
Network Working Group O. Levi Hevroni
Internet-Draft Soluto by Asurion
Intended status: Informational August 02, 2018
Expires: February 3, 2019

Seamless OAuth 2.0 Client Assertion Grant
draft-hevroni-oauth-seamless-flow-01

Abstract

 This specification defines the use of a One Time Password, encoded as
 JSON Web Token (JWS) Bearer Token, as a means for requesting an OAuth
 2.0 access token as well as for client authentication.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Levi Hevroni Expires February 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

Table of Contents

1. Introduction . 2
1.1. Motivation . 2
1.2. Target Audience . 3
1.3. Existing Solutions 3
1.3.1. Client Credentials grant 3
1.3.2. Device grant . 3
1.3.3. JWT Client Assertion 4

1.4. Terminology . 4
2. Note to Readers . 4
3. HTTP Parameter Bindings for Transporting Assertions 4
3.1. Using OTP JWS for client authentication 5

4. JWS format and request processing 5
4.1. One Time Password generation 5
4.2. Creating the JWS . 6
4.3. Request processing 6

5. Security Considerations 7
5.1. Replay Attacks . 7
5.2. Compromised Signing key 7
5.3. Man in the Middle . 7
5.4. Reverse Engineering 8
5.5. OTP Generation . 8
5.6. Signing Key Consideration 8
5.6.1. Generation and Storage 8
5.6.2. Algorithm . 8

6. IANA Considerations . 8
7. References . 9
7.1. Normative References 9
7.2. URIs . 10

 Author's Address . 10

1. Introduction

1.1. Motivation

 Authentication is a crucial part of modern application. There are
 various authentication methods for client side applications, and all
 those methods requires user interaction (e.g. login). This is due to
 the fact that there is no secure way to embed credentials in the
 application code.

 While asking the user to login in order to authenticate the app is a
 strong authentication solution, it has impact on the application
 behavior. A login is just another step the user has to complete in
 order to use the apps, which users don't always like to fulfill.

Levi Hevroni Expires February 3, 2019 [Page 2]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

 Also, there are cases for applications without any UI, for example -
 Internet of Things applications. For those applications, adding a
 login steps could be a challenge.

 In this document, we propose an extension to OAuth 2.0 protocol that
 provides a new authentication grant dedicated for those cases. This
 grant will allow an application to use strong authentication solution
 without user interaction.

 This document defines how a One Time Password, encoded in a JWS, can
 be used to authenticate the client. In order for the client to
 perform an authentication request, an initial registration step is
 required. This registration step is not part of this protocol, and
 should be defined by the authorization server.

1.2. Target Audience

 The protocol requires the app to be able to persist state in a
 secure, sand-boxed, persisted storage. It is possible to use this
 protocol for web application, although it is not recommended. This
 protocol is targeted for mobile or IoT devices where it is possible
 (although not always simple) to achieve such storage. See Security
 Consideration section for more details.

1.3. Existing Solutions

 There are alternatives to this protocol, this section will discuss
 them. Interactive grants (authorization code, resource owner etc)
 will not be discussed.

1.3.1. Client Credentials grant

 This grant (as defined in [RFC6749]) allows applications to
 authenticate without user interaction. It is intend to be used by
 applications running on trusted environment. Mobile applications are
 not running on trusted environment, and therefor should not use this
 grant. See the Security section for discussion on the various threat
 and how this protocol mitigate them. Also refer to section 10.1 in
 [RFC6749], which strongly advise against using this grant on native
 applications.

1.3.2. Device grant

 This grant is for Browserless and Input Constrained Devices. In this
 grant the login is performed on a different device, which could
 handle interactive login. Therefore, it still requires user
 interaction, which this protocol aims to avoid.

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749#section-10.1
https://datatracker.ietf.org/doc/html/rfc6749#section-10.1

Levi Hevroni Expires February 3, 2019 [Page 3]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

1.3.3. JWT Client Assertion

 This grant (as defined in [RFC7523]) could be used by mobile
 application for seamless authentication. The grant used signed JWT
 (see [RFC7519]) to authenticate the client. It has two disadvantages
 when compared with this grant:

 o Significant part of the security of the protocol is the expiration
 date of the JWT. In case a hacker was able to obtain a JWT, she
 will be able to perform authentication request until the JWT
 expires. Therefore, it is advised to use as shorter expiration
 time as possible. Time can be a challenge on mobile devices,
 which are not always synchronized with the global time. Usage of
 JWT would require the authorization server to allow very long JWT
 expiration time.

 o Detecting Compromised Signing Key. As discussed on the security
 section, this protocol allows the authorization server to detect
 compromised signing key. See the discussion there for reference.
 This mitigation does not exist in JWT client assertion grant.

1.4. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in [RFC2119].

 The term "device" used in this document refer to the physical
 appliance used by the user, which the application code is running on.

2. Note to Readers

 Note to the RFC Editor: Please remove this section prior to
 publication.

 Development of this draft takes place on Github at:
https://github.com/Soluto/oauth-seamless-flow [1].

3. HTTP Parameter Bindings for Transporting Assertions

 The OAuth Assertion Framework [RFC7521] defines generic HTTP
 parameters for transporting assertions (a.k.a. security tokens)
 during interactions with a token endpoint. This section defines
 specific parameters and treatments of those parameters for use with
 JWS (as defined in [RFC7515]) Bearer Tokens.

https://datatracker.ietf.org/doc/html/rfc7523
https://datatracker.ietf.org/doc/html/rfc7519
https://datatracker.ietf.org/doc/html/rfc2119
https://github.com/Soluto/oauth-seamless-flow
https://datatracker.ietf.org/doc/html/rfc7521
https://datatracker.ietf.org/doc/html/rfc7515

Levi Hevroni Expires February 3, 2019 [Page 4]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

3.1. Using OTP JWS for client authentication

 To use a OTP JWS, the client first need to generate the OTP as
 defined in section "JWS format and request processing". Than, the
 client need to use the following parameter values and encodings.

 The value of the "client_assertion_type" is
 "urn:ietf:params:oauth:client-assertion-type:JWS-otp".

 The value of the "client_assertion" parameter contains a single JWS,
 as defined in [RFC7515]. It MUST NOT contain more than one JWS.

 The following example demonstrates client authentication using a JWS
 during the presentation of an authorization code grant in an access
 token request (with extra line breaks for display purposes only):

 POST /token.oauth2 HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded

 grant_type=token id_token&&
 client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3A
 client-assertion-type%3AJWS-otp&
 client_assertion=eyJhbGciOiJSUzI1NiIsImtpZCI6IjIyIn0.
 eyJpc3Mi[...omitted for brevity...].
 cC4hiUPo[...omitted for brevity...]

4. JWS format and request processing

4.1. One Time Password generation

 To generate one time password (OTP) as defined in [RFC2289], the
 client use its state, created during the registration request, which
 is not covered in this document. The state consist from 2 numbers:
 "previous" and "next". Each of those numbers can hold signed int, up
 to 64 bytes length. In order to generate a new JWS, the client has
 to roll this payload. The rolling is done by setting the value of
 "previous" to the value of "current", and setting new crypto random,
 as defined in [RFC4086], value to "next". For example, assuming this
 is the current state of the app:

 previous: 1
 next: 2

 After rolling, this will be the payload:

 previous: 2
 next: 5

https://datatracker.ietf.org/doc/html/rfc7515
https://datatracker.ietf.org/doc/html/rfc2289
https://datatracker.ietf.org/doc/html/rfc4086

Levi Hevroni Expires February 3, 2019 [Page 5]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

4.2. Creating the JWS

 After rolling the payload, the client can create the JWS. This is
 the format of the JWS payload:

 {
 previous: 2
 next: 5
 client-id: 89
 }

 Where "client-id" is the id used when this client first registered.
 All the fields are required. Any other fields besides those will be
 ignored. To sign the JWS, the client use its own key, which was
 generated during the registration of this client.

4.3. Request processing

 In order to issue an access token response as described in OAuth 2.0
 [RFC6749], the authorization server MUST validate the JWS according
 to the criteria below. Application of additional restrictions and
 policy are at the discretion of the authorization server. After
 decoding the JWS and extracting the "client-id", the server will
 fetch:

 o The key correspond to this client, received on the registration
 request

 o The current state of this client, from the last successful
 request, or from the registration

 The server verifies that the JWS is valid, by using the client's key.
 If the signature is valid, the server can validate the payload:

 o If the client's "previous" is equals to the server "new", the
 request is valid. The server will issue a token, as specified in
 OAuth 2.0 [RFC6749]

 o If the client "previous" equals to the server "previous", and the
 client "next" equals to the server "next", the server construct an
 error response as defined in OAuth 2.0 [RFC6749]

 o Any other case will be treated by the server as an indication of a
 malicious attack, and should be reported accordingly. The server
 construct an error response as defined in OAuth 2.0 [RFC6749]

https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749
https://datatracker.ietf.org/doc/html/rfc6749

Levi Hevroni Expires February 3, 2019 [Page 6]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

5. Security Considerations

 This protocol was designed for mobile application. The following
 sections will discuss threats which are relevant for mobile
 applications and are mitigated by this protocol.

5.1. Replay Attacks

 Due to the usage of OTP, a replay attack is not feasible. If an
 attacker will try to replay authentication request, an error response
 will return. Also, because of how the OTP is generated, guessing it
 is almost impossible (see the OTP Generation section). Refer to the
 Request processing section for more details.

5.2. Compromised Signing key

 As the application is running on a mobile device, an attacker can
 gain physical access to the device. In such a scenario, the attacker
 will be able to compromise it and retrieve the state and the signing
 key. This will allows the attacker to impersonate the device and
 request an access token. The attacker will be able to authenticate
 as until the first time the device will try to authenticate. When
 the device will try to authenticate, the request will fail. It will
 fail because the state on the authorization server will match the
 attacker's state, not the one on the device.

 The device authentication request will revoke the client (see Request
 processing section). This will cause both the device and the
 attacker to not be able to perform authentication request. In such
 cases, an alternative flow is required in order to allow the device
 to authenticate. Such a flow is not part of this standard.

 In order for this mitigation to be effective, the device must to
 perform an authentication request on a regular basis. The period
 between authentication requests should be 24 hours or less, depend on
 the client.

5.3. Man in the Middle

 Performing Man in the Middle (MitM) attack on mobile application is
 relatively simple. It is highly recommended to use TLS [RFC5246] for
 all authentication requests. It is also recommended to implement
 Certificate Pinning for all the requests. For more details, please
 refer to this guide [2] by OWASP.

https://datatracker.ietf.org/doc/html/rfc5246

Levi Hevroni Expires February 3, 2019 [Page 7]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

5.4. Reverse Engineering

 The mobile application code is publicly available, which make reverse
 engineering a simple task. This attack is irrelevant to this
 protocol. No sensitive data should be embedded in the application
 code. All that is required for the authentication request should be
 generated on the device.

5.5. OTP Generation

 The security of the OTP is as strong as the randomness used to
 generate it. Only strong, secure random implementation (as described
 in [RFC4086]) should be used. Usage of weak random protocol will
 allow the attacker to guess the numbers generated by the client, and
 by that generates the OTP herself. The state ("next" and "new") is
 not considered a secret. Compromise of state only, without the
 signing key, will not allows the attacker to perform authentication
 request. It is still advised to store them securely, and follow the
 operating system recommendation (iOS [3], Android [4]).

5.6. Signing Key Consideration

5.6.1. Generation and Storage

 A fundamental part of the security of the protocol is the key used to
 sign the JWS. The key should be generated and stored in a secure
 wat, and if possible to use the tools provided by the OS. On iOS,
 use Keychain [5] to generate and store the key. On Android, the best
 option is the Keystore [6], but due to implementation limitations
 (see this post [7] for example), it is advised to use OpenSSL.

5.6.2. Algorithm

 Asymmetric encryption and signing algorithms are preferred over
 symmetric ones. The main advantages of such protocol is that the
 private key never leaves the device. Even if an attacker was able to
 capture the public key (either in transit or by compromising the
 authorization server), she will not be able to use it to perform
 authentication request. For any algorithm that is chosen, a strong
 key should be generated. In case of RSA, 2048 bytes is the minimum
 key size.

6. IANA Considerations

 TODO IANA

https://datatracker.ietf.org/doc/html/rfc4086

Levi Hevroni Expires February 3, 2019 [Page 8]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2289] Haller, N., Metz, C., Nesser, P., and M. Straw, "A One-
 Time Password System", STD 61, RFC 2289,
 DOI 10.17487/RFC2289, February 1998,
 <https://www.rfc-editor.org/info/rfc2289>.

 [RFC4086] Eastlake 3rd, D., Schiller, J., and S. Crocker,
 "Randomness Requirements for Security", BCP 106, RFC 4086,
 DOI 10.17487/RFC4086, June 2005,
 <https://www.rfc-editor.org/info/rfc4086>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC6749] Hardt, D., Ed., "The OAuth 2.0 Authorization Framework",
RFC 6749, DOI 10.17487/RFC6749, October 2012,

 <https://www.rfc-editor.org/info/rfc6749>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/info/rfc7515>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <https://www.rfc-editor.org/info/rfc7519>.

 [RFC7521] Campbell, B., Mortimore, C., Jones, M., and Y. Goland,
 "Assertion Framework for OAuth 2.0 Client Authentication
 and Authorization Grants", RFC 7521, DOI 10.17487/RFC7521,
 May 2015, <https://www.rfc-editor.org/info/rfc7521>.

 [RFC7523] Jones, M., Campbell, B., and C. Mortimore, "JSON Web Token
 (JWT) Profile for OAuth 2.0 Client Authentication and
 Authorization Grants", RFC 7523, DOI 10.17487/RFC7523, May
 2015, <https://www.rfc-editor.org/info/rfc7523>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2289
https://www.rfc-editor.org/info/rfc2289
https://datatracker.ietf.org/doc/html/bcp106
https://datatracker.ietf.org/doc/html/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/html/rfc7515
https://www.rfc-editor.org/info/rfc7515
https://datatracker.ietf.org/doc/html/rfc7519
https://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/rfc7521
https://www.rfc-editor.org/info/rfc7521
https://datatracker.ietf.org/doc/html/rfc7523
https://www.rfc-editor.org/info/rfc7523

Levi Hevroni Expires February 3, 2019 [Page 9]

Internet-Draft Seamless OAuth 2.0 Client Assertion Grant August 2018

7.2. URIs

 [1] https://github.com/Soluto/oauth-seamless-flow

 [2] https://www.owasp.org/index.php/
Certificate_and_Public_Key_Pinning

 [3] https://www.apple.com/business/docs/iOS_Security_Guide.pdf

 [4] https://developer.android.com/training/articles/security-
tips.html#UserData

 [5] https://developer.apple.com/documentation/security/
keychain_services/keychains

 [6] https://developer.android.com/training/articles/keystore.html

 [7] https://doridori.github.io/android-security-the-forgetful-
keystore/#sthash.CgPjGF4h.dpbs

Author's Address

 Omer Levi Hevroni
 Soluto by Asurion

 Email: omerlh@gmail.com

https://github.com/Soluto/oauth-seamless-flow
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://developer.android.com/training/articles/security-tips.html#UserData
https://developer.android.com/training/articles/security-tips.html#UserData
https://developer.apple.com/documentation/security/keychain_services/keychains
https://developer.apple.com/documentation/security/keychain_services/keychains
https://developer.android.com/training/articles/keystore.html
https://doridori.github.io/android-security-the-forgetful-keystore/#sthash.CgPjGF4h.dpbs
https://doridori.github.io/android-security-the-forgetful-keystore/#sthash.CgPjGF4h.dpbs

Levi Hevroni Expires February 3, 2019 [Page 10]

