
Network Working Group I. Hickson
Internet-Draft Google, Inc.
Intended status: Standards Track March 23, 2009
Expires: September 24, 2009

The Web Socket protocol
draft-hixie-thewebsocketprotocol-07

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 24, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document.

Hickson Expires September 24, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft The Web Socket protocol March 2009

Abstract

 This protocol enables two-way communication between a user agent
 running untrusted code running in a controlled environment to a
 remote host that understands the protocol. It is intended to fail to
 communicate with servers of pre-existing protocols like SMTP or HTTP,
 while allowing HTTP servers to opt-in to supporting this protocol if
 desired. It is designed to be easy to implement on the server side.

Hickson Expires September 24, 2009 [Page 2]

Internet-Draft The Web Socket protocol March 2009

Author's note

 This document is automatically generated from, and is therefore a
 subset of, the HTML5 specification produced by the WHATWG. [HTML5]

Table of Contents

1. Introduction . 4
2. Conformance requirements 5
3. Client-side requirements 6
3.1. Handshake . 6
3.2. Data framing . 12

4. Server-side requirements 14
4.1. Minimal handshake . 14
4.2. Handshake details . 14
4.3. Data framing . 15

5. Closing the connection . 17
6. Security considerations 18
7. IANA considerations . 19
8. Normative References . 20

 Author's Address . 21

Hickson Expires September 24, 2009 [Page 3]

Internet-Draft The Web Socket protocol March 2009

1. Introduction

 ** ISSUE ** ...

Hickson Expires September 24, 2009 [Page 4]

Internet-Draft The Web Socket protocol March 2009

2. Conformance requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
 "RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this
 document are to be interpreted as described in RFC2119. For
 readability, these words do not appear in all uppercase letters in
 this specification. [RFC2119]

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("must", "should", "may", etc) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps may
 be implemented in any manner, so long as the end result is
 equivalent. (In particular, the algorithms defined in this
 specification are intended to be easy to follow, and not intended to
 be performant.)

 Implementations may impose implementation-specific limits on
 otherwise unconstrained inputs, e.g. to prevent denial of service
 attacks, to guard against running out of memory, or to work around
 platform-specific limitations.

 The conformance classes defined by this specification are user agents
 and servers.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Hickson Expires September 24, 2009 [Page 5]

Internet-Draft The Web Socket protocol March 2009

3. Client-side requirements

 This section only applies to user agents, not to servers.

 NOTE: This specification doesn't currently define a limit to the
 number of simultaneous connections that a client can establish to a
 server.

3.1. Handshake

 When the user agent is to *establish a Web Socket connection* to a
 host /host/, optionally on port /port/, from an origin /origin/, with
 a flag /secure/, and with a particular /resource name/, it must run
 the following steps.

 NOTE: The /host/ and /origin/ strings will be all-lowercase when this
 algorithm is invoked.

 1. If there is no explicit /port/, then: if /secure/ is false, let
 /port/ be 81, otherwise let /port/ be 815.

 2. If the user agent is configured to use a proxy to connect to
 host /host/ and/or port /port/, then connect to that proxy and
 ask it to open a TCP/IP connection to the host given by /host/
 and the port given by /port/.

 EXAMPLE: For example, if the user agent uses an HTTP proxy
 for all traffic, then if it was to try to connect to port 80
 on server example.com, it might send the following lines to
 the proxy server:

 CONNECT example.com HTTP/1.1

 If there was a password, the connection might look like:

 CONNECT example.com HTTP/1.1
 Proxy-authorization: Basic ZWRuYW1vZGU6bm9jYXBlcyE=

 Otherwise, if the user agent is not configured to use a proxy,
 then open a TCP/IP connection to the host given by /host/ and
 the port given by /port/.

 3. If the connection could not be opened, then fail the Web Socket
 connection and abort these steps.

 4. If /secure/ is true, perform a TLS handshake over the
 connection. If this fails (e.g. the server's certificate could
 not be verified), then fail the Web Socket connection and abort

Hickson Expires September 24, 2009 [Page 6]

Internet-Draft The Web Socket protocol March 2009

 these steps. Otherwise, all further communication on this
 channel must run through the encrypted tunnel. [RFC2246]

 5. Send the following bytes to the remote side (the server):

 47 45 54 20

 Send the /resource name/ value, encoded as US-ASCII.

 Send the following bytes:

 20 48 54 54 50 2f 31 2e 31 0d 0a 55 70 67 72 61
 64 65 3a 20 57 65 62 53 6f 63 6b 65 74 0d 0a 43
 6f 6e 6e 65 63 74 69 6f 6e 3a 20 55 70 67 72 61
 64 65 0d 0a

 NOTE: The string "GET ", the path, " HTTP/1.1", CRLF, the string
 "Upgrade: WebSocket", CRLF, and the string "Connection:
 Upgrade", CRLF.

 6. Send the following bytes:

 48 6f 73 74 3a 20

 Send the /host/ value, encoded as US-ASCII.

 Send the following bytes:

 0d 0a

 NOTE: The string "Host: ", the host, and CRLF.

 7. Send the following bytes:

 4f 72 69 67 69 6e 3a 20

 Send the /origin/ value, encoded as US-ASCII.

 NOTE: The /origin/ value is a string that was passed to this
 algorithm.

 Send the following bytes:

 0d 0a

 NOTE: The string "Origin: ", the origin, and CRLF.

https://datatracker.ietf.org/doc/html/rfc2246

Hickson Expires September 24, 2009 [Page 7]

Internet-Draft The Web Socket protocol March 2009

 8. If the client has any authentication information or cookies that
 would be relevant to a resource accessed over HTTP, if /secure/
 is false, or HTTPS, if it is true, on host /host/, port /port/,
 with /resource name/ as the path (and possibly query
 parameters), then HTTP headers that would be appropriate for
 that information should be sent at this point. [RFC2616]
 [RFC2109] [RFC2965]

 Each header must be on a line of its own (each ending with a CR
 LF sequence). For the purposes of this step, each header must
 not be split into multiple lines (despite HTTP otherwise
 allowing this with continuation lines).

 EXAMPLE: For example, if the server had a username and
 password that applied to |http://example.com/socket|, and the
 Web Socket was being opened to |ws://example.com:80/socket|,
 it could send them:

 Authorization: Basic d2FsbGU6ZXZl

 However, it would not send them if the Web Socket was being
 opened to |ws://example.com/socket|, as that uses a different
 port (81, not 80).

 9. Send the following bytes:

 0d 0a

 NOTE: Just a CRLF (a blank line).

 10. Read the first 85 bytes from the server. If the connection
 closes before 85 bytes are received, or if the first 85 bytes
 aren't exactly equal to the following bytes, then fail the Web
 Socket connection and abort these steps.

 48 54 54 50 2f 31 2e 31 20 31 30 31 20 57 65 62
 20 53 6f 63 6b 65 74 20 50 72 6f 74 6f 63 6f 6c
 20 48 61 6e 64 73 68 61 6b 65 0d 0a 55 70 67 72
 61 64 65 3a 20 57 65 62 53 6f 63 6b 65 74 0d 0a
 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 55 70 67 72
 61 64 65 0d 0a

 NOTE: The string "HTTP/1.1 101 Web Socket Protocol Handshake",
 CRLF, the string "Upgrade: WebSocket", CRLF, the string
 "Connection: Upgrade", CRLF.

 11. Let /headers/ be a list of name-value pairs, initially empty.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/rfc2965

Hickson Expires September 24, 2009 [Page 8]

Internet-Draft The Web Socket protocol March 2009

 12. _Header_: Let /name/ and /value/ be empty byte arrays.

 13. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the Web Socket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x0d (ASCII CR)
 If the /name/ byte array is empty, then jump to the headers
 processing step. Otherwise, fail the Web Socket connection
 and abort these steps.

 -> If the byte is 0x0a (ASCII LF)
 Fail the Web Socket connection and abort these steps.

 -> If the byte is 0x3a (ASCII ":")
 Move on to the next step.

 -> If the byte is in the range 0x41 .. 0x5a (ASCII "A" .. "Z")
 Append a byte whose value is the byte's value plus 0x20 to
 the /name/ byte array and redo this step for the next byte.

 -> Otherwise
 Append the byte to the /name/ byte array and redo this step
 for the next byte.

 NOTE: This reads a header name, terminated by a colon,
 converting upper-case ASCII letters to lowercase, and aborting
 if a stray CR or LF is found.

 14. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the Web Socket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x20 (ASCII space)
 Ignore the byte and move on to the next step.

 -> Otherwise
 Treat the byte as described by the list in the next step,
 then move on to that next step for real.

Hickson Expires September 24, 2009 [Page 9]

Internet-Draft The Web Socket protocol March 2009

 NOTE: This skips past a space character after the colon, if
 necessary.

 15. Read a byte from the server.

 If the connection closes before this byte is received, then fail
 the Web Socket connection and abort these steps.

 Otherwise, handle the byte as described in the appropriate entry
 below:

 -> If the byte is 0x0d (ASCII CR)
 Move on to the next step.

 -> If the byte is 0x0a (ASCII LF)
 Fail the Web Socket connection and abort these steps.

 -> Otherwise
 Append the byte to the /name/ byte array and redo this step
 for the next byte.

 NOTE: This reads a header value, terminated by a CRLF.

 16. Read a byte from the server.

 If the connection closes before this byte is received, or if the
 byte is not a 0x0a byte (ASCII LF), then fail the Web Socket
 connection and abort these steps.

 NOTE: This skips past the LF byte of the CRLF after the header.

 17. Append an entry to the /headers/ list that has the name given by
 the string obtained by interpreting the /name/ byte array as a
 UTF-8 byte stream and the value given by the string obtained by
 interpreting the /value/ byte array as a UTF-8 byte stream.

 18. Return to the "Header" step above.

 19. _Headers processing_: If there is not exactly one entry in the
 /headers/ list whose name is "websocket-origin", or if there is
 not exactly one entry in the /headers/ list whose name is
 "websocket-location", or if there are any entries in the
 /headers/ list whose names are the empty string, then fail the
 Web Socket connection and abort these steps.

 20. Read a byte from the server.

 If the connection closes before this byte is received, or if the

Hickson Expires September 24, 2009 [Page 10]

Internet-Draft The Web Socket protocol March 2009

 byte is not a 0x0a byte (ASCII LF), then fail the Web Socket
 connection and abort these steps.

 NOTE: This skips past the LF byte of the CRLF after the blank
 line after the headers.

 21. Handle each entry in the /headers/ list as follows:

 -> If the entry's name is "websocket-origin|"
 If the value is not exactly equal to /origin/, converted to
 lowercase, then fail the Web Socket connection and abort
 these steps.

 -> If the entry's name is "websocket-location|"
 If the value is not exactly equal to a string consisting of
 the following components in the same order, then fail the Web
 Socket connection and abort these steps:

 1. The string "ws" if /secure/ is false and "wss" if
 /secure/ is true

 2. The three characters "://".

 3. The value of /host/.

 4. If /secure/ is false and /port/ is not 81, or if /secure/
 is true and /port/ is not 815: a ":" character followed
 by the value of /port/.

 5. The value of /resource name/.

 -> If the entry's name is "set-cookie|" or "set-cookie2|" or
 another cookie-related header name
 Handle the cookie as defined by the appropriate spec, with
 the resource being the one with the host /host/, the port
 /port/, the path (and possibly query parameters) /resource
 name/, and the scheme |http| if /secure/ is false and |https|
 if /secure/ is true. [RFC2109] [RFC2965]

 -> Any other name
 Ignore it.

 22. The *Web Socket connection is established*. Now the user agent
 must send and receive to and from the connection as described in
 the next section.

 To *fail the Web Socket connection*, the user agent must close the
 Web Socket connection, and may report the problem to the user (which

https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/rfc2965

Hickson Expires September 24, 2009 [Page 11]

Internet-Draft The Web Socket protocol March 2009

 would be especially useful for developers). However, user agents
 must not convey the failure information to the script that attempted
 the connection in a way distinguishable from the Web Socket being
 closed normally.

3.2. Data framing

 Once a Web Socket connection is established, the user agent must run
 through the following state machine for the bytes sent by the server.

 1. Try to read a byte from the server. Let /frame type/ be that
 byte.

 If no byte could be read because the Web Socket connection is
 closed, then abort.

 2. Handle the /frame type/ byte as follows:

 If the high-order bit of the /frame type/ byte is set (i.e. if
 /frame type/ _and_ed with 0x80 returns 0x80)
 Run these steps. If at any point during these steps a read is
 attempted but fails because the Web Socket connection is
 closed, then abort.

 1. Let /length/ be zero.

 2. _Length_: Read a byte, let /b/ be that byte.

 3. Let /b_v/ be integer corresponding to the low 7 bits of
 /b/ (the value you would get by _and_ing /b/ with 0x7f).

 4. Multiply /length/ by 128, add /b_v/ to that result, and
 store the final result in /length/.

 5. If the high-order bit of /b/ is set (i.e. if /b/ _and_ed
 with 0x80 returns 0x80), then return to the step above
 labeled _length_.

 6. Read /length/ bytes.

 7. Discard the read bytes.

 If the high-order bit of the /frame type/ byte is _not_ set (i.e.
 if /frame type/ _and_ed with 0x80 returns 0x00)
 Run these steps. If at any point during these steps a read is
 attempted but fails because the Web Socket connection is
 closed, then abort.

Hickson Expires September 24, 2009 [Page 12]

Internet-Draft The Web Socket protocol March 2009

 1. Let /raw data/ be an empty byte array.

 2. _Data_: Read a byte, let /b/ be that byte.

 3. If /b/ is not 0xff, then append /b/ to /raw data/ and
 return to the previous step (labeled _data_).

 4. Interpret /raw data/ as a UTF-8 string, and store that
 string in /data/.

 5. If /frame type/ is 0x00, then *a message has been
 received* with text /data/. Otherwise, discard the data.

 3. Return to the first step to read the next byte.

 If the user agent is faced with content that is too large to be
 handled appropriately, then it must fail the Web Socket connection.

 Once a Web Socket connection is established, the user agent must use
 the following steps to *send /data/ using the Web Socket*:

 1. Send a 0x00 byte to the server.

 2. Encode /data/ using UTF-8 and send the resulting byte stream to
 the server.

 3. Send a 0xff byte to the server.

Hickson Expires September 24, 2009 [Page 13]

Internet-Draft The Web Socket protocol March 2009

4. Server-side requirements

 This section only applies to servers.

4.1. Minimal handshake

 NOTE: This section describes the minimal requirements for a server-
 side implementation of Web Sockets.

 Listen on a port for TCP/IP. Upon receiving a connection request,
 open a connection and send the following bytes back to the client:

 48 54 54 50 2f 31 2e 31 20 31 30 31 20 57 65 62
 20 53 6f 63 6b 65 74 20 50 72 6f 74 6f 63 6f 6c
 20 48 61 6e 64 73 68 61 6b 65 0d 0a 55 70 67 72
 61 64 65 3a 20 57 65 62 53 6f 63 6b 65 74 0d 0a
 43 6f 6e 6e 65 63 74 69 6f 6e 3a 20 55 70 67 72
 61 64 65 0d 0a

 Send the string "WebSocket-Origin" followed by a U+003A COLON (":")
 followed by the ASCII serialization of the origin from which the
 server is willing to accept connections, followed by a CRLF pair
 (0x0d 0x0a).

 For instance:

 WebSocket-Origin: http://example.com

 Send the string "WebSocket-Location" followed by a U+003A COLON (":")
 followed by the URL of the Web Socket script, followed by a CRLF pair
 (0x0d 0x0a).

 For instance:

 WebSocket-Location: ws://example.com:80/demo

 Send another CRLF pair (0x0d 0x0a).

 Read (and discard) data from the client until four bytes 0x0d 0x0a
 0x0d 0x0a are read.

 If the connection isn't dropped at this point, go to the data framing
 section.

4.2. Handshake details

 The previous section ignores the data that is transmitted by the
 client during the handshake.

Hickson Expires September 24, 2009 [Page 14]

Internet-Draft The Web Socket protocol March 2009

 The data sent by the client consists of a number of fields separated
 by CR LF pairs (bytes 0x0d 0x0a).

 The first field consists of three tokens separated by space
 characters (byte 0x20). The middle token is the path being opened.
 If the server supports multiple paths, then the server should echo
 the value of this field in the initial handshake, as part of the URL
 given on the |WebSocket-Location| line (after the appropriate scheme
 and host).

 The remaining fields consist of name-value pairs, with the name part
 separated from the value part by a colon and a space (bytes 0x3a
 0x20). Of these, several are interesting:

 Host (bytes 48 6f 73 74)
 The value gives the hostname that the client intended to use when
 opening the Web Socket. It would be of interest in particular to
 virtual hosting environments, where one server might serve
 multiple hosts, and might therefore want to return different data.

 The right host has to be output as part of the URL given on the
 |WebSocket-Location| line of the handshake described above, to
 verify that the server knows that it is really representing that
 host.

 Origin (bytes 4f 72 69 67 69 6e)
 The value gives the scheme, hostname, and port (if it's not the
 default port for the given scheme) of the page that asked the
 client to open the Web Socket. It would be interesting if the
 server's operator had deals with operators of other sites, since
 the server could then decide how to respond (or indeed, _whether_
 to respond) based on which site was requesting a connection.

 If the server supports connections from more than one origin, then
 the server should echo the value of this field in the initial
 handshake, on the |WebSocket-Origin| line.

 Other fields
 Other fields can be used, such as "Cookie" or "Authorization", for
 authentication purposes.

4.3. Data framing

 NOTE: This section only describes how to handle content that this
 specification allows user agents to send (text). It doesn't handle
 any arbitrary content in the same way that the requirements on user
 agents defined earlier handle any content including possible future
 extensions to the protocols.

Hickson Expires September 24, 2009 [Page 15]

Internet-Draft The Web Socket protocol March 2009

 The server should run through the following steps to process the
 bytes sent by the client:

 1. Read a byte from the client. Assuming everything is going
 according to plan, it will be a 0x00 byte. Behaviour for the
 server is undefined if the byte is not 0x00.

 2. Let /raw data/ be an empty byte array.

 3. _Data_: Read a byte, let /b/ be that byte.

 4. If /b/ is not 0xff, then append /b/ to /raw data/ and return to
 the previous step (labeled _data_).

 5. Interpret /raw data/ as a UTF-8 string, and apply whatever
 server-specific processing should occur for the resulting string.

 6. Return to the first step to read the next byte.

 The server should run through the following steps to send strings to
 the client:

 1. Send a 0x00 byte to the client to indicate the start of a string.

 2. Encode /data/ using UTF-8 and send the resulting byte stream to
 the client.

 3. Send a 0xff byte to the client to indicate the end of the
 message.

Hickson Expires September 24, 2009 [Page 16]

Internet-Draft The Web Socket protocol March 2009

5. Closing the connection

 To *close the Web Socket connection*, either the user agent or the
 server closes the TCP/IP connection. There is no closing handshake.
 Whether the user agent or the server closes the connection, it is
 said that the *Web Socket connection is closed*.

 Servers may close the Web Socket connection whenever desired.

 User agents should not close the Web Socket connection arbitrarily.

Hickson Expires September 24, 2009 [Page 17]

Internet-Draft The Web Socket protocol March 2009

6. Security considerations

 ** ISSUE ** ...

Hickson Expires September 24, 2009 [Page 18]

Internet-Draft The Web Socket protocol March 2009

7. IANA considerations

 ** ISSUE ** ...(two URI schemes, two ports, HTTP Upgrade keyword)

Hickson Expires September 24, 2009 [Page 19]

Internet-Draft The Web Socket protocol March 2009

8. Normative References

 [HTML5] Hickson, I., "HTML5", March 2009.

 [RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2109, February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2965] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2965, October 2000.

https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2965

Hickson Expires September 24, 2009 [Page 20]

Internet-Draft The Web Socket protocol March 2009

Author's Address

 Ian Hickson
 Google, Inc.

 Email: ian@hixie.ch
 URI: http://ln.hixie.ch/

Hickson Expires September 24, 2009 [Page 21]

http://ln.hixie.ch/

