int error;

 optlen = sizeof(struct mptcp_sub_tuple) +
 2 * sizeof(struct sockaddr_in);
 sub_tuple = malloc(optlen);

 sub_tuple->id = 0;
 sub_tuple->prio = 0;

 addr = (struct sockaddr_in*) &sub_tuple->addrs[0];

 addr->sin_family = AF_INET;
 addr->sin_port = htons(12345);
 inet_pton(AF_INET, "10.0.0.1", &addr->sin_addr);

 addr++;

 addr->sin_family = AF_INET;
 addr->sin_port = htons(1234);
 inet_pton(AF_INET, "10.1.0.1", &addr->sin_addr);

 error = getsockopt(sockfd, IPPROTO_TCP, MPTCP_OPEN_SUB_TUPLE,
 sub_tuple, &optlen);

 Figure 4: Sample code to establish an additional subflow

3.3. Close subflow

 To close a subflow, the socket option "MPTCP_CLOSE_SUBFLOW" is used.
 This option used the "mptcp_close_sub_id" structure defined in figure
 Figure 5.

 struct mptcp_close_sub_id {
 __u8 id;
 int how;
 };

 Figure 5: The mptcp_close_sub_id structure

 In the above structure, "id" is the identifier of the subflow that
 needs to be closed. If the "id" is invalid, "EINVAL" is returned.

 The "how" field is used to define how to subflow should be
 terminated. It recognises the same set of constant that are used by
 "shutdown()". In addition to this set, "RST" can be used to
 indicates that the subflow should be terminated by sending an "RST".

Hesmans & Bonaventure Expires January 7, 2017 [Page 8]

Internet-Draft MPTCP API July 2016

3.4. Get subflow tuple

 An application may also be interested by the addresses and ports that
 are used by a given subflow. To retrieve this information, the
 socket option "MPTCP_GET_SUB_TUPLE" is used in combination with the
 "mptcp_sub_tuple" structure shown in figure Figure 6.

 struct mptcp_sub_tuple {
 __u8 id;
 __u8 addrs[0];
 };

 Figure 6: The mptcp_sub_tuple structure

 This is the same structure as the one used to open a subflow but in
 this context, "id" is the input and "addrs" is the output.

 A sample code is provided in figure Figure 7.

 unsigned int optlen;
 struct mptcp_sub_tuple *sub_tuple;

 optlen = 100;

 sub_tuple = malloc(optlen);

 sub_tuple->id = sub_id;
 getsockopt(sockfd, IPPROTO_TCP, MPTCP_GET_SUB_TUPLE, sub_tuple,
 &optlen);

 sin = (struct sockaddr_in*) &sub_tuple->addrs[0];

 printf("\tip src : %s src port : %hu\n", inet_ntoa(sin->sin_addr),
 ntohs(sin->sin_port));

 sin++;

 printf("\tip dst : %s dst port : %hu\n", inet_ntoa(sin->sin_addr),
 ntohs(sin->sin_port));

 Figure 7: Sample code using the MPTCP_GET_SUB_TUPLE option

3.5. Subflow socket option

 TCP/IP implementations support different socket options. Some of
 them can be applied to the TCP layer while others can be applied to
 the IP layer. To be able to issue a socket option on a specific
 subflow, we define the "MPTCP_SUB_GETSOCKOPT" and

Hesmans & Bonaventure Expires January 7, 2017 [Page 9]

Internet-Draft MPTCP API July 2016

 "MPTCP_SUB_SETSOCKOPT" options. These two socket options use
 respectively the structures presented in figure Figure 8.

 struct mptcp_sub_getsockopt {
 __u8 id;
 int level;
 int optname;
 char __user *optval;
 unsigned int __user *optlen;
 };

 struct mptcp_sub_setsockopt {
 __u8 id;
 int level;
 int optname;
 char __user *optval;
 unsigned int optlen;
 };

 Figure 8: Structures used by the ``MPTCP_SUB_GETSOCKOPT`` and
 ``MPTCP_SUB_SETSOCKOPT`` options

 In the two structures "id" indicates to which subflow the socket
 option should be redirected. The end of each structure contains the
 information needed to perform the socket option call on the subflow.

 Figure Figure 9 illustrates how the IP_TSO socket option can be
 applied on a particular subflow.

 unsigned int optlen, sub_optlen;
 struct mptcp_sub_setsockopt sub_sso;
 int val = 12;

 optlen = sizeof(struct mptcp_sub_setsockopt);
 sub_optlen = sizeof(int);
 sub_sso.id = sub_id;
 sub_sso.level = IPPROTO_IP;
 sub_sso.optname = IP_TOS;
 sub_sso.optlen = sub_optlen;
 sub_sso.optval = (char *) &val;

 setsockopt(sockfd, IPPROTO_TCP, MPTCP_SUB_SETSOCKOPT, &sub_sso,
 optlen);

 Figure 9: Example socket option

4. IANA considerations

Hesmans & Bonaventure Expires January 7, 2017 [Page 10]

Internet-Draft MPTCP API July 2016

 There are no IANA considerations in this document.

5. Security considerations

 TCP and UDP implementations usually reserve port numbers below 1024
 for privileged users. On such implementations, Multipath TCP should
 restrict the ability of the users to create subflows on privileged
 ports through the "MPTCP_OPEN_SUB_TUPLE".

 For similar reasons, the "MPTCP_SUB_SETSOCKOPT" socket option should
 not enable an unprivileged user to retrieve or modify a socket option
 on a subflow if he is not allowed to perform such actions on a
 regular TCP connection.

 Applications requiring strong security should implement cryptographic
 protocols such as TLS [RFC5246] or ssh [RFC4251]. The proposed API
 enables such application to better control their utilisation of the
 underlying interfaces by managing the different subflows.

6. Conclusion

 In this document, we have documented an enhanced socket API that
 enables applications to control the creation and the release of
 subflows by the underlying Multipath TCP stack. We expect that a
 standardised API supported by different implementations will be an
 important stop for the deployment of Multipath TCP aware applications
 on both multihomed hosts such as smartphones as well as on servers.
 This enhanced API has already been implemented on the Multipath TCP
 implementation in the Linux kernel. Future versions of this document
 will address more advanced utilisations of the socket API such as
 non-blocking I/O and the "sendmsg()" and "recvmsg()" system calls.

7. Acknowledgements

 We would like to thank Christoph Paasch, Quentin De Coninck Rao
 Shoaib for their comments on an early version of this document.

8. References

8.1. Normative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, DOI 10.17487/RFC0793, September 1981,

 <http://www.rfc-editor.org/info/rfc793>.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4251
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
http://www.rfc-editor.org/info/rfc793

Hesmans & Bonaventure Expires January 7, 2017 [Page 11]

Internet-Draft MPTCP API July 2016

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824, DOI 10.17487/RFC6824, January 2013,
 <http://www.rfc-editor.org/info/rfc6824>.

8.2. Informative References

 [ANRW2016]
 Hesmans, B. and O. Bonaventure, "An enhanced socket API
 for Multipath TCP", 2016, <https://irtf.org/anrw/2016/

anrw16-final16.pdf>.

 [Apple-MPTCP]
 Apple, Inc, ., "iOS - Multipath TCP Support in iOS 7",
 n.d., <https://support.apple.com/en-us/HT201373>.

 [COMMAG2016]
 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Observing Real Smartphone Applications over
 Multipath TCP", IEEE Communications Magazine , March 2016,
 <http://inl.info.ucl.ac.be/publications/observing-real-

smartphone-applications-over-multipath-tcp>.

 [CONEXT15]
 Hesmans, B., Detal, G., Barre, S., Bauduin, R., and O.
 Bonaventure, "SMAPP - Towards Smart Multipath TCP-enabled
 APPlications", Proc. Conext 2015, Heidelberg, Germany ,
 December 2015, <http://inl.info.ucl.ac.be/publications/

smapp-towards-smart-multipath-tcp-enabled-applications>.

 [MultipathTCP-Linux]
 Paasch, C., Barre, S., and . et al, "Multipath TCP
 implementation in the Linux kernel", n.d.,
 <http://www.multipath-tcp.org>.

 [PAM2016] De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "A First Analysis of Multipath TCP on
 Smartphones", 17th International Passive and Active
 Measurements Conference (PAM2016) , March 2016, <http://

inl.info.ucl.ac.be/publications/first-analysis-multipath-
tcp-smartphones>.

 [RFC4251] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, DOI 10.17487/RFC4251,
 January 2006, <http://www.rfc-editor.org/info/rfc4251>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

https://datatracker.ietf.org/doc/html/rfc6824
http://www.rfc-editor.org/info/rfc6824
https://irtf.org/anrw/2016/anrw16-final16.pdf
https://irtf.org/anrw/2016/anrw16-final16.pdf
https://support.apple.com/en-us/HT201373
http://inl.info.ucl.ac.be/publications/observing-real-smartphone-applications-over-multipath-tcp
http://inl.info.ucl.ac.be/publications/observing-real-smartphone-applications-over-multipath-tcp
http://inl.info.ucl.ac.be/publications/smapp-towards-smart-multipath-tcp-enabled-applications
http://inl.info.ucl.ac.be/publications/smapp-towards-smart-multipath-tcp-enabled-applications
http://www.multipath-tcp.org
http://inl.info.ucl.ac.be/publications/first-analysis-multipath-tcp-smartphones
http://inl.info.ucl.ac.be/publications/first-analysis-multipath-tcp-smartphones
http://inl.info.ucl.ac.be/publications/first-analysis-multipath-tcp-smartphones
https://datatracker.ietf.org/doc/html/rfc4251
http://www.rfc-editor.org/info/rfc4251
https://datatracker.ietf.org/doc/html/rfc5246

Hesmans & Bonaventure Expires January 7, 2017 [Page 12]

Internet-Draft MPTCP API July 2016

RFC5246, August 2008,
 <http://www.rfc-editor.org/info/rfc5246>.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182, DOI 10.17487/RFC6182, March 2011,
 <http://www.rfc-editor.org/info/rfc6182>.

 [RFC6458] Stewart, R., Tuexen, M., Poon, K., Lei, P., and V.
 Yasevich, "Sockets API Extensions for the Stream Control
 Transmission Protocol (SCTP)", RFC 6458, DOI 10.17487/

RFC6458, December 2011,
 <http://www.rfc-editor.org/info/rfc6458>.

 [RFC6897] Scharf, M. and A. Ford, "Multipath TCP (MPTCP) Application
 Interface Considerations", RFC 6897, DOI 10.17487/RFC6897,
 March 2013, <http://www.rfc-editor.org/info/rfc6897>.

 [SIGCOMM11]
 Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Improving datacenter
 performance and robustness with multipath TCP",
 Proceedings of the ACM SIGCOMM 2011 conference , 2011,
 <http://doi.acm.org/10.1145/2018436.2018467>.

Authors' Addresses

 Benjamin Hesmans
 UCLouvain

 Email: Benjamin.Hesmans@uclouvain.be

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

https://datatracker.ietf.org/doc/html/rfc5246
http://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6182
http://www.rfc-editor.org/info/rfc6182
https://datatracker.ietf.org/doc/html/rfc6458
https://datatracker.ietf.org/doc/html/rfc6458
http://www.rfc-editor.org/info/rfc6458
https://datatracker.ietf.org/doc/html/rfc6897
http://www.rfc-editor.org/info/rfc6897
http://doi.acm.org/10.1145/2018436.2018467

Hesmans & Bonaventure Expires January 7, 2017 [Page 13]

