
Session Initiation Proposal V. Hilt
Investigation Working Group Bell Labs/Lucent Technologies
Internet-Draft J. Rosenberg
Expires: March 29, 2004 dynamicsoft
 September 29, 2003

Supporting Intermediary Session Policies in SIP
draft-hilt-sipping-session-policy-00

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on March 29, 2004.

Copyright Notice

 Copyright (C) The Internet Society (2003). All Rights Reserved.

Abstract

 Proxy servers play a central role as an intermediary in the
 establishment of sessions in the Session Initiation Protocol (SIP).
 In that role, they define and impact policies on call routing,
 rendezvous, and other call features. However, there is no standard
 means by which network elements can have any influence on session
 policies, such as the codecs that are to be used. As such, ad-hoc and
 non-conformant techniques have been deployed to allow for such
 session policy mechanisms. In this document, we discuss a complete
 and standards-based mechanism for session policies.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Hilt & Rosenberg Expires March 29, 2004 [Page 1]

Internet-Draft SIP Session Policies September 2003

Table of Contents

1. Introduction . 3
2. Framework for Dynamic Policies 5
2.1 Request/Response/ACK-based Framework 6
2.1.1 Constructing the INVITE/UPDATE Request 6
2.1.2 Proxy Processing of Requests 6
2.1.3 Processing Requests and Generating Responses 8
2.1.4 Proxy Processing of Responses 9
2.1.5 Processing Responses and Generating ACKs 10
2.1.6 Processing ACKs . 10
2.1.7 Applying Dynamic Policies 10
2.2 Response/ACK-based Framework 11
2.2.1 Creating the INVITE Response 11
2.2.2 Proxy Processing Responses 12
2.2.3 Processing Responses and Generating ACKs 12
2.2.4 Proxy Processing of ACKs/PRACKs 12
2.2.5 Processing ACKs/PRACKs 12
2.3 "Media-Interface" header usage 12
2.4 "Media-Filter" header usage 13
2.5 "Reverse-Media-Filter" header usage 14
3. Dynamic Policy Packages 15
3.1 Media Interface Object 15
3.2 Media Filter Object . 15
4. Framework for Static Policies 16
4.1 Static Policies using REGISTER 17
4.1.1 Generating the REGISTER Request 17
4.1.2 Proxy Processing of Requests 18
4.1.3 Processing Requests . 19
4.1.4 Applying Static Policies 19
4.2 Static Policies using the Config Framework and XCAP 20
4.2.1 Discovering Policy Servers 21
4.2.2 Subscribing to Static Policies 21
4.2.3 Creating Notifications and Policy Objects 22
4.2.4 Retrieving and Applying Static Policies 23
5. Example Policy Package: Network-based Codec Selection . . . 24
5.1 Dynamic Codec Selection 24
5.1.1 Media Interface Object 24
5.1.2 Media Filter Object . 25
5.2 Static Codec Selection 26
6. Security Considerations 27
7. IANA Considerations . 28
8. Syntax . 29
8.1 Header Fields . 29

 References . 30
 Authors' Addresses . 31
 Intellectual Property and Copyright Statements 32

Hilt & Rosenberg Expires March 29, 2004 [Page 2]

Internet-Draft SIP Session Policies September 2003

1. Introduction

 The Session Initiation Protocol (SIP) [9] was designed to support
 establishment and maintenance of end-to-end sessions. Proxy servers
 provide call routing, authentication and authorization, mobility, and
 other signaling services that are independent of the session.
 Effectively, proxies provide signaling policy enforcement. However,
 numerous scenarios have arisen which require the involvement of
 proxies in some aspect of the session policy. One scenario is in the
 traversal of a firewall or NAT. The midcom group has defined a
 framework for control of firewalls and NATs (generically,
 middleboxes) [10]. In this model, a midcom agent, typically a proxy
 server, interacts with the middlebox to open and close media
 pinholes, obtain NAT bindings, and so on. In this role as a midcom
 agent, the proxy will need to examine and possibly modify the session
 description in the body of the SIP message. This modification is to
 achieve a specific policy objective: to force the media to route
 through an intermediary.

 In another application, SIP is used in a wireless network. The
 network provider has limited resources for media traffic. During
 periods of high activity, the provider would like to restrict codec
 usage on the network to lower rate codecs. In existing approaches,
 this is frequently accomplished by having the proxies examine the SDP
 [1] in the body and remove the higher rate codecs or reject the call
 and require the UA to start over with a different set of codecs.

 In yet a third application, SIP is used in a network that has
 gateways which support a single codec type (say, G.729). When
 communicating with a partner network that uses gateways with a
 different codec (say, G.723), the network modifies the SDP to route
 the session through a converter that changes the G.729 to G.723.

 The desire to impact aspects of the session inevitably occurs in
 domains where the administrator of the SIP domain is also the owner
 and administrator of an IP network over which it is known that the
 sessions will traverse. This includes enterprises, Internet access
 providers, and in some cases, backbone providers. Typical session
 policies established in such domains influence NAT/firewall traversal
 or control bandwidth usage by selecting low-rate codecs. The desire
 to impact aspects of sessions may also occur in domains where
 services are provided that require the inclusion of a media
 intermediary such as transcoding or call recording.

 Since SIP is the protocol by which the details of these sessions are
 negotiated, it is natural for providers to wish to impose their
 session policies through some kind of SIP means. To date, this has
 been accomplished through SDP editing, a process where proxies dig

Hilt & Rosenberg Expires March 29, 2004 [Page 3]

Internet-Draft SIP Session Policies September 2003

 into the bodies of SIP messages, and modify them in order to impose
 their policies. However, this SIP editing technique has many
 drawbacks. A discussion of these drawbacks can be found in [7].

 Our solution is to introduce a framework that allows intermediary
 elements to request media-level policy operations from user agents.
 This framework satisfies the requirements listed in [7]. Section 2
 introduces a framework for requesting dynamic policies during the
 establishment or modification of a session. Section 3 discusses the
 creation of policy packages for this framework. Section 4 introduces
 two alternative frameworks for static policies. Section 5 gives an
 example for the use of the dynamic and static framework to select
 codecs. Section 6 discusses Security and Section 7 IANA
 considerations. Section 8 describes the syntax of SIP extensions
 defined in this document.

Hilt & Rosenberg Expires March 29, 2004 [Page 4]

Internet-Draft SIP Session Policies September 2003

2. Framework for Dynamic Policies

 This framework for dynamic policies enables proxy servers to request
 session policies from UAs. A session policy may impact aspects of a
 session description, it may request a UA to perform steps that are
 outside of the SIP protocol (e.g. contact a NAT/firewall) or expose
 information about the session that is being set up or modified to a
 proxy. The syntax and semantics of a specific session policy is not
 part of this framework and needs to be defined in a separate session
 policy package. An example for a policy package for codec selection
 is given in Section 5.

 Dynamic session policies may change from call to call. They need to
 be set up during the establishment or modification of a session. This
 requires two basic steps: first, UAs need to be able to expose
 aspects of a session description to proxies and, second, proxies need
 to be able to request session policies which may be based on the
 information exposed. In this framework, UAs create Media Interface
 Objects (MIOs), which describe an aspect of the session being set up
 or modified. For example, a UA might create an MIO for each of the IP
 addresses and ports of each media stream, and an MIO for the set of
 codecs in each stream. Proxies can request policies via Media Filter
 Objects (MFOs). An MFO describes a set of rules, the UA is requested
 to execute on a certain media aspect. Each proxy can create MFOs
 independently. MIOs and MFOs are only useful in conjunction with a
 session description and must travel in the same SIP message (e.g. in
 a INVITE request and a 200 OK response).

 Session policies can be set up separately for media streams in each
 direction. The general scheme for requesting policies for media
 streams in a direction is as follows:

 1. The receiver of a media stream creates MIOs (describing relevant
 media stream aspects) and inserts them into the SIP message, that
 also carries the corresponding session description.

 2. Proxies inspect those MIOs insert MFOs (containing the policy)
 into the SIP message.

 3. Once the message receives the sender of the media stream, it
 analyzes the session description and the MFOs and decides whether
 it wants to accept or reject the the requested policies. It
 applies the accepted policies.

 4. The accepted policies are conveyed back to the receiver of a
 media stream.

 The format of MIOs and MFOs is policy specific and needs to be

Hilt & Rosenberg Expires March 29, 2004 [Page 5]

Internet-Draft SIP Session Policies September 2003

 defined in a policy package (see Section 3).

2.1 Request/Response/ACK-based Framework

 Proxies can request policies in INVITE and UPDATE [4] transactions,
 in which the session description offer is carried in the request and
 an answer is carried in the response. The basic message flow is
 depicted in Figure 1.

 +-----+ +-------+ +-----+
	INVITE/offer		INVITE/offer	
	+ MIO1		+ MIO1 + MFO1	
	--------------------->		------------------>	
	OK/answer		OK/answer	
UAC	+ MIO2 + MFO2 + MFO1	proxy	+ MIO2 + MFO1	UAS
	<---------------------		<------------------	
	ACK + MFO2		ACK + MFO2	
	--------------------->		------------------>	
 +-----+ +-------+ +-----+

 Figure 1

2.1.1 Constructing the INVITE/UPDATE Request

 The UAC composes an INVITE or UPDATE request as usual. In addition to
 the session description, it creates MIOs for those aspects of the
 session, it wishes to permit the network to examine. For example, if
 the UAC wants to allow the network to examine the media codecs, it
 would insert MIOs representing these codecs. The UAC SHOULD expose as
 much information as possible in MIOs.

 Since the MIOs are meant to be inspected by proxies, and since they
 are provided to enable a SIP feature (proxy insertion of session
 policy), the MIOs are carried as SIP headers (see Section 2.3).

 A UAC that supports this framework MUST insert a SIP Supported header
 with the option tag "policy".

2.1.2 Proxy Processing of Requests

 As the request traverses proxies, the proxies can insert Media Filter
 Objects (MFOs). MFOs contain the policies, the proxy wants to

Hilt & Rosenberg Expires March 29, 2004 [Page 6]

Internet-Draft SIP Session Policies September 2003

 request. A proxy can generate MFOs in response to information
 contained in a specific MIO in the request. These MFOs represent
 "diffs" that the proxy wants to apply to the MIO. For example, if an
 MIO contains an IP address and port for receiving an audio stream, a
 proxy can insert an MFO which changes that address and port to that
 of a media intermediary. A proxy may inspect MFOs that have been
 inserted by previous proxies to determine, which policies are already
 requested. However, MFOs created by a proxy MUST represent the
 differences to the original MIO and MUST NOT depend on MFOs inserted
 by previous proxies. A proxy can also generate MFOs independent of
 the MIOs contained in the request. Such an MFO describes a general
 policy applicable to the current session. For example, an MFO could
 contain a list of audio codecs that are allowed in the current
 session.

 The proxy does not modify the MIO - that is fundamental. By
 specifying the requested modifications in MFOs rather than directly
 modifying MIOs and the session description, we enable an explicit
 consent and knowledge model. The UAs can know exactly, which policies
 where requested against the session.

 The session description contained in an INVITE/UPDATE request
 describes media streams transmitted from UAS to UAC. Consequently,
 MFOs inserted into an INVITE/UPDATE request MUST contain policies for
 media streams transmitted in this direction.

 A proxy MAY only insert MFOs (or other policy related headers) into
 the INVITE/UPDATE request, if the UAC has indicated its support for
 policies by including a Supported header with the value "policy" into
 the request. If no such Supported header was present and the proxy
 insists on the use of policies, it MAY return a 421 (Extension
 Required) response. However, this behavior is NOT RECOMMENDED as it
 generally breaks interoperability.

 A proxy MAY insert a Require header with the option tag "policy" if
 it wants to make sure that the request fails in case the UAS does not
 support session policies. A proxy MUST insert a policy Require header
 if it has marked some policies as required in the MFO (see Section

2.4) and wants the request to fail if these policies are not accepted
 by the UA. However, not all session policies will be mandatory.
 Policies could be optional, in which case none of the inserted MFOs
 would contain a required policy and a policy Require header would not
 be inserted.

 If an MIO contained in the request is not acceptable to the proxy, it
 MAY insert an MFO indicating the failure or it MAY reject the request
 by returning a 488 (Not Acceptable Here) response. This enables a
 proxy to inform the UAC that the information in the MIO is not

Hilt & Rosenberg Expires March 29, 2004 [Page 7]

Internet-Draft SIP Session Policies September 2003

 acceptable under the current policies or that information required by
 the current policy was not exposed in an MIO. For example, a proxy,
 which wants to route a media stream through a firewall, would not
 accept MIOs containing no information about the transport address.
 The failure MFO SHOULD explain the reason, why the MIO was not
 acceptable. Similarly, the 488 response SHOULD include a Warning
 header field value explaining why the request was rejected. The proxy
 SHOULD copy the MFOs that caused the problems from the request into
 the 488 response. This allows the UAC to know exactly why the request
 has failed and if it can attempt to retry with different MIOs.

 [TBD: define warning codes and texts.]

 To achieve backwards compatibility with devices that do not support
 policies, the proxy MUST NOT return a 488 response to requests that
 do not include a Supported header with the value "policy". A proxy
 may only reject requests if the UAC has indicated its support for
 policies and knows how to correct the problem and re-try the request.
 Rejecting a request is a quick way for the proxy to inform a
 policy-enabled UAC about policy related problems. It prevents that
 the request is forwarded to the UAS, which would reject it because of
 an included failure MFO. Returning a 488 response MUST NOT be used to
 enforce a policy. Such an enforcement would not be effective since it
 can be circumvented by a UAC, for example by creating fake MIOs.
 Using a failure MFO instead of a 488 response to signal a problem has
 the advantage that both endpoints become aware of the INVITE/UPDATE
 request and the reason why it failed.

 In addition to adding an MFO, a proxy MAY generate an MFO-Reason
 header. This header contains the domain name of the proxy and
 explains the reasoning behind the session policy. The end device may
 present this text string to a human when querying whether the
 requested policies should be accepted or not.

 [TBD: define the format to this header.]

 A proxy that supports forking of requests, MAY generate a different
 set of MFOs for each target the request is sent to.

2.1.3 Processing Requests and Generating Responses

 When the INVITE/UPDATE request reaches the UAS, the UAS will know
 exactly what the UAC indicated in MIOs, and which policies have been
 requested by intermediate domains. The UAS decides if it wants to
 accept some or all of these policies. If it decides to reject a
 policy that is marked as required or if the message contains a
 failure MFO, the UAS MUST reject the request with a 488 (Not
 Acceptable Here) response. This response SHOULD include a Warning

Hilt & Rosenberg Expires March 29, 2004 [Page 8]

Internet-Draft SIP Session Policies September 2003

 header field value explaining, why the policies were not acceptable
 and a copy of the declined MFOs or the failure MFO.

 If all required (and possibly some optional) policies are acceptable
 to the UAS, it will eventually generate a response which contains a
 session description answer. If both user agents support reliable
 provisional responses [8], it is RECOMMENDED that the UAS returns the
 answer in a reliable provisional response. Using a reliable
 provisional response has the advantage that the UAC has the chance to
 reject policies before the session is established.

 The UAS then inserts its own set of MIOs for its side of the session
 into the response. It MUST copy all MFOs it has accepted (required
 and optional) from the request into the response. The copied MFOs are
 purely informational, for the benefit of the proxy and the UAC. They
 inform proxies which policies have been accepted. They also ensure
 that proxies cannot establish policies without having the UAC become
 aware of them. The copied MFOs are end-to-end, and not meant for
 modification by proxies. They MAY be protected by end-to-end security
 mechanisms.

 A UAS MAY only apply this extension to INVITE/UPDATE requests, that
 contain a Supported header with value "policy". If a UAS applies this
 extension, it MUST insert a Require header with the value "policy"
 into the response created. A Supported header with the value "policy"
 MUST be included in every response to an INVITE/UPDATE request.

2.1.4 Proxy Processing of Responses

 If the response contains a Require header with the value "policy",
 the proxy knows that the UAC and the UAS support the use of session
 policies and that it may apply this extension. The proxy can
 determine which policies have been accepted by the UAS by examining
 the list of MFOs, the UAS has copied into the response.

 The proxy can insert MFOs containing policies for media streams
 transmitted from UAC to UAS into the response to an INVITE request.
 These MFOs are created and formatted identically to those inserted
 into the request. If the MIOs contained in the response are not
 acceptable to a proxy, it may insert a failure MFO.

 A proxy could also insert MFOs into the response to an UPDATE
 request. However, these MFOs would not be copied back to the UAS
 since UACs do not PRACK or ACK UPDATE responses. Thus, the proxy
 would not be informed which policies have been accepted and the UAS
 would not become aware of these policies. Such a behavior violates
 the requirement that both UAs need to know the set of policies
 requested along the call path and that the proxy needs to be informed

Hilt & Rosenberg Expires March 29, 2004 [Page 9]

Internet-Draft SIP Session Policies September 2003

 about accepted policies. It is therefore NOT RECOMMENDED.

 [Question: would it make sense to send an additional message from UAC
 to UAS which carries the MFOs inserted into the response, e.g. a
 SUBSCRIBE/NOTIFY or INFO?]

2.1.5 Processing Responses and Generating ACKs

 After receiving a 1xx or 2xx response, the UAC examines if a Requires
 header with the value "policy" is present and if the response
 contains MFOs. If so, it can either reject or accept the policies. If
 it accepts all policies marked required, the UAC MUST copy the MFOs,
 that were accepted, into the PRACK or ACK. These MFOs are
 informational to the proxy and the UAS. They may be protected by
 end-to-end integrity mechanisms. Due to forking of requests in
 proxies, the UAC may receive multiple responses from different UASs
 for one request, which may contain different policies. If the
 response did not contain a policy Requires header, the UAC must
 ignore all policy related information in the response (e.g. MFOs).

 If the UAC decides to reject some of the required policies or if the
 response contained a failure MFO, the UAC should terminate the dialog
 associated with this response. If the UAS has responded with a 2xx
 response, the UAC must send an ACK and then terminate the dialog with
 a BYE. If the UAS has responded with a reliable provisional response,
 the UAC can terminate the dialog without fully establishing it by
 generating a CANCEL (after sending a PRACK, of course). The UAC does
 not copy the MFOs from the request into the PRACK or ACK. Instead,
 the declined MFOs SHOULD be copied into the BYE or CANCEL requests
 together with a Reason header [2] explaining why the policies were
 rejected.

 [TBD: need to define reason code, phrases etc.]

 If the UAC receives a 488 response and the reason explains that
 existing or missing MIOs caused the rejection, the UAC MAY try to
 correct the problem (e.g. by adding an additional MIO) and re-send
 the request.

2.1.6 Processing ACKs

 If the MFOs contained in a PRACK or ACK message are not acceptable to
 the UAS, it may decline them by terminating the dialog with a CANCEL
 or BYE. The CANCEL or BYE SHOULD contain a copy of the declined MFOs
 and a Reason header [2] explaining why these policies were rejected.

2.1.7 Applying Dynamic Policies

Hilt & Rosenberg Expires March 29, 2004 [Page 10]

Internet-Draft SIP Session Policies September 2003

 If both UAs have accepted the policies, they MUST apply them to the
 media streams they generate. This may involve, for example, sending
 media to an intermediary indicated in an MFO. Since the user agents
 know about the full set of intermediaries, they have many options in
 the event of a failure (detected through an ICMP error, for example).
 The endpoint can try to send the media to the next intermediary on
 the path. Or, if the MFO specifies the intermediaries as a FQDN
 instead of an IP address, the endpoint can attempt to use DNS to find
 an alternative, and begin routing media through that.

2.2 Response/ACK-based Framework

 Proxies may also request policies in INVITE transactions, which carry
 a session description offer in the response and an answer in the
 following ACK request. The basic message flow is depicted in Figure
 2.

 +-----+ +-------+ +-----+
	INVITE		INVITE	
	------------------>		------------------>	
	OK/offer		OK/offer	
	+ MIO1 + MFO1		+ MIO1	
UAC	<------------------	proxy	<------------------	UAS
	ACK/answer		ACK/answer	
	+ MFO1		+ MFO1	
	------------------>		------------------>	
 +-----+ +-------+ +-----+

 Figure 2

2.2.1 Creating the INVITE Response

 The UAS creates the response as usual. It applies this extension to
 the response, if the request containes a Supported header with the
 value "policy". The UAS MUST insert a Require header with the value
 "policy" and SHOULD insert all MIOs it can create for its side of the
 session description. A Supported header with the value "policy" MUST
 be included in every response to an INVITE/UPDATE request.

 It is RECOMMENDED that the UAS generates a reliable provisional
 response [8] if supported by both UAs.

Hilt & Rosenberg Expires March 29, 2004 [Page 11]

Internet-Draft SIP Session Policies September 2003

2.2.2 Proxy Processing Responses

 The proxy MAY add MFOs to responses that contain a Requires header
 with the value "policy". If an MIO contained in the response is not
 acceptable for the proxy, it MAY insert a failure MFO.

2.2.3 Processing Responses and Generating ACKs

 The UAC may or may not accept the policies contained in the response.
 If it accepts all required policies, it MUST copy the accepted MFOs
 into the PRACK or ACK. It may protect these MFOs with end-to-end
 integrity mechanisms. If it declines at least one of the required
 policies or if the response contained a failure MFO, the UAC does not
 copy these MFOs into the PRACK or ACK and SHOULD terminate the dialog
 associated with this response.

2.2.4 Proxy Processing of ACKs/PRACKs

 The proxy could insert MFOs into the PRACK or ACK. However, these
 MFOs would not be copied back to the UAC, which would violate the
 requirement that both UAs and the proxy should know the set of
 policies used in a session. This behavior is therefore NOT
 RECOMMENDED.

2.2.5 Processing ACKs/PRACKs

 If the MFOs contained in a PRACK or ACK message are not acceptable to
 the UAS, it may decline them by terminating the dialog.

2.3 "Media-Interface" header usage

 The Media-Interface header value contains Media Interface Objects
 (MIOs) created by a UA. The structure and semantics of MIOs needs to
 be defined in a policy package. However, the following general rules
 apply to Media-Interface header values:

 The Media-Interface header value MUST consist of the policy package
 name, under which the MIO was created.

 The Media-Interface header MAY contain a signature parameter which
 enables proxies to verify the identity of the UA and the integrity of
 the MIOs.

 A UA creates a separate Media-Interface header value for each policy
 package it supports. A policy package MAY require the creation of
 multiple Media-Interface headers with different MIOs. The UAC SHOULD
 create MIOs for all policy packages it supports. MIOs SHOULD contain
 as much information about the session as possible.

Hilt & Rosenberg Expires March 29, 2004 [Page 12]

Internet-Draft SIP Session Policies September 2003

 In the following example, the UA supports the packages foo and bar.
 It exponses data1 and data2 for package foo and data3 for package bar
 in MIOs.

 Media-Interface: foo;foo_param1=data1;foo_param2=data2,
 bar;bar_param=data3

2.4 "Media-Filter" header usage

 Media-Filter headers serve as a container for Media Filter Objects
 (MFOs). Each MFO is contained in a separate Media-Filter header
 value. Media-Filter header values implement a stack, which enables
 each proxy on the way to "push" its MFOs on top of the set of
 existing MFOs. The Media-Filter headers implement one single stack,
 which contains the MFOs for all packages. If a proxy wants to insert
 an MFO, it inserts the respective Media-Filter header value before
 the topmost Media-Filter header value.

 A UA, which receives a SIP message containing MFOs, processes them
 one after another by popping them from the stack.

 The structure and semantics of MFOs needs to be defined in a policy
 package. However, the following general rules apply to Media-Filter
 header values:

 The Media-Filter header value MUST consist of the policy package
 name, under which the MFO was created.

 The following general parameters are defined for Media-Filter
 headers. They provide basic information about the MFO to UAs even if
 they don't support the policy package used.

 o Domain. The domain parameter carries the identity of the domain,
 which requested the policy. It MUST be present in each MFO.

 o Consequences (cns). The consequences parameter is be used by the
 proxy to indicate the consequences of rejecting the policy to the
 UA. This parameter also enables a UA to determine if the
 acceptance of a policy is mandatory for establishing the session
 or not. The consequences parameter contains a consequences code,
 which has a "required" and an "optional" range. An MFO SHOULD
 contain a consequences code. An MFO is optional if the
 consequences parameter is not present.

 o Signature. A MFO MAY contain a signature, generated by the domain
 that inserted the MFO. This allows the endpoints to verify the
 identities of the domains, which have requested session policy,

Hilt & Rosenberg Expires March 29, 2004 [Page 13]

Internet-Draft SIP Session Policies September 2003

 and the integrity of those policies.

 [TBD: define consequence codes.]

 A failure MFO is a special MFO, which indicates that the session is
 not acceptable to the proxy. A failure MFO is an MFO with consequence
 code 999. Additional package specific parameters MAY be present in a
 failure MFOs.

 [TBD: define reason codes and texts for failure MFOs.]

 In the following example, the proxy in domain example1.com has
 requested policies for package foo and the proxy in domain
 example2.com has requested policies for the packages foo and bar.

 Media-Filter: foo;domain=example2.com;cns=100;foo_param=data1,
 bar;domain=example2.com;cns=300;bar_param=data1,
 foo;domain=example1.com;foo_param=data2,

2.5 "Reverse-Media-Filter" header usage

 The Reverse-Media-Filter header is used to convey the MFOs, a UA has
 accepted, back to the peer UA. A Reverse-Media-Filter header contains
 a copy of the accepted MFOs and has the same structure as the
 Media-Filter header.

Hilt & Rosenberg Expires March 29, 2004 [Page 14]

Internet-Draft SIP Session Policies September 2003

3. Dynamic Policy Packages

 This section describes aspects that need to be considered when
 dynamic policy packages are defined.

3.1 Media Interface Object

 This section MUST be present in a policy package. It defines the
 structure of Media Interface Objects used within this package.

 A policy package MUST describe the semantics of an MIO. It MUST
 describe how proxies are supposed to interpret the information
 contained in an MIO.

3.2 Media Filter Object

 This section MUST be present in a policy package. It defines the
 structure of Media Filter Objects used within this package.

 Media Filter Objects (MFOs) may define the differences to an existing
 MIO. However, it is very important that MFOs don't just define a diff
 to an MIO, in the Unix sense. This is because it is important that
 the endpoints understand the semantics of a requested policy, not
 just the syntactical change that is needed to affect that policy. A
 MFO may also define a general policy which is independent of an MIO.

 A policy package MUST describe exactly how a UA is supposed to apply
 the policy contained in an MFO. In particular, the policy package
 MUST describe how the information in the MFO is applied to the
 session description and if additional steps need to be taken when
 accepting the policy. This process MUST enable a UA to determine the
 consequences of accepting the policy before actually executing the
 necessary steps.

Hilt & Rosenberg Expires March 29, 2004 [Page 15]

Internet-Draft SIP Session Policies September 2003

4. Framework for Static Policies

 In contrast to dynamic policies, which can be defined on a
 call-by-call basis, static policies remain stable for a longer period
 of time, typically in the range of hours or days. In principle,
 static policies could be set up using the dynamic framework. However,
 establishing the same policies over and over again in every call is
 expensive, causing the continuous transmission of the same
 information during call setup, and possibly adding to call setup
 latencies. In general, static policies provide a way of conveying
 information to the UAC that is useful for setting up a call in the
 current environment. For example, a static policy could list the
 codecs that are currently allowed in the network or it may specify
 the MIOs the UAC is supposed to include in an INVITE/UPDATE request.
 In another example, the UAC has to traverse a NAT and is informed of
 the TURN [5] relay it should contact in advance of a call via a
 static policy.

 Requesting static instead of dynamic policies is most beneficial for
 network providers, which are involved in many sessions a UA
 establishes. The following two types of network providers will most
 likely have an interest in requesting static policies:

 o The Home Domain Provider is responsible for providing SIP service
 to a SIP user. Typically, this is the domain present in the URI in
 the address-of-record of a registration. The home domain provider
 may maintain user preferences or subscriptions to services, which
 involve static policies. For example, a user may have subscribed
 to a networked call recording service. The respective static
 policy makes sure, that all voice streams are routed through the
 recording intermediary.

 o The Access Network Provider is responsible for providing IP
 service to a SIP agent. This may be the same provider as the home
 domain provider. However, they may be different in scenarios where
 a user roams in a foreign network or obtains SIP services and IP
 connectivity from different providers. Access Network Providers
 are often interested in static policies, which influence the
 traffic in their networks such as restricting the use of high
 bandwidth codecs.

 This framework for static policies allows network providers to convey
 static policies to UAs. It does not define the structure or semantics
 of static policies. Static policies need to be defined in policy
 packages. An example for a static policy package for codec selection
 is discussed in Section 5.

 This document proposes two different frameworks for static policies,

Hilt & Rosenberg Expires March 29, 2004 [Page 16]

Internet-Draft SIP Session Policies September 2003

 which both have their advantages and disadvantages. However, it is
 expected that one of the frameworks will become obsolete as this
 draft evolves.

4.1 Static Policies using REGISTER

 This framework uses the REGISTER message to convey static policies to
 a UA. REGISTER messages are created at the time a device registers at
 a network, which is also the time static policies need to be
 exchanged. This message traverses the access network domain and the
 home domain, which are the domains typically interested in requesting
 static policies. An advantage of exchanging policy information in
 conjunction with a REGISTER message is the low overhead. No extra
 messages need to be created and clients do not need to implement
 additional protocols. The drawbacks are the tight coupling between
 registrations and static policies. Since registrations and policies
 are conveyed in the same message, proxies and registrars also need to
 be policy servers. Policies and registrations need to be refreshed in
 the same interval. The basic call flow in this framework is depicted
 in Figure 5.

 +----+ +----------+ +-----------+
	REGISTER		REGISTER + SP01	
	----------------->	outbound	----------------->	
UA				registrar
	OK + SPO1 + SPO2	proxy	OK + SPO1 + SPO2	
	<-----------------		<-----------------	
 +----+ +----------+ +-----------+

 Figure 5

4.1.1 Generating the REGISTER Request

 A UAC which supports this framework MUST insert a Supported header
 with the option tag "stat_policy".

 To allow the access network provider to request static policies, the
 UA SHOULD attempt to discover an outbound proxy, for example by using
 the methods described in the SIP Framework for User Agent
 Configuration [3]. If an outbound proxy is available, the UAC SHOULD
 include it in the route set used for the REGISTER request.

Hilt & Rosenberg Expires March 29, 2004 [Page 17]

Internet-Draft SIP Session Policies September 2003

4.1.2 Proxy Processing of Requests

 Proxies may insert Static Policy Objects (SPOs) into a REGISTER
 request. A proxy MAY only insert SPOs if the REGISTER request
 contains a Supported header with the option tag "stat_policy". If no
 such header is present, the proxy MAY try to request the desired
 policies using the dynamic framework. It MUST NOT reject the request
 if the "stat_policy" Supported header value is not present.

 An SPO represents a static policy, the UA is requested to apply to
 the sessions it establishes. An SPO can apply to all sessions
 established by the UA. However, it may also affect only a subset of
 these sessions. The scope of a static policy MUST be defined in a
 policy package. The policy package may either have global scope or
 define a scope attribute that is populated by proxies as needed.
 Possible scopes are:

 o Sessions for a certain address of record (i.e. sessions created
 for a certain local user). This is useful if an end device
 supports multiple identities and, for example, only a subset of
 them has subscribed to a service requiring policies.

 o Sessions to a certain remote URI. For example, a policy for NAT
 traversal might only apply to sessions to or from external
 addresses.

 o Outgoing/incoming sessions only. A static policy may apply only to
 sessions initiated by the local/the remote UA.

 o A certain media stream. This enables the specification of policies
 on a stream-by-stream basis. For example, a policy for audio codec
 selection only applies to audio streams.

 o Media streams in the incoming or outgoing direction. This enables
 independent policies for the media streams in each direction.

 SPOs are represented in a SIP header. The structure of such a header
 needs to be defined in policy packages. The SPO MUST contain the
 identity of the domain, which requested the policy. It MAY also
 contain a signature allowing the UA to verify the identity of that
 domain and the integrity of the SPO.

 In addition to an SPO, a proxy MAY generate an SPO-Reason header.
 This header contains the domain name of the proxy requesting the
 policy and explains the reasoning behind the session policy. The end
 device may present this text string to a human when querying whether
 the requested policies should be accepted or not.

Hilt & Rosenberg Expires March 29, 2004 [Page 18]

Internet-Draft SIP Session Policies September 2003

 [TBD: define the format to this header.]

 Static policies will usually be changed by the provider from time to
 time. This requires that the UA is able to refresh its view on static
 policies. In the REGISTER-based framework, this is done by
 periodically refreshing policies together with registrations. If a
 proxy wants to influence the refresh interval, it needs to determine
 the expiration intervals of all contacts in the REGISTER request as
 described in Section 10.3 of [9]. It MUST use the shortest of the
 determined expiration intervals as the expiration interval for
 inserted SPOs. If this interval is too long, the proxy MAY shorten it
 by changing the respective values in the REGISTER request (either the
 "expires" parameter value of the respective Contact header fields or
 the Expires header field value). If no expiration interval is given
 in the request, the proxy MAY insert an Expires header field with the
 desired value. This procedure makes sure that the UA generates the
 next REGISTER request at least at the time SPOs need to be refreshed.

 A proxy SHOULD insert SPOs, which scope is a certain address of
 record, into the REGISTER request for that address. SPOs, that are
 not tied to a certain address of record, MAY be inserted into every
 REGISTER request. However, if a device creates multiple REGISTER
 requests for different addresses of record, a proxy SHOULD insert
 these generic SPOs only into the REGISTER requests of one address
 (typically the first encountered by a proxy). This avoids the
 retransmission of these SPOs in every REGISTER request. A proxy must
 make sure that these SPOs are inserted into different REGISTER
 requests in case the address used expires or is removed.

4.1.3 Processing Requests

 The REGISTER request eventually reaches the registrar, which creates
 a response. If the request contains a Supported Header with the
 option tag "stat_policy", the registrar MAY insert SPOs representing
 its static policies into the response. If the request contained SPOs
 inserted by proxies on the way, the registrar must copy these SPOs
 from the request into the response.

 The registrar must follow the same procedures as a proxy when
 creating SPOs (see Section 4.1.2).

4.1.4 Applying Static Policies

 At the time the response reaches the UAC, it contains all static
 policies that have been requested by proxies and the registrar. The
 UAC can decide to accept or reject these policies. Since no session
 is established at this point, the UAC does not need to inform the
 proxies or registrar about its decision.

Hilt & Rosenberg Expires March 29, 2004 [Page 19]

Internet-Draft SIP Session Policies September 2003

 The UA MUST apply the accepted policies to new sessions it is
 establishing. For example, if the policy lists the audio codecs
 allowed in a wireless network, the UA includes only those audio
 codecs in the session description offers and answers it creates. The
 UA does not explicitly confirm the acceptance of a static policy in
 an INVITE or UPDATE message. The proxy might be able to determine the
 use of static policies by examining the actions of the UA (e.g.
 contacting a TURN relay) or the information it exposes in an MIO. The
 proxy may also have mechanisms in place to enforce its static
 policies.

 A provider may have static and dynamic policies in place. Since
 dynamic policies are requested during session setup, they
 automatically override a static policy. In fact, a provider may use
 dynamic policies to quickly apply the change of a static policy,
 without waiting until all UAs have refreshed their static policies.
 Dynamic policies may also be used for clients that do not support
 static policies.

 A UA, which has received an updated set of static policies in a
 REGISTER response, MAY apply them to existing sessions for example by
 issuing a re-INVITE request.

4.2 Static Policies using the Config Framework and XCAP

 Static policies influence the way a UA sets up a session. In this
 respect, static policies can be regarded as device configuration
 information and the mechanisms for conveying configuration
 information to devices can be re-used for requesting static policies.
 However, an important difference between configuration information
 and static policies is that configuration information is usually
 applied in any case whereas a UA can decide whether or not it wants
 to accept static policies.

 This document describes the use of the Framework for SIP User Agent
 Configuration [3] and The Extensible Markup Language Configuration
 Access Protocol (XCAP) [6] to deliver static policies to a UA. The
 SIP Framework for User Agent Configuration [3] enables a UA to
 discover configuration servers and retrieve a URL to configuration
 data. It also enables a configuration server to notify clients if new
 or updated configuration information is available. XCAP on the other
 hand provides the means to compose HTTP URLs, which point to
 components in configuration documents stored in XML format on a HTTP
 server. It allows clients to access these components on a fine
 grained basis.

 The major advantage of these configuration mechanisms is that they
 decouple requesting static policies from other tasks such as

Hilt & Rosenberg Expires March 29, 2004 [Page 20]

Internet-Draft SIP Session Policies September 2003

 registering. Static policies may be provided by any entity in the
 network and not only by those involved in the registration process.
 Also, static policies may be updated at any time, independent of
 refreshing registrations. A drawback of this approach is the overhead
 needed for transmitting extra messages and the implementation
 overhead for providing the additional protocols in UAs and policy
 servers.

4.2.1 Discovering Policy Servers

 The SIP Framework for User Agent Configuration [3] defines a
 SUBSCRIBE/NOTIFY-based mechanism, which enables UAs to subscribe to
 static policy information. Before being able to receive notifications
 about the availability of static policies, the UA must discover the
 relevant policy servers.

 The first group of policy servers relevant for a UA are the home
 policy servers, i.e. servers responsible for the home domains of
 registered users. The URIs of these servers are derived by taking the
 host component of each registered address of record and adding
 "policy" as "userinfo" component to this address. For example, if an
 address of record is sip:bob@example.com, the UA would use the URI
 sip:policy@example.com to contact the policy server. Using "policy"
 as the "userinfo" component enables proxies to route the request to a
 policy server.

 The second group of policy servers a UA is supposed to contact are
 access network policy servers. A UA SHOULD discover the URIs of these
 policy servers by using the procedures described in [3]. To
 distinguish policy from other device configuration servers, the UA
 MUST use the term "policy" wherever [3] requests the use of
 "sipuaconfig" when generating the URI.

 Finally, UA may also have manually configured URIs to policy servers.

4.2.2 Subscribing to Static Policies

 A UA supporting static policies MUST send a SUBSCRIBE request to the
 discovered policy servers. It generates the SUBSCRIBE request as
 described in [3].

 The To header field of a SUBSCRIBE request MUST be populated with the
 SIP URI of the policy server. The UA uses the From header field to
 indicate on behalf of whom it is subscribing to static policies. The
 UA SHOULD subscribe each registered user to all manually configured
 servers and all access network servers. To do so, the UA sends a
 separate SUBSCRIBE request for each registered address of record
 (which is inserted into the From header field) to every of the above

Hilt & Rosenberg Expires March 29, 2004 [Page 21]

Internet-Draft SIP Session Policies September 2003

 policy servers. This way, all of these servers will learn about the
 users the UA has registered and may provide different static policies
 for them. A home policy server will typically not be able to provide
 static policies for users not registered in its domain. Therefore, a
 UA SHOULD only send a SUBSCRIBE for the respective address of record
 to a home policy server.

 The UA SHOULD subscribe to all manually configured policy servers and
 to all discovered home policy servers. It SHOULD subscribe to access
 network servers until the first successful response is received.

 UAs MUST include the event package name "policy" in the Event header.

4.2.3 Creating Notifications and Policy Objects

 The policy server generates NOTIFY messages as described in [3]. In
 particular, it notifies the subscribers of any changes in static
 policies. The policy server does not insert policy objects into the
 body of a NOTIFY. Instead, it includes URLs pointing to the policy
 objects on a server. This saves bandwidth and enables a server to
 insert all current policies in a NOTIFY instead of tracking the
 policies that are new to a UA. The UA can then decide which policy
 objects it wants to retrieve.

 The structure of a particular policy object needs to be defined in a
 policy package. The policy objects defined for this framework are
 based on XCAP [6]. As such, a policy package defines an XCAP
 application usage specification. This specification defines the XML
 schema and the semantics of policy documents, which represent the
 desired static policy objects.

 Policy servers will frequently maintain multiple static policy
 documents. For example, they may maintain a document describing
 general policies and multiple user-specific documents, which describe
 policies for particular users. A policy server MUST insert URLs to
 all relevant policy documents into a NOTIFY. For example, a NOTIFY
 generated for user bob@example.com could contain URLs to the generic
 policies applicable in domain example.com and the specific policies
 of user bob@example.com. The NOTIFY MUST contain URLs to all relevant
 policy documents even if they have not been changed since the
 transmission of the previous NOTIFY. Each URL MUST have an associated
 Content-ID entity header, which SHOULD change every time the referred
 policy document changes. This enables clients to determine if they
 have the latest version of the policy without having to download and
 compare the documents.

 Static policy objects are created by applying the procedures
 discussed in Section 4.1.2. They MUST be stored in the policy

Hilt & Rosenberg Expires March 29, 2004 [Page 22]

Internet-Draft SIP Session Policies September 2003

 document tree on an XCAP server. The XCAP naming conventions for the
 construction of URLs MUST be applied. In particular, global policy
 objects MUST be stored in the "global" document sub-tree whereas user
 specific policy objects MUST be stored in the "users" sub-tree.

 A policy server MUST ensure that all URLs, it is inserting into a
 NOTIFY, refer to policy objects that are actually accessible in the
 XCAP document tree. This is in particular important if a policy
 server creates policy objects on the fly. For example, a new policy
 object might be generated when a new user requests policies for the
 first time. A policy server MUST NOT delay the transmission of a
 NOTIFY just because a relevant policy object is not yet available on
 the XCAP server. Instead, it SHOULD not refer to the new object in
 the current NOTIFY and create an additional NOTIFY as soon as the
 policy object becomes available on the XCAP server.

 The policy server MAY use XCAP to upload policy objects to the XCAP
 server.

4.2.4 Retrieving and Applying Static Policies

 After receiving a NOTIFY, the UA MUST determine if any of the URLs
 are pointing to a policy document, that is new or has changed since
 it was last downloaded. The UA SHOULD retrieve new or updated policy
 documents as soon as possible. After having retrieved a policy
 document, the UA can decide if it wants to accept the policies or
 not. Since no session is established at this point, the UAC does not
 need to inform the policy server about its decision.

 The UA must follow the procedures for applying static policies
 discussed in Section 4.1.4.

 The XCAP server MUST only allow read access for UAs to policy
 documents. Policies are used to request a certain behavior from a UA.
 The UA can decide if it wants to accept these policies or not but it
 can not modify them. In this respect, policy documents differ from
 device configuration data, which typically can be edited by the
 device. The XCAP server MUST determine if a client has authorization
 to read a resource. The default behavior is that the client of user X
 can read the policies under the "global" and the "users/X" document
 tree.

Hilt & Rosenberg Expires March 29, 2004 [Page 23]

Internet-Draft SIP Session Policies September 2003

5. Example Policy Package: Network-based Codec Selection

5.1 Dynamic Codec Selection

 This dynamic policy package enables a proxy to influence the codecs
 that are used within a session. The UAs are enabled to expose the
 codecs they support in MIOs. The MFOs created by the proxy contain
 the list of codecs allowed in the domain. The package is currently
 defined based on session descriptions in SDP [1] format. However, its
 is not restricted to SDP and can be used with other session
 description formats respectively.

 The name of this package is "codec". This package name is carried in
 the Media-Interface, the Media-Filter and the Reverse-Media-Filter
 header as defined in this specification.

5.1.1 Media Interface Object

 A codec MIO describes the codecs that are supported by the UA
 creating the MIO.

 This policy package defines a media type parameter for codec MIOs (in
 addition to the general parameters for MIOs).

 The parameter name consists of the media type, for which this MIO
 provides a policy. If used with a SDP session description, it MUST
 have the same value as the media name attribute in the media
 description (m=) of the corresponding SDP announcement. Typical
 values are "audio", "video", "application" and "data".

 The value of this parameter consists of a media stream id and one or
 more codec formats. The media stream id provides an identifier for a
 media stream. It MUST have a value that is unique within the scope of
 the session description. The media stream id MUST be present in each
 codec MIO and it MUST NOT be zero. The codec format describes the
 codecs allowed for this media type. The format of the value is
 specific to each media type and has the same structure as the SDP
 rtpmap parameter. A UA SHOULD list all codecs is has listed for the
 media stream in the corresponding session description. All elements
 of the parameter value are concatenated with a "+" symbol.

 An example for a Media-Interface header containing a codec MIO is

 Media-Interface: codec;audio=7736ai+pcmu/8000/1+pcma/8000/1+
 eg711u/8000/1;video=hha9s8sd0+h261/90000

 This header specifies two media streams, an audio and a video stream.
 The available audio codecs are pcmu, pcma, and eg711u. The only video

Hilt & Rosenberg Expires March 29, 2004 [Page 24]

Internet-Draft SIP Session Policies September 2003

 codec supported is h261.

 A proxy would create the following SDP announcement template from
 this MIO:

 m=audio <port> RTP/AVP 0 8 <no1>
 a=rtpmap:0 pcmu/8000/1
 a=rtpmap:8 pcma/8000/1
 a=rtpmap:<no1> eg711u/8000/1
 m=video <port> RTP/AVP 31
 a=rtpmap:31 h261/90000

5.1.2 Media Filter Object

 A codec MFO describes the list of codecs that are allowed under this
 session policy.

 In addition to the general header parameters, this policy package
 defines a media type parameter, which is structured exactly as the
 media type parameter in codec MIOs. The semantics of this parameter
 is as follows:

 The media stream id MUST refer to a media stream contained in an MIO
 or contain the value zero. If the media stream id refers to a media
 stream in an MIO, the codec policy applies only to the referred media
 stream. If the media stream id is zero, the policy apply to all
 streams of the respective media type. A proxy MAY insert multiple
 media type parameters with different media stream id's for the same
 media type, if it wants to define different policies for different
 streams of the same type.

 The media format element MUST list all codecs that are allowed under
 the current policy. It MAY contain codecs that are not listed in a
 respective MIO.

 [TBD: Define consequence codes.]

 An example for a Media-Filter header containing a codec MFO is

 Media-Filter: codec;domain=example1.com;
 audio=0+pcmu/8000/1+eg711u/8000/1,
 codec;domain=example2.com;cns=100;
 audio=0+eg711u/8000/1;video=0

 This header contains two MFOs, one inserted by proxy example1.com and
 one by example2.com. The policy of domain example1.com is that the
 set of allowed audio codecs is limited to pcmu and eg711u.

Hilt & Rosenberg Expires March 29, 2004 [Page 25]

Internet-Draft SIP Session Policies September 2003

 Consequences for UAs rejecting this policy are not defined, which
 also indicates that this policy is optional. Domain example1.com has
 no policy for video codecs. The policy of domain example2.com is that
 only audio codec eg711u and no video can be used. Consequence of
 rejecting this policy is code 100, which indicates that the policy is
 mandatory. All policies apply to audio and video streams in general
 and are not bound to a stream listed in the MIO.

 A UA would create the following SDP filter from these MFOs:

 m=audio <port> RTP/AVP <no1>
 a=rtpmap:<no1> eg711u/8000/1
 m=video <port> RTP/AVP

 A UA, that accepts this policy, removes all audio and video codecs
 that are not listed in the SDP filter.

5.2 Static Codec Selection

 [TBD: Give an example for static policies.]

Hilt & Rosenberg Expires March 29, 2004 [Page 26]

Internet-Draft SIP Session Policies September 2003

6. Security Considerations

 [TBD.]

Hilt & Rosenberg Expires March 29, 2004 [Page 27]

Internet-Draft SIP Session Policies September 2003

7. IANA Considerations

 [TBD.]

Hilt & Rosenberg Expires March 29, 2004 [Page 28]

Internet-Draft SIP Session Policies September 2003

8. Syntax

 This section describes the syntax extensions required for session
 policies.

8.1 Header Fields

 This table expands on tables 2 and 3 in SIP [9] and on table 1 and
 table 2 in Reliability of Provisional Responses in SIP [8].

 Header field where proxy ACK BYE CAN INV OPT REG PRACK

 Media-Interface r o - - o - - o
 Media-Filter a o - - o - - o
 Reverse-Media-Filter r - - - o - - -
 Reverse-Media-Filter o - - - - - o

Hilt & Rosenberg Expires March 29, 2004 [Page 29]

Internet-Draft SIP Session Policies September 2003

References

 [1] Handley, M. and V. Jacobson, "SDP: Session Description
 Protocol", RFC 2327, April 1998.

 [2] Oran, D., Schulzrinne, H. and G. Camarillo, "The Reason Header
 Field for the Session Initiation Protocol",

draft-ietf-sip-reason-01 (work in progress), May 2002.

 [3] Petrie, D., "A Framework for SIP User Agent Configuration",
draft-ietf-sipping-config-framework-00 (work in progress),

 March 2003.

 [4] Rosenberg, J., "The Session Initiation Protocol (SIP) UPDATE
 Method", RFC 3311, October 2002.

 [5] Rosenberg, J., "Traversal Using Relay NAT (TURN)",
draft-rosenberg-midcom-turn-01 (work in progress), March 2003.

 [6] Rosenberg, J., "The Extensible Markup Language (XML)
 Configuration Access Protocol (XCAP)",

draft-rosenberg-simple-xcap-00 (work in progress), May 2003.

 [7] Rosenberg, J., "Requirements for Session Policy for the Session
 Initiation Protocol (SIP)",

draft-ietf-sipping-session-policy-req-00 (work in progress),
 June 2003.

 [8] Rosenberg, J. and H. Schulzrinne, "Reliability of Provisional
 Responses in Session Initiation Protocol (SIP)", RFC 3262, June
 2002.

 [9] Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A.,
 Peterson, J., Sparks, R., Handley, M. and E. Schooler, "SIP:
 Session Initiation Protocol", RFC 3261, June 2002.

 [10] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A. and A.
 Rayhan, "Middlebox communication architecture and framework",

RFC 3303, August 2002.

https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/draft-ietf-sip-reason-01
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-config-framework-00
https://datatracker.ietf.org/doc/html/rfc3311
https://datatracker.ietf.org/doc/html/draft-rosenberg-midcom-turn-01
https://datatracker.ietf.org/doc/html/draft-rosenberg-simple-xcap-00
https://datatracker.ietf.org/doc/html/draft-ietf-sipping-session-policy-req-00
https://datatracker.ietf.org/doc/html/rfc3262
https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3303

Hilt & Rosenberg Expires March 29, 2004 [Page 30]

Internet-Draft SIP Session Policies September 2003

Authors' Addresses

 Volker Hilt
 Bell Labs/Lucent Technologies
 101 Crawfords Corner Rd
 Holmdel, NJ 07733
 USA

 EMail: volkerh@bell-labs.com

 Jonathan Rosenberg
 dynamicsoft
 72 Eagle Rock Avenue
 East Hanover, NJ 07936
 USA

 EMail: jdrosen@dynamicsoft.com

Hilt & Rosenberg Expires March 29, 2004 [Page 31]

Internet-Draft SIP Session Policies September 2003

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

Full Copyright Statement

 Copyright (C) The Internet Society (2003). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assignees.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION

https://datatracker.ietf.org/doc/html/bcp11

Hilt & Rosenberg Expires March 29, 2004 [Page 32]

Internet-Draft SIP Session Policies September 2003

 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Hilt & Rosenberg Expires March 29, 2004 [Page 33]

