
Network Working Group J. Hildebrand
Internet-Draft Cisco Systems
Intended status: Informational B. Trammell
Expires: September 4, 2015 ETH Zurich
 March 03, 2015

Substrate Protocol for User Datagrams (SPUD) Prototype
draft-hildebrand-spud-prototype-02

Abstract

 SPUD is a prototype for grouping UDP packets together in a "tube",
 also allowing network devices on the path between endpoints to
 participate explicitly in the tube outside the end-to-end context.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 4, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Hildebrand & Trammell Expires September 4, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft I-D March 2015

1. Introduction

 The goal of SPUD (Substrate Protocol for User Datagrams) is to
 provide a mechanism for grouping UDP packets together into a "tube"
 with a defined beginning and end in time. Devices on the network
 path between the endpoints speaking SPUD may communicate explicitly
 with the endpoints outside the context of the end-to-end
 conversation.

 The SPUD protocol is a prototype, intended to promote further
 discussion of potential use cases within the framework of a concrete
 approach. To move forward, ideas explored in this protocol might be
 implemented inside another protocol such as DTLS.

1.1. Terminology

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in BCP 14, RFC 2119
 [RFC2119].

2. Requirements, Assumptions and Rationale

 The prototype described in this document is designed to provide an
 encapsulation for transport protocols which allows minimal and
 selective exposure of transport semantics, and other transport- and
 higher-layer information; and explicit discovery of selected
 information about devices along the path by the transport and higher
 layers.

 The encryption of transport- and higher-layer content encapsulated
 within SPUD is not mandatory; however, the eventual intention is that
 explicit communication between endpoints and the path can largely
 replace the implicit endpoint-to-path communication presently derived
 by middleboxes through deep packet inspection (DPI).

 SPUD is not a transport protocol; rather, we envision it as the
 lowest layer of a "transport construction kit". Using SPUD as a
 common encapsulation, such that new transports have a common
 appearance to middleboxes, applications, platforms, and operating
 systems can provide a variety of transport protocols or transport
 protocol modules. This construction kit is out of scope for this
 prototype, and left to future work, though we note it could be an
 alternate implementation of an eventual TAPS interface.

 The design is based on the following requirements and assumptions:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hildebrand & Trammell Expires September 4, 2015 [Page 2]

Internet-Draft I-D March 2015

 o Transport semantics and many properties of communication that
 endpoints may want to expose to middleboxes are bound to flows or
 groups of flows. SPUD must therefore provide a basic facility for
 associating packets together (into what we call a "tube" for lack
 of a better term).

 o SPUD and transports above SPUD must be implementable without
 requiring kernel replacements or modules on the endpoints, and
 without having special privilege (root or "jailbreak") on the
 endpoints. Eventually, we envision that SPUD will be implemented
 in operating system kernels as part of the IP stack. However, we
 also assume that there will be a (very) long transition to this
 state, and SPUD must be useful and deployable during this
 transition. In addition, userspace implementations of SPUD can be
 used for rapid deployment of SPUD itself and new transport
 protocols over SPUD, e.g. in web browsers.

 o SPUD must operate in the present Internet. In order to ensure
 deployment, it must also be useful as an encapsulation between
 endpoints even before the deployment of middleboxes that
 understand it.

 o SPUD must be low-overhead, specifically requiring very little
 effort to recognize that a packet is a SPUD packet and to
 determine the tube it is associated with.

 o SPUD must impose minimal restrictions on the transport protocols
 it encapsulates. SPUD must work in multipath, multicast, and
 mobile environments.

 o SPUD must provide incentives for development and deployment by
 multiple communities. These communities and incentives will be
 defined through the prototyping process.

3. Lifetime of a tube

 A tube is a grouping of packets between two endpoints on the network.
 Tubes are started by the "initiator" expressing an interest in
 comminicating with the "responder". A tube may be closed by either
 endpoint.

 A tube may be in one of the following states:

 unknown no information is currently known about the tube. All tubes
 implicitly start in the unknown state.

 opening the initiator has requested a tube that the responder has
 not yet acknowledged.

Hildebrand & Trammell Expires September 4, 2015 [Page 3]

Internet-Draft I-D March 2015

 running the tube is set up and will allow data to flow

 resuming an out-of-sequence SPUD packet has been received for this
 tube. Policy will need to be developed describing how (or if)
 this state can be exploited for quicker tube resumption by higher-
 level protocols.

 This leads to the following state transitions (see Section 4.3 for
 details on the commands that cause transitions):

 +---------------------+ +-----+
 | | |close|
 | v | v
 | +---sopen--- +-------+ <--close----+
		unknown	
	+-----> +-------+ -ack,--+		
		\ data	
	close open		
v	\ v		
+-------+ ------data-------> +--------+			
+-----	opening)	resuming
	+-------+ <-----open-------- +--------+		
	^	/	^
			v
+-sopen-+ +-ack-> +-------+ <-ack,-+ +-data-+			
	running	open	
 +---------close------ +-------+
 ^ |
 | | open,ack,data
 +----+

 Figure 1: State transitions

 All of the state transitions happen when a command is received,
 except for the "sopen" transition which occurs when an open command
 is sent.

4. Packet layout

 SPUD packets are sent inside UDP packets, with the SPUD header
 directly after the UDP header.

Hildebrand & Trammell Expires September 4, 2015 [Page 4]

Internet-Draft I-D March 2015

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2
 +-+
 | magic = 0xd80000d8 |
 +-+
 | tube ID |
 + +
 | |
 +-+
 |cmd|a|p| resv | CBOR map... |
 +-+

 Figure 2: SPUD packets

 The fields in the packet are:

 o 32-bit constant magic number (see Section 4.1)

 o 64 bits defining the id of this tube

 o 2 bits of command (see Section 4.3)

 o 1 bit marking this packet as an application declaration (adec)

 o 1 bit marking this packet as a path declaration (pdec)

 o 4 reserved bits that MUST be set to 0 for this version of the
 protocol

 o If more bytes are present, they contain a CBOR map

4.1. Detecting usage

 The first 32 bits of every SPUD packet is the constant bit pattern
 d80000d8 (hex), or 1101 1000 0000 0000 1101 1000 (binary). This
 pattern was selected to be invalid UTF-8, UTF-16 (both big- and
 little-endian), and UTF-32 (both big- and little-endian). The intent
 is to ensure that text-based non-SPUD protocols would not use this
 pattern by mistake. A survey of other protocols will be done to see
 if this pattern occurs often in existing traffic.

 The intent of this magic number is not to provide conclusive evidence
 that SPUD is being used in this packet, but instead to allow a very
 fast (i.e., trivially implementable in hardware) way to decide that
 SPUD is not in use on packets that do not include the magic number.

Hildebrand & Trammell Expires September 4, 2015 [Page 5]

Internet-Draft I-D March 2015

4.2. TUBE ID

 The 64-bit tube ID uniquely identifies a given tube. All commands
 (see Section 4.3) are scoped to a single tube.

 [EDITOR'S NOTE: Does a Tube ID have to be bound to a single source
 address or not? This would be for mobility, not multipath.]

4.3. Commands

 The next 2 bits of a SPUD packet encode a command:

 Data (00) Normal data in a running tube

 Open (01) A request to begin a tube

 Close (10) A request to end a tube

 Ack (11) An acknowledgement to an open request

4.4. Declaration bits

 The adec bit is set when the application is making a declaration to
 the path. The pdec bit is set when the path is making a declaration
 to the application.

4.5. Reserved bits

 The final required four bits of SPUD packet MUST all be set to zero
 in this version of the protocol. These bits could be used for
 extensions in future versions.

4.6. Additional information

 The information after the SPUD header (if it exists) is a CBOR
 [RFC7049] map (major type 5). Each key in the map may be an integer
 (major type 0 or 1) or a text string (major type 3). Integer keys
 are reserved for standardized protocols, with a registry defining
 their meaning. This convention can save several bytes per packet,
 since small integers only take a single byte in the CBOR encoding,
 and a single-character string takes at least two bytes (more when
 useful-length strings are used).

 The only integer keys reserved by this version of the document are:

 0 (anything) Application Data. Any CBOR data type, used as
 application-specific data. Often this will be a byte string
 (major type 2), particularly for protocols that encrypt data.

https://datatracker.ietf.org/doc/html/rfc7049

Hildebrand & Trammell Expires September 4, 2015 [Page 6]

Internet-Draft I-D March 2015

 The 0 key MUST NOT be used when the adec or pdec bit is set. Path
 elements MUST NOT inspect or modify the contents of the 0 key.

 The overhead for always using CBOR is therefore effectively three or
 more bytes: 0xA1 (map with one element), 0x00 (integer 0 as the key),
 and 0x41 (byte string containing one byte). [EDITOR'S NOTE: It may
 be that the simplicity and extensibility of this approach is worth
 the three bytes of overhead.]

5. Initiating a tube

 To begin a tube, the initiator sends a SPUD packet with the "open"
 command (bits 01).

 Future versions of this specification may contain CBOR in the open
 packet. One example might be requesting proof of implementation from
 the receiving endpoint,

6. Acknowledging tube creation

 To acknowledge the creation of a tube, the responder sends a SPUD
 packet with the "ack" command (bits 11). The current thought is that
 the security provided by the TCP three-way handshake would be left to
 transport protocols inside of SPUD. Further exploration of this
 prototype will help decide how much of this handshake needs to be
 made visible to path elements that _only_ process SPUD.

 Future versions of this specification may contain CBOR in the ack
 packet. One example might be answering an implementation proof
 request from the initiator.

7. Closing a tube

 To close a tube, either side sends a packet with the "close" command
 (bits 10). Whenever a path element sees a close packet for a tube,
 it MAY drop all stored state for that tube. Further exploration of
 this prototype will determine when close packets are sent, what CBOR
 they contain, and how they interact with transport protocols inside
 of SPUD.

 What is likely at this time is that SPUD close packets MAY contain
 error information in the following CBOR keys (and associated values):

 "error" (map, major type 5) a map from text string (major type 3) to
 text string. The keys are [RFC5646] language tags, and the values
 are strings that can be presented to a user that understands that
 language. The key "*" can be used as the default.

https://datatracker.ietf.org/doc/html/rfc5646

Hildebrand & Trammell Expires September 4, 2015 [Page 7]

Internet-Draft I-D March 2015

 "url" (text string, major type 3) a URL identifying some information
 about the path or its relationship with the tube. The URL
 represents some path condition, and retrieval of content at the
 URL should include a human-readable description.

8. Path declarations

 SPUD can be used for path declarations: information delivered to the
 endpoints from devices along the path. Path declarations can be
 thought of as enhanced ICMP for transports using SPUD, allowing
 information about the condition or state of the path or the tube to
 be communicated directly to a sender.

 Path declarations may be sent in either direction (toward the
 initiator or responder) at any time. The scope of a path declaration
 is the tube (identified by tube ID) to which it is associated.
 Devices along the path cannot make declarations to endpoints without
 a tube to associate them with. Path declarations are sent to one
 endpoint in a SPUD conversation by the path device sending SPUD
 packets with the source IP address and UDP port from the other
 endpoint in the conversation. These "spoofed" packets are required
 to allow existing network elements that pass traffic for a given
 5-tuple to continue to work. To ensure that the context for these
 declarations is correct, path declaration packets MUST have the pdec
 bit set. Path declarations MUST use the "data" command (bits 00).

 Path declarations do not imply specific required actions on the part
 of receivers. Any path declaration MAY be ignored by a receiving
 application. When using a path declaration as input to an algorithm,
 the application will make decisions about the trustworthiness of the
 declaration before using the data in the declaration.

 The data associated with a path declaration may always have the
 following keys (and associated values), regardless of what other
 information is included:

 "ipaddr" (byte string, major type 2) the IPv4 address or IPv6
 address of the sender, as a string of 4 or 16 bytes in network
 order. This is necessary as the source IP address of the packet
 is spoofed

 "cookie" (byte string, major type 2) data that identifies the
 sending path element unambiguously

 "url" (text string, major type 3) a URL identifying some information
 about the path or its relationship with the tube. The URL
 represents some path condition, and retrieval of content at the
 URL should include a human-readable description.

Hildebrand & Trammell Expires September 4, 2015 [Page 8]

Internet-Draft I-D March 2015

 "warning" (map, major type 5) a map from text string (major type 3)
 to text string. The keys are [RFC5646] language tags, and the
 values are strings that can be presented to a user that
 understands that language. The key "*" can be used as the
 default.

 The SPUD mechanism is defined to be completely extensible in terms of
 the types of path declarations that can be made. However, in order
 for this mechanism to be of use, endpoints and devices along the path
 must share a relatively limited vocabulary of path declarations. The
 following subsections briefly explore declarations we believe may be
 useful, and which will be further developed on the background of
 concrete use cases to be defined as part of the SPUD effort.

 Terms in this vocabulary considered universally useful may be added
 to the SPUD path declaration map keys, which in this case would then
 be defined as an IANA registry.

8.1. ICMP

 ICMP [RFC4443] (e.g.) messages are sometimes blocked by path elements
 attempting to provide security. Even when they are delivered to the
 host, many ICMP messages are not made available to applications
 through portable socket interfaces. As such, a path element might
 decide to copy the ICMP message into a path declaration, using the
 following key/value pairs:

 "icmp" (byte string, major type 2) the full ICMP payload. This is
 intended to allow ICMP messages (which may be blocked by the path,
 or not made available to the receiving application) to be bound to
 a tube. Note that sending a path declaration ICMP message is not
 a substitute for sending a required ICMP or ICMPv6 message.

 "icmp-type" (unsigned, major type 0) the ICMP type

 "icmp-code" (unsigned, major type 0) the ICMP code

 Other information from particular ICMP codes may be parsed out into
 key/value pairs.

8.2. Address translation

 SPUD-aware path elements that perform Network Address Translation
 MUST send a path declaration describing the translation that was
 done, using the following key/value pairs:

https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc4443

Hildebrand & Trammell Expires September 4, 2015 [Page 9]

Internet-Draft I-D March 2015

 "translated-external-address" (byte string, major type 2) The
 translated external IPv4 address or IPv6 address for this
 endpoint, as a string of 4 or 16 bytes in network order

 "translated-external-port" (unsigned, major type 0) The translated
 external UDP port number for this endpoint

 "internal-address" (byte string, major type 2) The pre-translation
 (internal) IPv4 address or IPv6 address for this endpoint, as a
 string of 4 or 16 bytes in network order

 "internal-port" (unsigned, major type 0) The pre-translation
 (internal) UDP port number for this endpoint

 The internal addresses are useful when multiple address translations
 take place on the same path.

8.3. Tube lifetime

 SPUD-aware path elements that are maintaining state MAY drop state
 using inactivity timers, however if they use a timer they MUST send a
 path declaration in both directions with the length of that timer,
 using the following key/value pairs:

 "inactivity-timer" (unsigned, major type 0) The length of the
 inactivity timer (in microseconds). A value of 0 means no timeout
 is being enforced by this path element, which might be useful if
 the timeout changes over the lifetime of a tube.

8.4. Path element identity

 Path elements can describe themselves using the following key/value
 pairs:

 "description" (text string, major type 3) the name of the software,
 hardware, product, etc. that generated the declaration

 "version" (text string, major type 3) the version of the software,
 hardware, product, etc. that generated the declaration

 "caps" (byte string, major type 2) a hash of the capabilities of the
 software, hardware, product, etc. that generated the declaration
 [TO BE DESCRIBED]

 "ttl" (unisigned integer, major type 0) IP time to live / IPv6 Hop
 Limit of associated device [EDITOR'S NOTE: more detail is required
 on how this is calculated]

Hildebrand & Trammell Expires September 4, 2015 [Page 10]

Internet-Draft I-D March 2015

8.5. Maximum Datagram Size

 A path element may tell the endpoint the maximum size of a datagram
 it is willing or able to forward for a tube, to augment various path
 MTU discovery mechanisms. This declaration uses the following key/
 value pairs:

 "mtu" (unsigned, major type 0) the maximum transmission unit (in
 bytes)

8.6. Rate Limit

 A path element may tell the endpoint the maximum data rate (in octets
 or packets) that it is willing or able to forward for a tube. As all
 path declarations are advisory, the device along the path must not
 rely on the endpoint to set its sending rate at or below the declared
 rate limit, and reduction of rate is not a guarantee to the endpoint
 of zero queueing delay. This mechanism is intended for "gross" rate
 limitation, i.e. to declare that the output interface is connected to
 a limited or congested link, not as a substitute for loss-based or
 explicit congestion notification on the RTT timescale. This
 declaration uses the following key/value pairs:

 "max-byte-rate" (unsigned, major type 0) the maximum bandwidth (in
 bytes per second)

 "max-packet-rate" (unsigned, major type 0) the maximum bandwidth (in
 packets per second)

8.7. Latency Advisory

 A path element may tell the endpoint the latency attributable to
 traversing that path element. This mechanism is intended for "gross"
 latency advisories, for instance to declare the output interface is
 connected to a satellite or [RFC1149] link. This declaration uses
 the following key/value pairs:

 "latency" (unsigned, major type 0) the latency (in microseconds)

8.8. Prohibition Report

 A path element which refuses to forward a packet may declare why the
 packet was not forwarded, similar to the various Destination
 Unreachable codes of ICMP.

 [EDITOR'S NOTE: Further thought will be given to how these reports
 interact with the ICMP support from Section 8.1.]

https://datatracker.ietf.org/doc/html/rfc1149

Hildebrand & Trammell Expires September 4, 2015 [Page 11]

Internet-Draft I-D March 2015

9. Declaration reflection

 In some cases, a device along the path may wish to send a path
 declaration but may not be able to send packets ont he reverse path.
 It may ask the endpoint in the forward direction to reflect a SPUD
 packet back along the reverse path in this case.

 [EDITOR'S NOTE: Bob Briscoe raised this issue during the SEMI
 workshop, which has largely to do with tunnels. It is not clear to
 the authors yet how a point along the path would know that it must
 reflect a declaration, but this approach is included for
 completeness.]

 A reflected declaration is a SPUD packet with both the pdec and adec
 flags set, and contains the same content as a path declaration would.
 However the packet has the same source address and port and
 destination address and port as the SPUD packet which triggered it.

 When a SPUD endpoint receives a declaration reflection, it SHOULD
 reflect it: swapping the source and destination addresses IP
 addresses and ports. The reflecting endpoint MUST unset the adec
 bit, sending the packet it as if it were a path declaration.

 [EDITOR's NOTE: this facility will need careful security analysis
 before it makes it into any final specification.]

10. Application declarations

 Applications may also use the SPUD mechanism to describe the traffic
 in the tube to the application on the other side, and/or to any point
 along the path. As with path declarations, the scope of an
 application declaration is the tube (identified by tube ID) to which
 it is associated.

 An application declaration is a SPUD packet with the adec flag set,
 and contains an application declaration formatted in CBOR in its
 payload. As with path declarations, an application declaration is a
 CBOR map, which may always have the following keys:

 o cookie (byte string, major type 2): an identifier for this
 application declaration, used to address a particular path element

 Unless the cookie matches one sent by the path element for this tube,
 every device along the path MUST forward application declarations on
 towards the destination endpoint.

Hildebrand & Trammell Expires September 4, 2015 [Page 12]

Internet-Draft I-D March 2015

 The definition of an application declaration vocabulary is left as
 future work; we note only at this point that the mechanism supports
 such declarations.

11. CBOR Profile

 Moving forward, we will likely specify a subset of CBOR that can be
 used in SPUD, including the avoidance of floating point numbers,
 indefinite-length arrays, and indefinite-length maps. This will
 allow a significantly less complicated CBOR implementation to be
 used, which would be particularly nice on constrained devices.

12. Security Considerations

 This gives endpoints the ability to expose information about
 conversations to elements on path. As such, there are going to be
 very strict security requirements about what can be exposed, how it
 can be exposed, etc. This prototype DOES NOT tackle these issues
 yet.

 The goal is to ensure that this layer is better than TCP from a
 security perspective. The prototype is clearly not yet to that
 point.

13. IANA Considerations

 If this protocol progresses beyond prototype in some way, a registry
 will be needed for well-known CBOR map keys.

14. Acknowledgements

 Thanks to Ted Hardie for suggesting the change from "Session" to
 "Substrate" in the title, and to Joel Halpern for suggesting the
 change from "session" to "tube" in the protocol description.

15. References

15.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3168] Ramakrishnan, K., Floyd, S., and D. Black, "The Addition
 of Explicit Congestion Notification (ECN) to IP", RFC

3168, September 2001.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3168
https://datatracker.ietf.org/doc/html/rfc3168

Hildebrand & Trammell Expires September 4, 2015 [Page 13]

Internet-Draft I-D March 2015

 [RFC4443] Conta, A., Deering, S., and M. Gupta, "Internet Control
 Message Protocol (ICMPv6) for the Internet Protocol
 Version 6 (IPv6) Specification", RFC 4443, March 2006.

 [RFC5646] Phillips, A. and M. Davis, "Tags for Identifying
 Languages", BCP 47, RFC 5646, September 2009.

 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", RFC 7049, October 2013.

15.2. Informative References

 [RFC1149] Waitzman, D., "Standard for the transmission of IP
 datagrams on avian carriers", RFC 1149, April 1990.

Authors' Addresses

 Joe Hildebrand
 Cisco Systems

 Email: jhildebr@cisco.com

 Brian Trammell
 ETH Zurich

 Email: ietf@trammell.ch

https://datatracker.ietf.org/doc/html/rfc4443
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc5646
https://datatracker.ietf.org/doc/html/rfc7049
https://datatracker.ietf.org/doc/html/rfc1149

Hildebrand & Trammell Expires September 4, 2015 [Page 14]

