
NFSv4 Working Group D. Hildebrand
Internet Draft M. Eshel
Intended status: Standards Track IBM Almaden
Expires: June 2011 December 6, 2010

Simple and Efficient Read Support for Sparse Files
draft-hildebrand-nfsv4-read-sparse-02.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on June 6, 2011.

Hildebrand, et al. Expires June 6, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Read Support for Sparse Files December 2010

Copyright Notice

 Copyright (c) 2010 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

Abstract

 This document proposes a new READPLUS operation for NFSv4.2 to
 support efficient reading of sparse files, which are growing in the
 data center due to the increasing number of virtual disk images.
 READPLUS has all the features and functionality of READ, but has an
 extensible return value that includes an easy and efficient way for
 administrators to copy and manage sparse files without wasting disk
 space or transferring data unnecessarily.

Table of Contents

1. Introduction...3
1.1. Requirements Language.....................................4

2. Terminology..4
3. Applications and Sparse Files..................................4
4. Overview of Sparse Files and NFSv4.............................5
5. Definition of READPLUS...6

5.1. ARGUMENTS...7

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Hildebrand, et al. Expires June 6, 2011 [Page 2]

Internet-Draft Read Support for Sparse Files December 2010

5.2. RESULTS...7
5.3. DESCRIPTION...8
5.4. IMPLEMENTATION..9

5.4.1. Additional pNFS Implementation Information..........10
5.5. READPLUS with Sparse Files Example.......................11

6. Related Work..12
7. Security Considerations.......................................12
8. IANA Considerations...12
9. References..12

9.1. Normative References.....................................12
9.2. Informative References...................................13

10. Acknowledgments..13

1. Introduction

 NFS is now used in many data centers as the sole or primary method of
 data access. Consequently, more types of applications are using NFS
 than ever before, each with their own requirements and generated
 workloads. As part of this, sparse files are increasing in number
 while NFS continues to lack any specific knowledge of a sparse file's
 layout. This document puts forth a proposal for the NFSv4.2 protocol
 to support efficient reading of sparse files.

 A sparse file is a common way of representing a large file without
 having to reserve disk space for it. Consequently, a sparse file
 uses less physical space than its size indicates. This means the
 file contains 'holes', byte ranges within the file that contain no
 data. Most modern file systems support sparse files, including most
 UNIX file systems and NTFS, but notably not Apple's HFS+. Common
 examples of sparse files include VM OS/disk images, database files,
 log files, and even checkpoint recovery files most commonly used by
 the HPC community.

 If an application reads a hole in a sparse file, the file system must
 returns all zeros to the application. For local data access there
 is little penalty, but with NFS these zeroes must be transferred back
 to the client. If an application uses the NFS client to read data
 into memory, this wastes time and bandwidth as the application waits
 for the zeroes to be transferred. Once the zeroes arrive, they then
 steal memory or cache space from real data. To make matters worse,
 if an application then proceeds to write data to another file system,
 the zeros are written into the file, expanding the sparse file into a
 full sized regular file. Beyond wasting disk space, this can
 actually prevent large sparse files from ever being copied to another
 storage location due to space limitations.

Hildebrand, et al. Expires June 6, 2011 [Page 3]

Internet-Draft Read Support for Sparse Files December 2010

 This document adds a new READPLUS operation to efficiently read from
 sparse files by avoiding the transfer of all zero regions from the
 server to the client. READPLUS supports all the features of READ but
 includes a minimal extension to support sparse files. In addition,
 the return value of READPLUS is now compatible with NFSv4.1 minor
 versioning rules and could support other future extensions without
 requiring yet another operation. READPLUS is guaranteed to perform
 no worse than READ, and can dramatically improve performance with
 sparse files. READPLUS does not depend on pNFS protocol features,
 but can be used by pNFS to support sparse files.

 The XDR description is provided in this document in a way that makes
 it simple for the reader to extract into a ready to compile form.
 The reader can feed this document into the following shell script to
 produce the machine readable XDR description of the metadata layout:

 #!/bin/sh
 grep "^ *///" | sed 's?^ */// ??' | sed 's?^.*///??'

 I.e. if the above script is stored in a file called "extract.sh", and
 this document is in a file called "spec.txt", then the reader can do:

 sh extract.sh < spec.txt > md.x

 The effect of the script is to remove leading white space from each
 line of the specification, plus a sentinel sequence of "///".

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC-2119 [1].

2. Terminology

 o Regular file: An object of file type NF4REG or NF4NAMEDATTR.

 o Sparse File. A Regular file that contains one or more Holes.

 o Hole. A byte range within a Sparse file that contains regions of
 all zeroes. For block-based file systems, this could also be an
 unallocated region of the file.

3. Applications and Sparse Files

 Applications may cause an NFS client to read holes in a file for
 several reasons. This section describes three different application

https://datatracker.ietf.org/doc/html/rfc2119

Hildebrand, et al. Expires June 6, 2011 [Page 4]

Internet-Draft Read Support for Sparse Files December 2010

 workloads that cause the NFS client to transfer data unnecessarily.
 These workloads are simply examples, and there are probably many more
 workloads that are negatively impacted by sparse files.

 The first workload that can cause holes to be read is sequential
 reads within a sparse file. When this happens, the NFS client may
 perform read requests ("readahead") into sections of the file not
 explicitly requested by the application. Since the NFS client cannot
 differentiate between holes and non-holes, the NFS client may
 prefetch empty sections of the file.

 This workload is exemplified by Virtual Machines and their associated
 file system images, e.g., VMware .vmdk files, which are large sparse
 files encapsulating an entire operating system. If a VM reads files
 within the file system image, this will translate to sequential NFS
 read requests into the much larger file system image file. Since NFS
 does not understand the internals of the file system image, it ends
 up performing readahead file holes.

 The second workload is generated by copying a file from a directory
 in NFS to either the same NFS server, to another file system, e.g.,
 another NFS or Samba server, to a local ext3 file system, or even a
 network socket. In this case, bandwidth and server resources are
 wasted as the entire file is transferred from the NFS server to the
 NFS client. Once a byte range of the file has been transferred to
 the client, it is up to the client application, e.g., rsync, cp, scp,
 on how it writes the data to the target location. For example, cp
 supports sparse files and will not write all zero regions, whereas
 scp does not support sparse files and will transfer every byte of the
 file.

 The third workload is generated by applications that do not utilize
 the NFS client cache, but instead use direct I/O and manage cached
 data independently, e.g., databases. These applications may perform
 whole file caching with sparse files, which would mean that even the
 holes will be transferred to the clients and cached.

4. Overview of Sparse Files and NFSv4

 This proposal seeks to provide sparse file support to the largest
 number of NFS client and server implementations, and as such proposes
 to add a new return code to the mandatory NFSv4.1 READPLUS operation
 instead of proposing additions or extensions of new or existing
 optional features (such as pNFS).

 As well, this document seeks to ensure that the proposed extensions
 are simple and do not transfer data between the client and server

Hildebrand, et al. Expires June 6, 2011 [Page 5]

Internet-Draft Read Support for Sparse Files December 2010

 unnecessarily. For example, one possible way to implement sparse file
 read support would be to have the client, on the first hole
 encountered or at OPEN time, request a Data Region Map from the
 server. A Data Region Map would specify all zero and non-zero
 regions in a file. While this option seems simple, it is less useful
 and can become inefficient and cumbersome for several reasons:

 o Data Region Maps can be large, and transferring them can reduce
 overall read performance. For example, VMware's .vmdk files can
 have a file size of over 100 GBs and have a map well over several
 MBs.

 o Data Region Maps can change frequently, and become invalidated on
 every write to the file. This can result the map being
 transferred multiple times with each update to the file. For
 example, a VM that updates a config file in its file system image
 would invalidate the Data Region Map not only for itself, but for
 all other clients accessing the same file system image.

 o Data Region Maps do not handle all zero-filled sections of the
 file, reducing the effectiveness of the solution. While it may be
 possible to modify the maps to handle zero-filled sections (at
 possibly great effort to the server), it is almost impossible with
 pNFS. With pNFS, the owner of the Data Region Map is the metadata
 server, which is not in the data path and has no knowledge of the
 contents of a data region.

 Another way to handle holes is compression, but this not ideal since
 it requires all implementations to agree on a single compression
 algorithm and requires a fair amount of computational overhead.

 Note that supporting writing to a sparse file does not require
 changes to the protocol. Applications and/or NFS implementations can
 choose to ignore WRITE requests of all zeroes to the NFS server
 without consequence.

5. Definition of READPLUS

 The section introduces a new read operation, named READPLUS, which
 allows NFS clients to avoid reading holes in a sparse file. READPLUS
 is guaranteed to perform no worse than READ, and can dramatically
 improve performance with sparse files.

 READPLUS supports all the features of the existing NFSv4.1 READ
 operation [3] and adds a simple yet significant extension to the
 format of its response. The change allows the client to avoid
 returning all zeroes from a file hole, wasting computational and

Hildebrand, et al. Expires June 6, 2011 [Page 6]

Internet-Draft Read Support for Sparse Files December 2010

 network resources and reducing performance. READPLUS uses a new
 result structure that tells the client that the result is all zeroes
 AND the byte-range of the hole in which the request was made.
 Returning the hole's byte-range, and only upon request, avoids
 transferring large Data Region Maps that may be soon invalidated and
 contain information about a file that may not even be read in its
 entirely.

 A new read operation is required due to NFSv4.1 minor versioning
 rules that do not allow modification of existing operation's
 arguments or results. READPLUS is designed in such a way to allow
 future extensions to the result structure. The same approach could
 be taken to extend the argument structure, but a good use case is
 first required to make such a change.

5.1. ARGUMENTS

 struct READPLUS4args {
 /* CURRENT_FH: file */
 stateid4 stateid;
 offset4 offset;
 count4 count;
 };

5.2. RESULTS

 union nfs_readplusreshole switch (holeres4 resop) {
 CASE HOLE_NOINFO:
 void;
 CASE HOLE_INFO:
 offset4 hole_offset;
 length4 hole_length;
 };
 union nfs_readplusresok4 switch (readplusrestype4 resop) {
 CASE READ_OK:
 opaque data<>;
 CASE READ_HOLE:
 nfs_readplusreshole reshole4;
 };

 union READPLUS4res switch (nfsstat4 status) {
 case NFS4_OK:
 bool eof;
 nfs_readresok4 resok4;
 default:

Hildebrand, et al. Expires June 6, 2011 [Page 7]

Internet-Draft Read Support for Sparse Files December 2010

 void;
 };

5.3. DESCRIPTION

 The READPLUS operation is based upon the NFSv4.1 READ operation [3],
 and similarly reads data from the regular file identified by the
 current filehandle.

 The client provides an offset of where the READPLUS is to start and a
 count of how many bytes are to be read. An offset of zero means to
 read data starting at the beginning of the file. If offset is
 greater than or equal to the size of the file, the status NFS4_OK is
 returned with nfs_readplusrestype4 set to READ_OK, data length set to
 zero, and eof set to TRUE. The READPLUS is subject to access
 permissions checking.

 If the client specifies a count value of zero, the READPLUS succeeds
 and returns zero bytes of data, again subject to access permissions
 checking. In all situations, the server may choose to return fewer
 bytes than specified by the client. The client needs to check for
 this condition and handle the condition appropriately.

 If the client specifies an offset and count value that is entirely
 contained within a hole of the file, the status NFS4_OK is returned
 with nfs_readplusresok4 set to READ_HOLE, and if information is
 available regarding the hole, a nfs_readplusreshole structure
 containing the offset and range of the entire hole. The
 nfs_readplusreshole structure is considered valid until the file is
 changed (detected via the change attribute). The server MUST provide
 the same semantics for nfs_readplusreshole as if the client read the
 region and received zeroes; the implied holes contents lifetime MUST
 be exactly the same as any other read data.

 If the client specifies an offset and count value that begins in a
 non-hole of the file but extends into hole the server should return a
 short read with status NFS4_OK, nfs_readplusresok4 set to READ_OK,
 and data length set to the number of bytes returned. The client will
 then issue another READPLUS for the remaining bytes, which the server
 will respond with information about the hole in the file.

 If the server knows that the requested byte range is into a hole of
 the file, but has no further information regarding the hole, it
 returns a nfs_readplusreshole structure with holeres4 set to
 HOLE_NOINFO.

Hildebrand, et al. Expires June 6, 2011 [Page 8]

Internet-Draft Read Support for Sparse Files December 2010

 If hole information is available on the server and can be returned to
 the client, the server returns a nfs_readplusreshole structure with
 the value of holeres4 to HOLE_INFO. The values of hole_offset and
 hole_length define the byte-range for the current hole in the file.
 These values represent the information known to the server and may
 describe a byte-range smaller than the true size of the hole.

 Except when special stateids are used, the stateid value for a
 READPLUS request represents a value returned from a previous byte-
 range lock or share reservation request or the stateid associated
 with a delegation. The stateid identifies the associated owners if
 any and is used by the server to verify that the associated locks are
 still valid (e.g., have not been revoked).

 If the read ended at the end-of-file (formally, in a correctly formed
 READPLUS operation, if offset + count is equal to the size of the
 file), or the READPLUS operation extends beyond the size of the file
 (if offset + count is greater than the size of the file), eof is
 returned as TRUE; otherwise, it is FALSE. A successful READPLUS of
 an empty file will always return eof as TRUE.

 If the current filehandle is not an ordinary file, an error will be
 returned to the client. In the case that the current filehandle
 represents an object of type NF4DIR, NFS4ERR_ISDIR is returned. If
 the current filehandle designates a symbolic link, NFS4ERR_SYMLINK is
 returned. In all other cases, NFS4ERR_WRONG_TYPE is returned.

 For a READPLUS with a stateid value of all bits equal to zero, the
 server MAY allow the READPLUS to be serviced subject to mandatory
 byte-range locks or the current share deny modes for the file. For a
 READPLUS with a stateid value of all bits equal to one, the server
 MAY allow READPLUS operations to bypass locking checks at the server.

 On success, the current filehandle retains its value.

5.4. IMPLEMENTATION

 If the server returns a "short read" (i.e., fewer data than requested
 and eof is set to FALSE), the client should send another READPLUS to
 get the remaining data. A server may return less data than requested
 under several circumstances. The file may have been truncated by
 another client or perhaps on the server itself, changing the file
 size from what the requesting client believes to be the case. This
 would reduce the actual amount of data available to the client. It
 is possible that the server reduce the transfer size and so return a
 short read result. Server resource exhaustion may also occur in a
 short read.

Hildebrand, et al. Expires June 6, 2011 [Page 9]

Internet-Draft Read Support for Sparse Files December 2010

 If mandatory byte-range locking is in effect for the file, and if the
 byte-range corresponding to the data to be read from the file is
 WRITE_LT locked by an owner not associated with the stateid, the
 server will return the NFS4ERR_LOCKED error. The client should try
 to get the appropriate READ_LT via the LOCK operation before re-
 attempting the READPLUS. When the READPLUS completes, the client
 should release the byte-range lock via LOCKU.

 If another client has an OPEN_DELEGATE_WRITE delegation for the file
 being read, the delegation must be recalled, and the operation cannot
 proceed until that delegation is returned or revoked. Except where
 this happens very quickly, one or more NFS4ERR_DELAY errors will be
 returned to requests made while the delegation remains outstanding.
 Normally, delegations will not be recalled as a result of a READPLUS
 operation since the recall will occur as a result of an earlier OPEN.
 However, since it is possible for a READPLUS to be done with a
 special stateid, the server needs to check for this case even though
 the client should have done an OPEN previously.

5.4.1. Additional pNFS Implementation Information

 With pNFS, the semantics of using READPLUS remains the same. Any
 data server MAY return a READ_HOLE result for a READPLUS request that
 it receives.

 When a data server chooses to return a READ_HOLE result, it has a
 certain level of flexibility in how it fills out the
 nfs_readplusreshole structure.

 1. For a data server that cannot determine any hole information, the
 data server SHOULD return HOLE_NOINFO.

 2. For a data server that can only obtain hole information for the
 parts of the file stored on that data server, the data server
 SHOULD return HOLE_INFO and the byte range of the hole stored on
 that data server.

 3. For a data server that can obtain hole information for the entire
 file without severe performance impact, it MAY return HOLE_INFO
 and the byte range of the entire file hole.

 In general, a data server should do its best to return as much
 information about a hole as is feasible. In general, pNFS server
 implementers should try ensure that data servers do not overload the
 metadata server with requests for information. Therefore, if
 supplying global sparse information for a file to data servers can

Hildebrand, et al. Expires June 6, 2011 [Page 10]

Internet-Draft Read Support for Sparse Files December 2010

 overwhelm a metadata server, then data servers should use option 1 or
 2 above.

 When a pNFS client receives a READ_HOLE result and a non-empty
 nfs_readplusreshole structure, it MAY use this information in
 conjunction with a valid layout for the file to determine the next
 data server for the next region of data that is not in a hole.

5.5. READPLUS with Sparse Files Example

 To see how the return value READ_HOLE will work, the following table
 describes a sparse file. For each byte range, the file contains
 either non-zero data or a hole.

 +-------------+-----------+
 | Byte-Range | Contents |
 +-------------+-----------+
 | 0-31999 | Non-Zero |
 | 32K-255999 | Hole |
 | 256K-287999 | Non-Zero |
 | 288K-353999 | Hole |
 | 354K-417999 | Non-Zero |
 +-------------+-----------+

 Under the given circumstances, if a client was to read the file from
 beginning to end with a max read size of 64K, the following will be
 the result. This assumes the client has already opened the file and
 acquired a valid stateid and just needs to issue READPLUS requests.

 1. READPLUS(s, 0, 64K) --> NFS_OK, readplusrestype4 = READ_OK, eof =
 false, data<>[32K]. Return a short read, as the last half of the
 request was all zeroes.

 2. READPLUS(s, 32K, 64K) --> NFS_OK, readplusrestype4 = READ_HOLE,
 nfs_readplusreshole(HOLE_INFO)(32K, 224K). The requested range was
 all zeros, and the current hole begins at offset 32K and is 224K
 in length.

 3. READPLUS(s, 256K, 64K) --> NFS_OK, readplusrestype4 = READ_OK, eof
 = false, data<>[32K]. Return a short read, as the last half of
 the request was all zeroes.

 4. READPLUS(s, 288K, 64K) --> NFS_OK, readplusrestype4 = READ_HOLE,
 nfs_readplusreshole(HOLE_INFO)(288K, 66K).

Hildebrand, et al. Expires June 6, 2011 [Page 11]

Internet-Draft Read Support for Sparse Files December 2010

 5. READPLUS(s, 354K, 64K) --> NFS_OK, readplusrestype4 = READ_OK, eof
 = true, data<>[64K].

6. Related Work

 Solaris and ZFS support an extension to lseek(2) that allows
 applications to discover holes in a file. The values, SEEK_HOLE and
 SEEK_DATA, allow clients to seek to the next hole or beginning of
 data, respectively.

 XFS supports the XFS_IOC_GETBMAP extended attribute, which returns
 the Data Region Map for a file. Clients can then use this information
 to avoid reading holes in a file.

 NTFS and CIFS support the FSCTL_SET_SPARSE attribute, which allows
 applications to control whether empty regions of the file are
 preallocated and filled in with zeros or simply left unallocated.

7. Security Considerations

 The additions to the NFS protocol for supporting sparse file reads
 does not alter the security considerations of the NFSv4.1 protocol
 [3].

8. IANA Considerations

 There are no IANA considerations in this document. All NFSv4.1 IANA
 considerations are covered in [3].

9. References

9.1. Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Shepler, S., Callaghan, B., Robinson, D., Thurlow, R., Beame,
 C., Eisler, M., and D. Noveck, "Network File System (NFS)
 version 4 Protocol", RFC 3530, April 2003.

 [3] Shepler, S., Eisler, M., and D. Noveck, "Network File System
 (NFS) Version 4 Minor Version 1 Protocol", RFC 5661, January
 2010.

Hildebrand, et al. Expires June 6, 2011 [Page 12]

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3530
https://datatracker.ietf.org/doc/html/rfc5661

Internet-Draft Read Support for Sparse Files December 2010

9.2. Informative References

 [4] Shepler, S., Eisler, M., and D. Noveck, "Network File System
 (NFS) Version 4 Minor Version 1 External Data Representation
 Standard (XDR) Description", RFC 5662, January 2010.

 [5] Nowicki, B., "NFS: Network File System Protocol specification",
RFC 1094, March 1989.

 [6] Callaghan, B., Pawlowski, B., and P. Staubach, "NFS Version 3
 Protocol Specification", RFC 1813, June 1995.

10. Acknowledgments

 This document was prepared using 2-Word-v2.0.template.dot. Valuable
 input and advice was received from Sorin Faibish, Bruce Fields, Benny
 Halevy, Trond Myklebust, and Richard Scheffenegger.

Hildebrand, et al. Expires June 6, 2011 [Page 13]

https://datatracker.ietf.org/doc/html/rfc5662
https://datatracker.ietf.org/doc/html/rfc1094
https://datatracker.ietf.org/doc/html/rfc1813

Internet-Draft Read Support for Sparse Files December 2010

Authors' Addresses

 Dean Hildebrand
 IBM Almaden
 650 Harry Rd
 San Jose, CA 95120

 Phone: +1 408-927-2013
 Email: dhildeb@us.ibm.com

 Marc Eshel
 IBM Almaden
 650 Harry Rd
 San Jose, CA 95120

 Phone: +1 408-927-1894
 Email: eshel@almaden.ibm.com

Hildebrand, et al. Expires June 6, 2011 [Page 14]

